Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access
In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only de...
Saved in:
Published in | IEEE access Vol. 10; pp. 62137 - 62156 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2022.3182552 |
Cover
Abstract | In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only decode information, and another set of secondary users that simultaneously decode information and harvest energy based on a power-splitting (PS) ratio. Precoders are designed to minimize the transmission power of the secondary transmitter subject to a minimum rate requirement, an energy harvesting requirement, and maximum allowable interference with the primary network. The optimization problem is non-convex and challenging. Thus, we divide it into two subproblems where the outer problem is solved by a deep neural network (DNN)-based scheme with an autoencoder, and the inner problem is solved based on the semidefinite relaxation (SDR) technique. The inner problem takes the solution of the DNN-based scheme to provide the precoder vectors and PS ratios based on SDR, where a penalty function is proposed to guarantee feasible solutions to the problems. Our simulation results prove that the proposed framework based on RSMA outperforms the conventional methods and can achieve performance close to that of the optimal solutions, with a significant reduction in computational complexity. |
---|---|
AbstractList | In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power transfer (SWIPT) based on the rate-splitting multiple access (RSMA) framework. The system model is composed of a set of secondary users that only decode information, and another set of secondary users that simultaneously decode information and harvest energy based on a power-splitting (PS) ratio. Precoders are designed to minimize the transmission power of the secondary transmitter subject to a minimum rate requirement, an energy harvesting requirement, and maximum allowable interference with the primary network. The optimization problem is non-convex and challenging. Thus, we divide it into two subproblems where the outer problem is solved by a deep neural network (DNN)-based scheme with an autoencoder, and the inner problem is solved based on the semidefinite relaxation (SDR) technique. The inner problem takes the solution of the DNN-based scheme to provide the precoder vectors and PS ratios based on SDR, where a penalty function is proposed to guarantee feasible solutions to the problems. Our simulation results prove that the proposed framework based on RSMA outperforms the conventional methods and can achieve performance close to that of the optimal solutions, with a significant reduction in computational complexity. |
Author | Garcia, Carla E. Camana, Mario R. Koo, Insoo |
Author_xml | – sequence: 1 givenname: Mario R. orcidid: 0000-0002-1953-872X surname: Camana fullname: Camana, Mario R. organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea – sequence: 2 givenname: Carla E. orcidid: 0000-0003-4692-253X surname: Garcia fullname: Garcia, Carla E. organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea – sequence: 3 givenname: Insoo orcidid: 0000-0001-7476-8782 surname: Koo fullname: Koo, Insoo email: iskoo@ulsan.ac.kr organization: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea |
BookMark | eNp9kU9rGzEQxZeSQtM0nyAXQc_r6o-1ko6umzQGG4duQo9CK80GmbV2K8kE59Nnk01LySFzmWGY3-Mx73NxEvoARXFB8IwQrL4tlsvLup5RTOmMEUk5px-KU0oqVTLOqpP_5k_FeUo7PJYcV1ycFsMPgAGtwcTgw325SMmnDA7d9A8Q0cYHv_ePJvs-IB_QXXAQO3NEm1W9Levfq5tbVB9HYJ_Qd5NGbhvQL5OhrIfO5zxKos2hy37oAC2shZS-FB9b0yU4f-1nxd3V5e3yulxvf66Wi3Vp51jmci5VxYUj1BpLq0qY1jGjcCsbQSzhFRbMsdZxAA7UYKwa1bbYkcZhyRvSsLNiNem63uz0EP3exKPujdcviz7eaxOztx1oUJUkjtiG8WZuQUrnOBO4URJEg3E7an2dtIbY_zlAynrXH2IY7WtaCSE5o1SOV2q6srFPKUKrrc8vr8vR-E4TrJ_z0lNe-jkv_ZrXyLI37F_H71MXE-UB4B-hhJoLjtkTBsWjBg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TVT_2023_3305960 crossref_primary_10_1109_JPROC_2024_3409428 crossref_primary_10_1109_TVT_2024_3423002 crossref_primary_10_1109_JPROC_2024_3417332 crossref_primary_10_1109_JSAC_2023_3240713 crossref_primary_10_3390_electronics13050872 crossref_primary_10_1109_TGCN_2022_3219111 |
Cites_doi | 10.1109/MWC.010.2100117 10.1007/978-3-319-94463-0 10.1109/TSP.2014.2354312 10.1109/TSP.2018.2866382 10.1109/VTC2020-Fall49728.2020.9348672 10.1109/JSYST.2020.3032725 10.1109/MSP.2010.936019 10.1007/978-3-030-61111-8 10.1109/LCOMM.2016.2619340 10.1109/COMST.2017.2783901 10.1109/TWC.2014.041714.131688 10.1109/JSYST.2019.2904721 10.1109/SPAWC.2019.8815494 10.1109/ICC.2017.7996560 10.1109/JPROC.2019.2957798 10.1109/MCOM.2015.7081084 10.1109/TSP.2012.2189857 10.1186/s13638-018-1104-7 10.1109/ACCESS.2022.3162838 10.1109/TSP.2007.897903 10.3390/electronics9111948 10.1109/TWC.2016.2543212 10.1109/LCOMM.2019.2892109 10.1109/ICCChina.2018.8641220 10.1109/ISWCS.2018.8491100 10.1002/0471671746 10.1109/TCOMM.2019.2900634 10.1109/LCOMM.2015.2498928 10.1109/MWC.2019.1800350 10.1109/TCOMM.2019.2960361 10.1109/TSP.2016.2591501 10.1109/JIOT.2017.2785861 10.1109/JSAC.2018.2824622 10.1109/LWC.2019.2954518 10.1109/MCOM.2016.7470942 10.1109/TWC.2021.3133433 10.1109/JSAC.2018.2872375 10.1137/1.9781611970777 10.1109/ACCESS.2017.2727073 10.1109/TCOMM.2019.2943168 10.1007/0-387-30528-9_7 10.3390/electronics9081222 10.1016/j.neucom.2020.08.082 10.1007/s11276-019-02126-z 10.1109/ACCESS.2019.2892321 10.1109/ICC.2016.7511628 10.1017/CBO9780511804441 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3182552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 62156 |
ExternalDocumentID | oai_doaj_org_article_e9681d1cb35b4ce88dd5370b98e7b00f 10_1109_ACCESS_2022_3182552 9794750 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea through the Korean Government Ministry of Science and Information and Communication Technologies (ICT) (MSIT) grantid: NRF-2021R1A2B5B01001721 funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-489657d12cac2667afd3a90f8b71c156073d3fd5ee5e2a009b9ff0d1bd085b1b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:00 EDT 2025 Mon Jun 30 07:21:01 EDT 2025 Tue Jul 01 04:21:14 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Aug 27 02:24:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-489657d12cac2667afd3a90f8b71c156073d3fd5ee5e2a009b9ff0d1bd085b1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7476-8782 0000-0002-1953-872X 0000-0003-4692-253X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9794750 |
PQID | 2677853228 |
PQPubID | 4845423 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2677853228 doaj_primary_oai_doaj_org_article_e9681d1cb35b4ce88dd5370b98e7b00f ieee_primary_9794750 crossref_citationtrail_10_1109_ACCESS_2022_3182552 crossref_primary_10_1109_ACCESS_2022_3182552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref33 doi: 10.1109/MWC.010.2100117 – ident: ref37 doi: 10.1007/978-3-319-94463-0 – ident: ref43 doi: 10.1109/TSP.2014.2354312 – ident: ref34 doi: 10.1109/TSP.2018.2866382 – ident: ref4 doi: 10.1109/VTC2020-Fall49728.2020.9348672 – ident: ref30 doi: 10.1109/JSYST.2020.3032725 – ident: ref38 doi: 10.1109/MSP.2010.936019 – ident: ref46 doi: 10.1007/978-3-030-61111-8 – ident: ref17 doi: 10.1109/LCOMM.2016.2619340 – ident: ref7 doi: 10.1109/COMST.2017.2783901 – ident: ref9 doi: 10.1109/TWC.2014.041714.131688 – ident: ref14 doi: 10.1109/JSYST.2019.2904721 – ident: ref27 doi: 10.1109/SPAWC.2019.8815494 – ident: ref13 doi: 10.1109/ICC.2017.7996560 – ident: ref32 doi: 10.1109/JPROC.2019.2957798 – ident: ref8 doi: 10.1109/MCOM.2015.7081084 – ident: ref41 doi: 10.1109/TSP.2012.2189857 – ident: ref2 doi: 10.1186/s13638-018-1104-7 – ident: ref45 doi: 10.1109/ACCESS.2022.3162838 – ident: ref47 doi: 10.1109/TSP.2007.897903 – ident: ref19 doi: 10.3390/electronics9111948 – ident: ref23 doi: 10.1109/TWC.2016.2543212 – ident: ref28 doi: 10.1109/LCOMM.2019.2892109 – ident: ref35 doi: 10.1109/ICCChina.2018.8641220 – ident: ref25 doi: 10.1109/ISWCS.2018.8491100 – ident: ref44 doi: 10.1002/0471671746 – ident: ref12 doi: 10.1109/TCOMM.2019.2900634 – ident: ref15 doi: 10.1109/LCOMM.2015.2498928 – ident: ref31 doi: 10.1109/MWC.2019.1800350 – ident: ref36 doi: 10.1109/TCOMM.2019.2960361 – ident: ref22 doi: 10.1109/TSP.2016.2591501 – ident: ref11 doi: 10.1109/JIOT.2017.2785861 – ident: ref20 doi: 10.1109/JSAC.2018.2824622 – ident: ref3 doi: 10.1109/LWC.2019.2954518 – ident: ref1 doi: 10.1109/MCOM.2016.7470942 – ident: ref26 doi: 10.1109/TWC.2021.3133433 – ident: ref6 doi: 10.1109/JSAC.2018.2872375 – ident: ref16 doi: 10.1137/1.9781611970777 – ident: ref18 doi: 10.1109/ACCESS.2017.2727073 – ident: ref24 doi: 10.1109/TCOMM.2019.2943168 – ident: ref39 doi: 10.1007/0-387-30528-9_7 – ident: ref42 doi: 10.3390/electronics9081222 – ident: ref21 doi: 10.1016/j.neucom.2020.08.082 – ident: ref29 doi: 10.1007/s11276-019-02126-z – ident: ref5 doi: 10.1109/ACCESS.2019.2892321 – ident: ref10 doi: 10.1109/ICC.2016.7511628 – ident: ref40 doi: 10.1017/CBO9780511804441 |
SSID | ssj0000816957 |
Score | 2.288061 |
Snippet | In this article, we consider a multi-user multiple-input single-output underlay cognitive radio system with simultaneous wireless information and power... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 62137 |
SubjectTerms | Array signal processing Artificial neural networks Cognitive radio cognitive radio network Deep learning Energy harvesting Interference Machine learning MISO (control systems) MISO communication Multiaccess communication Multiple access NOMA Optimization Penalty function Power transfer Rate-splitting (RS) semidefinite relaxation (SDR) simultaneous wireless information and power transfer (SWIPT) Splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkwonj2h5LAbVIpRUFwWbFL1QJQgVl4N9zdkxVhAQLa-Q48d3l_F10_j6EjqsA5A11maZEQIFCfVaFszJVEIO03pVNE83gut27K68e2MOC1FfoCWvogRvDnTrZBkiVG02ZLo0TwlpGOdFSOA4h40P2JZIsFFMxB4u8LRlPNEM5kaedbhdWBAVhUUCdCnURK75tRZGxP0ms_MjLcbO5XEdrCSXiTvN2G2jJ1ZtodYE7cAtNz52b4kSP-piBmYPDLB4F2TM8mNST53TEEk9qHOWNnqoPPOiPh9n4vj-6xYmsHJ_BRmbxsMY3gDuzMaDS2AuNB6nXEHeiqOI2uru8uO32siSfkJmSiFlWCtlm3OaFqQxsw7zyllaSeKF5bsIBak4t9ZY5x1wBPpNaek9sri3AMJ1ruoOW65fa7SIMqFJbXXLufVHCRNo7UwnIDeBQr03ZQsWXJZVJ3OJB4uJJxRqDSNWYXwXzq2T-FjqZ3zRtqDV-H34WXDQfGnix4wWIFpWiRf0VLS20FRw8n0RCOgLM1EIHXw5X6Rt-U0Xg1mOQ8MTefzx6H62E5TS_bw7Q8uz13R0CoJnpoxi7n2eC8Ao priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access |
URI | https://ieeexplore.ieee.org/document/9794750 https://www.proquest.com/docview/2677853228 https://doaj.org/article/e9681d1cb35b4ce88dd5370b98e7b00f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3roA1p1KUU-cCRLEsdr-7hsQYCUgrqgcrNie1ytCmHV7h7g13fseCNaUNVbFMWWo28yr8x8Q8heExx5yyAzLJcYoDCfNaFXpgnDIJ2Hqiuiqb-MTq6qs2t-vUb2-14YAIjFZzAMl_Ffvruzy5AqO1AoPCIE6C9QzLperT6fEgZIKC4SsVCRq4PxZILvgCFgWWJkipEQL_8wPpGjPw1VeaKJo3k5fk3q1cG6qpIfw-XCDO3DX5yN_3vyN-RV8jPpuBOMt2QN2k3y8hH74BaZfwaY00Sw-j1DoALkjl6EwWm0nrWz29SkSWctjQOSbpp7Wp9Oz7Ppt9OLS5rozukhmkJHz1v6FT3XbIp-baympnWqVqTjOJbxHbk6PrqcnGRpAENmq1wuskqqEReuKG1j0ZCLxjvWqNxLIwobWrAFc8w7DsChRNSVUd7nrjAOHTlTGPaerLd3LXwgFP1S40wlhPdlhRsZD7aRqF1QJLyx1YCUK2S0TezkYUjGjY5RSq50B6cOcOoE54Ds94vmHTnHvx8_DJD3jwZm7XgDodLpQ9WgRujCF9YwbioLUjrHmciNkiBQRfkB2Qrw9pskZAdkZyVAOmmBX7oM7HwcVabcfn7VR7IRDtildHbI-uLnEj6hk7MwuzE5sBtl_Dfn7_oP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAceBXUQIE9cKxT2-vN7h7TQJVA3VYkFb2tvC8UUdwIkgP8embXG4uXEDfLsq21vvE81jPfB_CqCYm8oS7TNBdYoFCfNWFWpglikNa7qmuiqc9G08vq7RW72oHDfhbGORebz9wwHMZ_-fbGbMJW2ZFE4-GhQL-Fcb9i3bRWv6MSJCQk44laqMjl0XgywbfAIrAssTbFWoiVv4SfyNKfZFX-8MUxwJzch3q7tK6v5NNws9ZD8_031sb_XfsDuJcyTTLuTOMh7Lj2Edz9iX9wD1avnVuRRLH6MUOoAuiWXATpNFIv2-XnNKZJli2JEknXzTdSz-bn2fzD7GJBEuE5OcZgaMl5S95j7prNMbON_dSkTv2KZByFGR_D5cmbxWSaJQmGzFS5WGeVkCPGbVGaxmAo5423tJG5F5oXJgxhc2qpt8w55krEXWrpfW4LbTGV04WmT2C3vWndPhDMTLXVFefelxU-SHtnGoH-BY3Ca1MNoNwio0ziJw8yGdcq1im5VB2cKsCpEpwDOOxvWnX0HP--_DhA3l8auLXjCYRKpU9VOTnCJL4wmjJdGSeEtYzyXEvhODopP4C9AG__kITsAA62BqSSH_iqysDPx9Bpiqd_v-sl3J4u6lN1Ojt79wzuhMV2GzwHsLv-snHPMeVZ6xfR0n8AOef8Zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Assisted+Power+Minimization+in+Underlay+MISO-SWIPT+Systems+Based+On+Rate-Splitting+Multiple+Access&rft.jtitle=IEEE+access&rft.au=Camana%2C+Mario+R.&rft.au=Garcia%2C+Carla+E.&rft.au=Koo%2C+Insoo&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=62137&rft.epage=62156&rft_id=info:doi/10.1109%2FACCESS.2022.3182552&rft.externalDocID=9794750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |