Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access

In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only de...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 62137 - 62156
Main Authors Camana, Mario R., Garcia, Carla E., Koo, Insoo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3182552

Cover

Abstract In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only decode information, and another set of secondary users that simultaneously decode information and harvest energy based on a power-splitting (PS) ratio. Precoders are designed to minimize the transmission power of the secondary transmitter subject to a minimum rate requirement, an energy harvesting requirement, and maximum allowable interference with the primary network. The optimization problem is non-convex and challenging. Thus, we divide it into two subproblems where the outer problem is solved by a deep neural network (DNN)-based scheme with an autoencoder, and the inner problem is solved based on the semidefinite relaxation (SDR) technique. The inner problem takes the solution of the DNN-based scheme to provide the precoder vectors and PS ratios based on SDR, where a penalty function is proposed to guarantee feasible solutions to the problems. Our simulation results prove that the proposed framework based on RSMA outperforms the conventional methods and can achieve performance close to that of the optimal solutions, with a significant reduction in computational complexity.
AbstractList In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only decode information, and another set of secondary users that simultaneously decode information and harvest energy based on a power-splitting (PS) ratio. Precoders are designed to minimize the transmission power of the secondary transmitter subject to a minimum rate requirement, an energy harvesting requirement, and maximum allowable interference with the primary network. The optimization problem is non-convex and challenging. Thus, we divide it into two subproblems where the outer problem is solved by a deep neural network (DNN)-based scheme with an autoencoder, and the inner problem is solved based on the semidefinite relaxation (SDR) technique. The inner problem takes the solution of the DNN-based scheme to provide the precoder vectors and PS ratios based on SDR, where a penalty function is proposed to guarantee feasible solutions to the problems. Our simulation results prove that the proposed framework based on RSMA outperforms the conventional methods and can achieve performance close to that of the optimal solutions, with a significant reduction in computational complexity.
Author Garcia, Carla E.
Camana, Mario R.
Koo, Insoo
Author_xml – sequence: 1
  givenname: Mario R.
  orcidid: 0000-0002-1953-872X
  surname: Camana
  fullname: Camana, Mario R.
  organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
– sequence: 2
  givenname: Carla E.
  orcidid: 0000-0003-4692-253X
  surname: Garcia
  fullname: Garcia, Carla E.
  organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
– sequence: 3
  givenname: Insoo
  orcidid: 0000-0001-7476-8782
  surname: Koo
  fullname: Koo, Insoo
  email: iskoo@ulsan.ac.kr
  organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
BookMark eNp9kU9rGzEQxZeSQtM0nyAXQc_r6o-1ko6umzQGG4duQo9CK80GmbV2K8kE59Nnk01LySFzmWGY3-Mx73NxEvoARXFB8IwQrL4tlsvLup5RTOmMEUk5px-KU0oqVTLOqpP_5k_FeUo7PJYcV1ycFsMPgAGtwcTgw325SMmnDA7d9A8Q0cYHv_ePJvs-IB_QXXAQO3NEm1W9Levfq5tbVB9HYJ_Qd5NGbhvQL5OhrIfO5zxKos2hy37oAC2shZS-FB9b0yU4f-1nxd3V5e3yulxvf66Wi3Vp51jmci5VxYUj1BpLq0qY1jGjcCsbQSzhFRbMsdZxAA7UYKwa1bbYkcZhyRvSsLNiNem63uz0EP3exKPujdcviz7eaxOztx1oUJUkjtiG8WZuQUrnOBO4URJEg3E7an2dtIbY_zlAynrXH2IY7WtaCSE5o1SOV2q6srFPKUKrrc8vr8vR-E4TrJ_z0lNe-jkv_ZrXyLI37F_H71MXE-UB4B-hhJoLjtkTBsWjBg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TVT_2023_3305960
crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_TVT_2024_3423002
crossref_primary_10_1109_JPROC_2024_3417332
crossref_primary_10_1109_JSAC_2023_3240713
crossref_primary_10_3390_electronics13050872
crossref_primary_10_1109_TGCN_2022_3219111
Cites_doi 10.1109/MWC.010.2100117
10.1007/978-3-319-94463-0
10.1109/TSP.2014.2354312
10.1109/TSP.2018.2866382
10.1109/VTC2020-Fall49728.2020.9348672
10.1109/JSYST.2020.3032725
10.1109/MSP.2010.936019
10.1007/978-3-030-61111-8
10.1109/LCOMM.2016.2619340
10.1109/COMST.2017.2783901
10.1109/TWC.2014.041714.131688
10.1109/JSYST.2019.2904721
10.1109/SPAWC.2019.8815494
10.1109/ICC.2017.7996560
10.1109/JPROC.2019.2957798
10.1109/MCOM.2015.7081084
10.1109/TSP.2012.2189857
10.1186/s13638-018-1104-7
10.1109/ACCESS.2022.3162838
10.1109/TSP.2007.897903
10.3390/electronics9111948
10.1109/TWC.2016.2543212
10.1109/LCOMM.2019.2892109
10.1109/ICCChina.2018.8641220
10.1109/ISWCS.2018.8491100
10.1002/0471671746
10.1109/TCOMM.2019.2900634
10.1109/LCOMM.2015.2498928
10.1109/MWC.2019.1800350
10.1109/TCOMM.2019.2960361
10.1109/TSP.2016.2591501
10.1109/JIOT.2017.2785861
10.1109/JSAC.2018.2824622
10.1109/LWC.2019.2954518
10.1109/MCOM.2016.7470942
10.1109/TWC.2021.3133433
10.1109/JSAC.2018.2872375
10.1137/1.9781611970777
10.1109/ACCESS.2017.2727073
10.1109/TCOMM.2019.2943168
10.1007/0-387-30528-9_7
10.3390/electronics9081222
10.1016/j.neucom.2020.08.082
10.1007/s11276-019-02126-z
10.1109/ACCESS.2019.2892321
10.1109/ICC.2016.7511628
10.1017/CBO9780511804441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3182552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 62156
ExternalDocumentID oai_doaj_org_article_e9681d1cb35b4ce88dd5370b98e7b00f
10_1109_ACCESS_2022_3182552
9794750
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea through the Korean Government Ministry of Science and Information and Communication Technologies (ICT) (MSIT)
  grantid: NRF-2021R1A2B5B01001721
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-489657d12cac2667afd3a90f8b71c156073d3fd5ee5e2a009b9ff0d1bd085b1b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:00 EDT 2025
Mon Jun 30 07:21:01 EDT 2025
Tue Jul 01 04:21:14 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Wed Aug 27 02:24:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-489657d12cac2667afd3a90f8b71c156073d3fd5ee5e2a009b9ff0d1bd085b1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7476-8782
0000-0002-1953-872X
0000-0003-4692-253X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9794750
PQID 2677853228
PQPubID 4845423
PageCount 20
ParticipantIDs proquest_journals_2677853228
doaj_primary_oai_doaj_org_article_e9681d1cb35b4ce88dd5370b98e7b00f
ieee_primary_9794750
crossref_citationtrail_10_1109_ACCESS_2022_3182552
crossref_primary_10_1109_ACCESS_2022_3182552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1109/MWC.010.2100117
– ident: ref37
  doi: 10.1007/978-3-319-94463-0
– ident: ref43
  doi: 10.1109/TSP.2014.2354312
– ident: ref34
  doi: 10.1109/TSP.2018.2866382
– ident: ref4
  doi: 10.1109/VTC2020-Fall49728.2020.9348672
– ident: ref30
  doi: 10.1109/JSYST.2020.3032725
– ident: ref38
  doi: 10.1109/MSP.2010.936019
– ident: ref46
  doi: 10.1007/978-3-030-61111-8
– ident: ref17
  doi: 10.1109/LCOMM.2016.2619340
– ident: ref7
  doi: 10.1109/COMST.2017.2783901
– ident: ref9
  doi: 10.1109/TWC.2014.041714.131688
– ident: ref14
  doi: 10.1109/JSYST.2019.2904721
– ident: ref27
  doi: 10.1109/SPAWC.2019.8815494
– ident: ref13
  doi: 10.1109/ICC.2017.7996560
– ident: ref32
  doi: 10.1109/JPROC.2019.2957798
– ident: ref8
  doi: 10.1109/MCOM.2015.7081084
– ident: ref41
  doi: 10.1109/TSP.2012.2189857
– ident: ref2
  doi: 10.1186/s13638-018-1104-7
– ident: ref45
  doi: 10.1109/ACCESS.2022.3162838
– ident: ref47
  doi: 10.1109/TSP.2007.897903
– ident: ref19
  doi: 10.3390/electronics9111948
– ident: ref23
  doi: 10.1109/TWC.2016.2543212
– ident: ref28
  doi: 10.1109/LCOMM.2019.2892109
– ident: ref35
  doi: 10.1109/ICCChina.2018.8641220
– ident: ref25
  doi: 10.1109/ISWCS.2018.8491100
– ident: ref44
  doi: 10.1002/0471671746
– ident: ref12
  doi: 10.1109/TCOMM.2019.2900634
– ident: ref15
  doi: 10.1109/LCOMM.2015.2498928
– ident: ref31
  doi: 10.1109/MWC.2019.1800350
– ident: ref36
  doi: 10.1109/TCOMM.2019.2960361
– ident: ref22
  doi: 10.1109/TSP.2016.2591501
– ident: ref11
  doi: 10.1109/JIOT.2017.2785861
– ident: ref20
  doi: 10.1109/JSAC.2018.2824622
– ident: ref3
  doi: 10.1109/LWC.2019.2954518
– ident: ref1
  doi: 10.1109/MCOM.2016.7470942
– ident: ref26
  doi: 10.1109/TWC.2021.3133433
– ident: ref6
  doi: 10.1109/JSAC.2018.2872375
– ident: ref16
  doi: 10.1137/1.9781611970777
– ident: ref18
  doi: 10.1109/ACCESS.2017.2727073
– ident: ref24
  doi: 10.1109/TCOMM.2019.2943168
– ident: ref39
  doi: 10.1007/0-387-30528-9_7
– ident: ref42
  doi: 10.3390/electronics9081222
– ident: ref21
  doi: 10.1016/j.neucom.2020.08.082
– ident: ref29
  doi: 10.1007/s11276-019-02126-z
– ident: ref5
  doi: 10.1109/ACCESS.2019.2892321
– ident: ref10
  doi: 10.1109/ICC.2016.7511628
– ident: ref40
  doi: 10.1017/CBO9780511804441
SSID ssj0000816957
Score 2.288061
Snippet In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 62137
SubjectTerms Array signal processing
Artificial neural networks
Cognitive radio
cognitive radio network
Deep learning
Energy harvesting
Interference
Machine learning
MISO (control systems)
MISO communication
Multiaccess communication
Multiple access
NOMA
Optimization
Penalty function
Power transfer
Rate-splitting (RS)
semidefinite relaxation (SDR)
simultaneous wireless information and power transfer (SWIPT)
Splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkwonj2h5LAbVIpRUFwWbFL1QJQgVl4N9zdkxVhAQLa-Q48d3l_F10_j6EjqsA5A11maZEQIFCfVaFszJVEIO03pVNE83gut27K68e2MOC1FfoCWvogRvDnTrZBkiVG02ZLo0TwlpGOdFSOA4h40P2JZIsFFMxB4u8LRlPNEM5kaedbhdWBAVhUUCdCnURK75tRZGxP0ms_MjLcbO5XEdrCSXiTvN2G2jJ1ZtodYE7cAtNz52b4kSP-piBmYPDLB4F2TM8mNST53TEEk9qHOWNnqoPPOiPh9n4vj-6xYmsHJ_BRmbxsMY3gDuzMaDS2AuNB6nXEHeiqOI2uru8uO32siSfkJmSiFlWCtlm3OaFqQxsw7zyllaSeKF5bsIBak4t9ZY5x1wBPpNaek9sri3AMJ1ruoOW65fa7SIMqFJbXXLufVHCRNo7UwnIDeBQr03ZQsWXJZVJ3OJB4uJJxRqDSNWYXwXzq2T-FjqZ3zRtqDV-H34WXDQfGnix4wWIFpWiRf0VLS20FRw8n0RCOgLM1EIHXw5X6Rt-U0Xg1mOQ8MTefzx6H62E5TS_bw7Q8uz13R0CoJnpoxi7n2eC8Ao
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access
URI https://ieeexplore.ieee.org/document/9794750
https://www.proquest.com/docview/2677853228
https://doaj.org/article/e9681d1cb35b4ce88dd5370b98e7b00f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3roA1p1KUU-cCRLEsdr-7hsQYCUgrqgcrNie1ytCmHV7h7g13fseCNaUNVbFMWWo28yr8x8Q8heExx5yyAzLJcYoDCfNaFXpgnDIJ2Hqiuiqb-MTq6qs2t-vUb2-14YAIjFZzAMl_Ffvruzy5AqO1AoPCIE6C9QzLperT6fEgZIKC4SsVCRq4PxZILvgCFgWWJkipEQL_8wPpGjPw1VeaKJo3k5fk3q1cG6qpIfw-XCDO3DX5yN_3vyN-RV8jPpuBOMt2QN2k3y8hH74BaZfwaY00Sw-j1DoALkjl6EwWm0nrWz29SkSWctjQOSbpp7Wp9Oz7Ppt9OLS5rozukhmkJHz1v6FT3XbIp-baympnWqVqTjOJbxHbk6PrqcnGRpAENmq1wuskqqEReuKG1j0ZCLxjvWqNxLIwobWrAFc8w7DsChRNSVUd7nrjAOHTlTGPaerLd3LXwgFP1S40wlhPdlhRsZD7aRqF1QJLyx1YCUK2S0TezkYUjGjY5RSq50B6cOcOoE54Ds94vmHTnHvx8_DJD3jwZm7XgDodLpQ9WgRujCF9YwbioLUjrHmciNkiBQRfkB2Qrw9pskZAdkZyVAOmmBX7oM7HwcVabcfn7VR7IRDtildHbI-uLnEj6hk7MwuzE5sBtl_Dfn7_oP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAceBXUQIE9cKxT2-vN7h7TQJVA3VYkFb2tvC8UUdwIkgP8embXG4uXEDfLsq21vvE81jPfB_CqCYm8oS7TNBdYoFCfNWFWpglikNa7qmuiqc9G08vq7RW72oHDfhbGORebz9wwHMZ_-fbGbMJW2ZFE4-GhQL-Fcb9i3bRWv6MSJCQk44laqMjl0XgywbfAIrAssTbFWoiVv4SfyNKfZFX-8MUxwJzch3q7tK6v5NNws9ZD8_031sb_XfsDuJcyTTLuTOMh7Lj2Edz9iX9wD1avnVuRRLH6MUOoAuiWXATpNFIv2-XnNKZJli2JEknXzTdSz-bn2fzD7GJBEuE5OcZgaMl5S95j7prNMbON_dSkTv2KZByFGR_D5cmbxWSaJQmGzFS5WGeVkCPGbVGaxmAo5423tJG5F5oXJgxhc2qpt8w55krEXWrpfW4LbTGV04WmT2C3vWndPhDMTLXVFefelxU-SHtnGoH-BY3Ca1MNoNwio0ziJw8yGdcq1im5VB2cKsCpEpwDOOxvWnX0HP--_DhA3l8auLXjCYRKpU9VOTnCJL4wmjJdGSeEtYzyXEvhODopP4C9AG__kITsAA62BqSSH_iqysDPx9Bpiqd_v-sl3J4u6lN1Ojt79wzuhMV2GzwHsLv-snHPMeVZ6xfR0n8AOef8Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Assisted+Power+Minimization+in+Underlay+MISO-SWIPT+Systems+Based+On+Rate-Splitting+Multiple+Access&rft.jtitle=IEEE+access&rft.au=Camana%2C+Mario+R.&rft.au=Garcia%2C+Carla+E.&rft.au=Koo%2C+Insoo&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=62137&rft.epage=62156&rft_id=info:doi/10.1109%2FACCESS.2022.3182552&rft.externalDocID=9794750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon