Constant Tension Control of Hybrid Active-Passive Heave Compensator Based on Adaptive Integral Sliding Mode Method

Heave compensation systems are of great importance to the safety and efficiency of marine operations subject to irregular-wave excitation. While many efforts have been made to improve the displacement compensation control, only a few of researchers pay their attention on tension compensation control...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 103782 - 103791
Main Authors Yan, Fei, Fan, Ke, Yan, Xuechen, Li, Shizhen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2995651

Cover

Abstract Heave compensation systems are of great importance to the safety and efficiency of marine operations subject to irregular-wave excitation. While many efforts have been made to improve the displacement compensation control, only a few of researchers pay their attention on tension compensation control. This paper presents an adaptive robust integral sliding mode control (ARISMC) based on the back-stepping method to realize constant tension control of hybrid active-passive heave compensator (HAHC) applied to heavy deep-sea towing systems. The proposed ARISMC is intended to overcome the effects of parametric uncertainties, uncertain nonlinearities, and external disturbances in the electro-hydraulic system of HAHC. The stability of the whole system is proved using common Lyapunov method. To verify the effectiveness of the proposed controller, we carried out a number of simulations and experiments using the measured heave motion data under different sea conditions. The results demonstrate that the ARISMC controller presented in this paper has better advantages than the traditional PI controller in the accuracy and robustness of tension compensation.
AbstractList Heave compensation systems are of great importance to the safety and efficiency of marine operations subject to irregular-wave excitation. While many efforts have been made to improve the displacement compensation control, only a few of researchers pay their attention on tension compensation control. This paper presents an adaptive robust integral sliding mode control (ARISMC) based on the back-stepping method to realize constant tension control of hybrid active-passive heave compensator (HAHC) applied to heavy deep-sea towing systems. The proposed ARISMC is intended to overcome the effects of parametric uncertainties, uncertain nonlinearities, and external disturbances in the electro-hydraulic system of HAHC. The stability of the whole system is proved using common Lyapunov method. To verify the effectiveness of the proposed controller, we carried out a number of simulations and experiments using the measured heave motion data under different sea conditions. The results demonstrate that the ARISMC controller presented in this paper has better advantages than the traditional PI controller in the accuracy and robustness of tension compensation.
Author Li, Shizhen
Yan, Fei
Fan, Ke
Yan, Xuechen
Author_xml – sequence: 1
  givenname: Fei
  surname: Yan
  fullname: Yan, Fei
  organization: Institute of Marine Science and Technology, Shandong University, Jinan, China
– sequence: 2
  givenname: Ke
  surname: Fan
  fullname: Fan, Ke
  organization: School of Mechanical Engineering, Shandong University, Jinan, China
– sequence: 3
  givenname: Xuechen
  surname: Yan
  fullname: Yan, Xuechen
  organization: Institute of Marine Science and Technology, Shandong University, Jinan, China
– sequence: 4
  givenname: Shizhen
  orcidid: 0000-0001-9088-0256
  surname: Li
  fullname: Li, Shizhen
  email: lishizhen@sdu.edu.cn
  organization: Institute of Marine Science and Technology, Shandong University, Jinan, China
BookMark eNqFkUFr3DAQhU1JoWmaX5CLoGdvJVm2pePWpN2FhBQ2PYuxNN5qcaStpBTy76OtQyi9RAfN8PS-GcH7WJ354LGqrhhdMUbVl_UwXO92K045XXGl2q5l76pzzjpVN23Tnf3Tf6guUzrQcmSR2v68ikPwKYPP5B59csGTIuQYZhImsnkao7NkbbL7g_UPSKlUskEo9xAejoWAHCL5CgktKezawvHkJVufcR9hJrvZWef35DZYJLeYfwX7qXo_wZzw8qVeVD-_Xd8Pm_rm7vt2WN_URlCZa9FLhaA4cMUogAE6GTb2veg7FJMxnDed7FtAiRxkLzoAqaAz09Qq2rGpuai2y1wb4KCP0T1AfNIBnP4rhLjXELMzM-rRGkYFpe1oR2EEgEXBuaSqPIy2b8qsz8usYwy_HzFlfQiP0Zfvay5aIbjspSyuZnGZGFKKOL1uZVSfstJLVvqUlX7JqlDqP8q4DNmdcgA3v8FeLaxDxNdtiqquEbx5Bqo5pLY
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_117727
crossref_primary_10_1177_00202940221094850
crossref_primary_10_3390_jmse13040652
crossref_primary_10_3390_jmse10091238
crossref_primary_10_1109_ACCESS_2022_3159687
crossref_primary_10_1109_TMECH_2021_3064049
Cites_doi 10.1109/ACCESS.2019.2950703
10.1109/ACCESS.2018.2854228
10.1016/j.mechatronics.2007.07.008
10.1109/ACCESS.2019.2907674
10.1016/j.oceaneng.2016.10.011
10.1016/j.oceaneng.2016.09.024
10.1007/s13042-012-0076-x
10.1111/j.1559-3584.1970.tb04361.x
10.1080/17445302.2019.1703388
10.1109/OCEANSE.2007.4302215
10.1007/s00367-012-0309-8
10.1016/j.oceaneng.2007.11.005
10.1109/JOE.2006.880394
10.1109/TIE.2017.2698358
10.1016/S0029-8018(97)00028-0
10.1080/17445302.2017.1342893
10.1109/OCEANS.2006.307096
10.1007/s12204-011-1092-9
10.1016/j.automatica.2019.108596
10.1109/ACCESS.2018.2796097
10.1016/j.oceaneng.2015.05.004
10.1016/j.automatica.2019.03.022
10.1016/0029-8018(92)90007-Q
10.1109/ACCESS.2018.2813317
10.1109/ACCESS.2019.2915244
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2995651
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 103791
ExternalDocumentID oai_doaj_org_article_bdc104005bdb4c4aade422809bdcbd73
10_1109_ACCESS_2020_2995651
9096342
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2016YFE0205700
– fundername: Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China
  grantid: GZKF201805
  funderid: 10.13039/501100011310
– fundername: National Natural Science Foundation of China
  grantid: 51705288
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4789ea92a2910aaca0fc1b77476e4fcc2236875ae8e2a8746aa89a6cff59061f3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:54 EDT 2025
Sun Jun 29 15:28:37 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Tue Jul 01 01:22:36 EDT 2025
Wed Aug 27 02:38:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4789ea92a2910aaca0fc1b77476e4fcc2236875ae8e2a8746aa89a6cff59061f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9088-0256
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9096342
PQID 2454428788
PQPubID 4845423
PageCount 10
ParticipantIDs ieee_primary_9096342
proquest_journals_2454428788
doaj_primary_oai_doaj_org_article_bdc104005bdb4c4aade422809bdcbd73
crossref_citationtrail_10_1109_ACCESS_2020_2995651
crossref_primary_10_1109_ACCESS_2020_2995651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
calnan (ref7) 2016
ref12
ref15
ref14
ref30
ref11
ref10
li (ref16) 2009
ref17
li (ref1) 2018; 49
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
woodacre (ref2) 2015
ref9
ref4
yuan (ref24) 2010
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/ACCESS.2019.2950703
– ident: ref18
  doi: 10.1109/ACCESS.2018.2854228
– ident: ref30
  doi: 10.1016/j.mechatronics.2007.07.008
– ident: ref29
  doi: 10.1109/ACCESS.2019.2907674
– ident: ref5
  doi: 10.1016/j.oceaneng.2016.10.011
– ident: ref6
  doi: 10.1016/j.oceaneng.2016.09.024
– ident: ref12
  doi: 10.1007/s13042-012-0076-x
– ident: ref10
  doi: 10.1111/j.1559-3584.1970.tb04361.x
– ident: ref26
  doi: 10.1080/17445302.2019.1703388
– ident: ref14
  doi: 10.1109/OCEANSE.2007.4302215
– ident: ref4
  doi: 10.1007/s00367-012-0309-8
– ident: ref23
  doi: 10.1016/j.oceaneng.2007.11.005
– year: 2015
  ident: ref2
  article-title: Model-predictive control of a hydraulic active heave compensation system with heave prediction
– ident: ref15
  doi: 10.1109/JOE.2006.880394
– ident: ref17
  doi: 10.1109/TIE.2017.2698358
– ident: ref11
  doi: 10.1016/S0029-8018(97)00028-0
– ident: ref25
  doi: 10.1080/17445302.2017.1342893
– ident: ref13
  doi: 10.1109/OCEANS.2006.307096
– volume: 49
  start-page: 612
  year: 2018
  ident: ref1
  article-title: Nonlinear control of active heave compensator for an underwater towed system
  publication-title: J Central South Univ of Technology
– ident: ref8
  doi: 10.1007/s12204-011-1092-9
– start-page: 1337
  year: 2009
  ident: ref16
  article-title: Modeling and simulation of active-controlled heave compensation system of deep-sea mining based on dynamic vibration absorber
  publication-title: Proc Int Conf Mechatronics Autom
– ident: ref21
  doi: 10.1016/j.automatica.2019.108596
– ident: ref19
  doi: 10.1109/ACCESS.2018.2796097
– ident: ref3
  doi: 10.1016/j.oceaneng.2015.05.004
– ident: ref22
  doi: 10.1016/j.automatica.2019.03.022
– ident: ref9
  doi: 10.1016/0029-8018(92)90007-Q
– start-page: 1544
  year: 2010
  ident: ref24
  article-title: Actively damped heave compensation (ADHC) system
  publication-title: Proc Amer Control Conf
– ident: ref20
  doi: 10.1109/ACCESS.2018.2813317
– year: 2016
  ident: ref7
  article-title: Set-point algorithms for active heave compensation of towed bodies
– ident: ref27
  doi: 10.1109/ACCESS.2019.2915244
SSID ssj0000816957
Score 2.2026293
Snippet Heave compensation systems are of great importance to the safety and efficiency of marine operations subject to irregular-wave excitation. While many efforts...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103782
SubjectTerms Active control
Adaptive control
Adaptive robustness
Compensation
constant tension
Controllers
Damping
Deep sea
heave compensation
Heave compensation systems
Heaving
heavy tow
Hydraulic equipment
integral sliding mode
Integrals
Payloads
Pistons
Robust control
Robustness
Servomotors
Sliding mode control
Valves
Wave excitation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhT8mhtElKt0mDDj3GWVmWZem4MQ2bQkIgCeQmxrIEhWV32WwP_feZkZxlS6G55GKDrQ9LM555Y0tvGPsuRe97GaFQTagKZZUoDPShaGod0aHKqARtTr651bNH9fOpftpJ9UVrwjI9cJ64Sdf7khSt7vpOeQXYELFWCYs3ur5JPJ_Cip1gKtlgU2pbNwPNUCnsZNq2OCIMCKW4kLSdsy7_ckWJsX9IsfKPXU7O5uoj-zCgRD7NT_eJ7YXFITvY4Q48Yus2I7sNf6A16MsFb_Oqc76MfPaHNmLxaTJmxR0CZDzzWQA8kgXAGhRs80v0YT3HutMeVlSWX2f6iDm_n_8it8YpWRq_SXmmj9nj1Y-HdlYMCRQKr4TZ4PwbG8BKkAgKADyI6MsOAV-jg4reIzTQGK9AMEGCaZQGMBa0j7G26Odj9ZmNFstF-MI4Ap0uNkZUVacRA2CD9AevtgYq0FGYMZOvc-n8wC5OSS7mLkUZwrosAEcCcIMAxux8W2mVyTX-X_yShLQtSszY6QLqixv0xb2lL2N2RCLeNmIxhquUHLPTV5G74S1-dlLVikJKY76-R9cnbJ-Gkz_gnLLRZv07fENIs-nOkva-AFEn8Uo
  priority: 102
  providerName: Directory of Open Access Journals
Title Constant Tension Control of Hybrid Active-Passive Heave Compensator Based on Adaptive Integral Sliding Mode Method
URI https://ieeexplore.ieee.org/document/9096342
https://www.proquest.com/docview/2454428788
https://doaj.org/article/bdc104005bdb4c4aade422809bdcbd73
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NaxsxEBVpTu2haZuWOk2DDj1mHVmr3ZWOztLgBFwKTSA3oU8oNXZI14fm12dGkpd-UXqxzVpaZN545o1W84aQD5x553k0lehCXQklWCWND1XXtBECKo-CYXHy8lO7uBFXt83tHjkda2FCCOnwWZjix_Qs32_cFrfKzhTw7VqAw30CZpZrtcb9FGwgoZquCAvNmDqb9z38BkgBOZtyLOBsZr8En6TRX5qq_OGJU3i5OCDL3cLyqZJv0-1gp-7hN83G_135C_K88Ew6z4bxkuyF9Svy7Cf1wUNy32duONBrPMW-WdM-n1unm0gXP7CUi86TO6w-A8WGd7oIBl7Rh8AMTNfpOURBT2Hu3Js7HEsvswDFin5ZfcXASLHdGl2mTtWvyc3Fx-t-UZUWDJUTTA6AoFTBKG440ApjnGHRzSxQxq4NIjoH5KKFjMcEGbiRnWiNkcq0LsZGAVOI9Ruyv96sw1tCgSrZ2ElW17YFFgE3xGeAjZKmNm1kckL4Dhvtij45tslY6ZSnMKUzoBoB1QXQCTkdJ91leY5_Dz9H0MehqK2dLgBYuvxVtfVuhq6tsd4KJwyYLuqkMQVfWN_VE3KIAI83KdhOyPHOhHTxA981F43ApFTKo7_Pekee4gLzps4x2R_ut-E90JzBnqTtgZNk5Y-o0fpn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELWqcgAOfBVESgEfOHZTx-vdtY_pimoLTYVEKvVm2V5bQkRJVTYH-uuZsZ0VX0Jckmhjrxy9ycwbr-cNIe84613PgylE48tCKMEKaXpfNFUdIKDyIBgWJy8u6-5KfLiurvfI8VgL472Ph8_8FD_GZ_n9xm1xq-xEAd8uBTjcexD3RZWqtcYdFWwhoaomSwvNmDqZty38CkgCOZtyLOGsZr-En6jSn9uq_OGLY4A5e0wWu6WlcyVfp9vBTt3db6qN_7v2J-RRZpp0nkzjKdnz62fk4U_6gwfktk3scKBLPMe-WdM2nVynm0C771jMRefRIRafgGTDO-28gVf0IjADE3Z6CnGwpzB33psbHEvPkwTFin5efcHQSLHhGl3EXtXPydXZ-2XbFbkJQ-EEkwNgKJU3ihsOxMIYZ1hwMwuksam9CM4Bvagh5zFeem5kI2pjpDK1C6FSwBVC-YLsrzdr_5JQIEs2NJKVpa2BR8AN8SlgpaQpTR2YnBC-w0a7rFCOjTJWOmYqTOkEqEZAdQZ0Qo7HSTdJoOPfw08R9HEoqmvHCwCWzn9WbXs3Q-dW2d4KJwwYLyqlMQVf2L4pJ-QAAR5vkrGdkKOdCensCb5pDpaKaamUh3-f9Zbc75aLC31xfvnxFXmAi01bPEdkf7jd-tdAegb7Jtr6D_5g_L8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constant+Tension+Control+of+Hybrid+Active-Passive+Heave+Compensator+Based+on+Adaptive+Integral+Sliding+Mode+Method&rft.jtitle=IEEE+access&rft.au=Yan%2C+Fei&rft.au=Fan%2C+Ke&rft.au=Yan%2C+Xuechen&rft.au=Li%2C+Shizhen&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=103782&rft.epage=103791&rft_id=info:doi/10.1109%2FACCESS.2020.2995651&rft.externalDocID=9096342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon