Deep Residual Network-Based Fusion Framework for Hyperspectral and LiDAR Data
This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2458 - 2472 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and the residual network-based probability multiplication fusion (RNPMF). The three methods use extinction profile (EP), local binary pattern (LBP), and deep residual network. Specifically, EP and LBP features are extracted from two sources and stacked as spatial features. For RNDFF, the deep features of each source are extracted by a deep residual network, and then the deep features are stacked to create the fusion features which are classified by softmax classifier. For RNPRF, the deep features of each source are input to the softmax classifier to obtain the probability matrices, and then the probability matrices are fused by weighted addition to producing the final label assignment. For RNPMF, the probability matrices are fused by array multiplication. Experimental results demonstrate that the classification performance of the proposed methods significantly outperform existing methods in hyperspectral and LiDAR data fusion. |
---|---|
AbstractList | This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and the residual network-based probability multiplication fusion (RNPMF). The three methods use extinction profile (EP), local binary pattern (LBP), and deep residual network. Specifically, EP and LBP features are extracted from two sources and stacked as spatial features. For RNDFF, the deep features of each source are extracted by a deep residual network, and then the deep features are stacked to create the fusion features which are classified by softmax classifier. For RNPRF, the deep features of each source are input to the softmax classifier to obtain the probability matrices, and then the probability matrices are fused by weighted addition to producing the final label assignment. For RNPMF, the probability matrices are fused by array multiplication. Experimental results demonstrate that the classification performance of the proposed methods significantly outperform existing methods in hyperspectral and LiDAR data fusion. |
Author | Ge, Chiru Li, Jiaojiao Li, Yunsong Du, Qian Wang, Keyan Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Chiru orcidid: 0000-0001-6562-8040 surname: Ge fullname: Ge, Chiru email: gechirumsu@gmail.com organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 2 givenname: Qian orcidid: 0000-0001-8354-7500 surname: Du fullname: Du, Qian email: du@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA – sequence: 3 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei email: nbsww@outlook.com organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China – sequence: 4 givenname: Keyan orcidid: 0000-0002-9545-718X surname: Wang fullname: Wang, Keyan email: kywang@mail.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China – sequence: 5 givenname: Jiaojiao orcidid: 0000-0002-0470-9469 surname: Li fullname: Li, Jiaojiao email: jjli@xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China – sequence: 6 givenname: Yunsong orcidid: 0000-0002-0234-6270 surname: Li fullname: Li, Yunsong email: ysli@mail.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China |
BookMark | eNp9kUFP3DAQha2KSl1ofwGXSJyztT22Ex8XtltASyst9Gw5zqTydomDnRXi3-MlwIFDTyON5nt6894xOepDj4ScMjpnjOrv17d3i83tnFPO5kClAM0_kRlnkpVMgjwiM6ZBl0xQ8YUcp7SlVPFKw4zcLBGHYoPJt3u7K37h-Bjiv_LcJmyL1T750BeraO_xsC66EIvLpwFjGtCNMQO2b4u1Xy42xdKO9iv53Nldwm-v84T8Wf24u7gs179_Xl0s1qUTtB5LoVABBUabytZN27rsBSteSck5Ols73rUoXM0qKivZ0YZS0MAF1AoENBJOyNWk2wa7NUP09zY-mWC9eVmE-NfYOHq3Q6OqWoLiyjndCcZV3bkGZAeusVxy4FnrbNIaYnjYYxrNNuxjn-0bLjSvpRKg8pWerlwMKUXsjPOjHXM8OQa_M4yaQxNmasIcmjCvTWQWPrBvjv9PnU6UR8R3QkN-BiQ8A4BelCY |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1016_j_jag_2023_103302 crossref_primary_10_1109_TGRS_2024_3430373 crossref_primary_10_1109_TGRS_2021_3135084 crossref_primary_10_1109_TGRS_2023_3285097 crossref_primary_10_1109_JSTARS_2023_3321776 crossref_primary_10_1016_j_jag_2024_104177 crossref_primary_10_1109_TGRS_2021_3103964 crossref_primary_10_5194_essd_15_113_2023 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_1109_TGRS_2023_3336771 crossref_primary_10_1109_TCSVT_2022_3148257 crossref_primary_10_1016_j_jag_2022_102926 crossref_primary_10_1016_j_knosys_2023_111190 crossref_primary_10_3390_rs13173393 crossref_primary_10_1109_TCYB_2021_3104100 crossref_primary_10_1109_TBDATA_2024_3433494 crossref_primary_10_1117_1_JRS_16_034523 crossref_primary_10_1016_j_neucom_2025_129380 crossref_primary_10_3934_era_2024190 crossref_primary_10_3390_rs16214073 crossref_primary_10_1109_LGRS_2021_3121028 crossref_primary_10_1109_TGRS_2024_3368509 crossref_primary_10_1016_j_energy_2025_134870 crossref_primary_10_1007_s10489_024_06217_z crossref_primary_10_1155_2022_1044597 crossref_primary_10_1109_TGRS_2024_3476975 crossref_primary_10_1016_j_inffus_2021_12_008 |
Cites_doi | 10.1002/ecy.2109 10.1007/978-3-319-46493-0_38 10.1080/15481603.2017.1364837 10.3390/rs10101639 10.1109/TCYB.2018.2864670 10.1109/TGRS.2014.2312793 10.1109/CVPR.2016.90 10.1109/TGRS.2017.2743110 10.1109/LGRS.2019.2906839 10.1109/TNNLS.2019.2920857 10.1109/JSTARS.2018.2802041 10.1016/j.rse.2007.07.028 10.1109/IGARSS.2018.8518295 10.1016/j.rse.2017.07.009 10.3390/rs10101649 10.1109/IGARSS.2017.8128347 10.1109/TPAMI.2002.1017623 10.1109/TGRS.2016.2616355 10.1109/TGRS.2017.2756851 10.1109/TGRS.2015.2480863 10.1007/978-1-4757-1904-8 10.1109/TGRS.2008.916480 10.1109/TGRS.2017.2702197 10.1109/LGRS.2017.2687519 10.1890/ES13-00255.1 10.1109/TGRS.2017.2755542 10.3390/rs9121237 10.1109/TITS.2015.2477817 10.1016/j.rse.2018.04.050 10.1016/j.patcog.2018.11.004 10.1109/TGRS.2018.2815044 10.1109/LGRS.2016.2521684 10.1109/TGRS.2014.2381602 10.1016/j.isprsjprs.2014.01.001 10.1109/TGRS.2017.2686450 10.1109/LGRS.2014.2350263 10.1016/j.jag.2018.08.020 10.1109/JSTARS.2014.2347276 10.1109/LGRS.2011.2158185 10.1109/PRRS.2018.8486164 10.14358/PERS.70.5.627 10.3390/rs5084045 10.1109/TGRS.2016.2561842 10.1109/JSTARS.2019.2913206 10.1109/JSTARS.2016.2634863 10.1109/TGRS.2017.2726901 10.1109/LGRS.2016.2600244 10.3390/rs11050550 10.1109/JSTARS.2014.2305441 10.1016/j.ins.2016.02.021 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2021.3054392 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 2472 |
ExternalDocumentID | oai_doaj_org_article_67853626cc9f41268fcb35f3cba25232 10_1109_JSTARS_2021_3054392 9336235 |
Genre | orig-research |
GrantInformation_xml | – fundername: Higher Education Discipline Innovation Project; 111 project grantid: B08038 funderid: 10.13039/501100013314 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2016JQ6023 funderid: 10.13039/501100007128 – fundername: Open Fund of State Laboratory of Information Engineering in Surveying – fundername: Yangtze River Scholar Bonus Schemes of China grantid: CJT160102 – fundername: National Natural Science Foundation of China grantid: 61901343; 41971296; 61871177; 61571345; 91538101; 61501346; 61502367; 61701360 funderid: 10.13039/501100001809 – fundername: Wuhan University grantid: 18R05 funderid: 10.13039/501100007046 – fundername: Mapping and Remote Sensing – fundername: Science and Technology on Space Intelligent Control Laboratory grantid: ZDSYS-2019-03 – fundername: Natural Science Foundation of Zhejiang Province grantid: LR19D010001 funderid: 10.13039/501100004731 – fundername: Ten Thousand Talent Program |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-46e630310b7a8bddc279e7275522eca8c2fde4c8170575f0b0039324386343b53 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:23:24 EDT 2025 Fri Jul 25 10:12:11 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Aug 27 02:50:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-46e630310b7a8bddc279e7275522eca8c2fde4c8170575f0b0039324386343b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0470-9469 0000-0002-9545-718X 0000-0003-3399-7858 0000-0001-8354-7500 0000-0001-6562-8040 0000-0002-0234-6270 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9336235 |
PQID | 2492856436 |
PQPubID | 75722 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_67853626cc9f41268fcb35f3cba25232 ieee_primary_9336235 crossref_citationtrail_10_1109_JSTARS_2021_3054392 proquest_journals_2492856436 crossref_primary_10_1109_JSTARS_2021_3054392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 hu (ref16) 2014; 52 ref14 ref52 ref11 ref54 ref10 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 li (ref53) 2018; 10 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref38 goodfellow (ref36) 2016 wei (ref39) 2017; 55 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – year: 2016 ident: ref36 publication-title: Deep Learning 6 2 2 3 Softmax Units for Multinoulli Output Distributions – ident: ref21 doi: 10.1002/ecy.2109 – ident: ref32 doi: 10.1007/978-3-319-46493-0_38 – ident: ref25 doi: 10.1080/15481603.2017.1364837 – ident: ref5 doi: 10.3390/rs10101639 – ident: ref52 doi: 10.1109/TCYB.2018.2864670 – ident: ref33 doi: 10.1109/TCYB.2018.2864670 – volume: 52 start-page: 7448 year: 2014 ident: ref16 article-title: Road centerline extraction in complex urban scenes from LiDAR data based on multiple features publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2312793 – ident: ref31 doi: 10.1109/CVPR.2016.90 – ident: ref4 doi: 10.1109/TGRS.2017.2743110 – ident: ref3 doi: 10.1109/LGRS.2019.2906839 – ident: ref11 doi: 10.1109/TNNLS.2019.2920857 – ident: ref6 doi: 10.1109/JSTARS.2018.2802041 – ident: ref37 doi: 10.1016/j.rse.2007.07.028 – ident: ref34 doi: 10.1109/IGARSS.2018.8518295 – ident: ref47 doi: 10.1016/j.rse.2017.07.009 – ident: ref35 doi: 10.3390/rs10101649 – ident: ref13 doi: 10.1109/IGARSS.2017.8128347 – ident: ref43 doi: 10.1109/TPAMI.2002.1017623 – volume: 55 start-page: 844 year: 2017 ident: ref39 article-title: Hyperspectral image classification using deep pixel-pair features publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2616355 – ident: ref22 doi: 10.1109/TGRS.2017.2756851 – ident: ref9 doi: 10.1109/TGRS.2015.2480863 – ident: ref45 doi: 10.1007/978-1-4757-1904-8 – ident: ref26 doi: 10.1109/TGRS.2008.916480 – ident: ref7 doi: 10.1109/TGRS.2017.2702197 – ident: ref24 doi: 10.1109/LGRS.2017.2687519 – ident: ref18 doi: 10.1890/ES13-00255.1 – volume: 10 start-page: p. 1649 year: 2018 ident: ref53 article-title: Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks publication-title: Remote Sens doi: 10.3390/rs10101649 – ident: ref38 doi: 10.1109/TGRS.2017.2755542 – ident: ref8 doi: 10.3390/rs9121237 – ident: ref14 doi: 10.1109/TITS.2015.2477817 – ident: ref1 doi: 10.1016/j.rse.2018.04.050 – ident: ref12 doi: 10.1016/j.patcog.2018.11.004 – ident: ref10 doi: 10.1109/TGRS.2018.2815044 – ident: ref15 doi: 10.1109/LGRS.2016.2521684 – ident: ref44 doi: 10.1109/TGRS.2014.2381602 – ident: ref19 doi: 10.1016/j.isprsjprs.2014.01.001 – ident: ref28 doi: 10.1109/TGRS.2017.2686450 – ident: ref23 doi: 10.1109/LGRS.2014.2350263 – ident: ref54 doi: 10.1109/TGRS.2017.2756851 – ident: ref20 doi: 10.1016/j.jag.2018.08.020 – ident: ref17 doi: 10.1109/JSTARS.2014.2347276 – ident: ref50 doi: 10.1109/LGRS.2011.2158185 – ident: ref51 doi: 10.1109/PRRS.2018.8486164 – ident: ref49 doi: 10.14358/PERS.70.5.627 – ident: ref48 doi: 10.3390/rs5084045 – ident: ref41 doi: 10.1109/TGRS.2016.2561842 – ident: ref30 doi: 10.1109/JSTARS.2019.2913206 – ident: ref29 doi: 10.1109/JSTARS.2016.2634863 – ident: ref27 doi: 10.1109/TGRS.2017.2726901 – ident: ref42 doi: 10.1109/LGRS.2016.2600244 – ident: ref40 doi: 10.3390/rs11050550 – ident: ref2 doi: 10.1109/JSTARS.2014.2305441 – ident: ref46 doi: 10.1016/j.ins.2016.02.021 |
SSID | ssj0062793 |
Score | 2.4080791 |
Snippet | This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2458 |
SubjectTerms | Classifiers Data integration Data mining Deep residual network extinction profile Feature extraction Frameworks Goddard 's LiDAR hyperspectral hyperspectral and thermal (G-LiHT) data Hyperspectral imaging image fusion Laser radar Lidar light detection and ranging (LiDAR) local binary pattern (LBP) Matrices (mathematics) Methods Multiplication probability fusion Probability theory Residual neural networks Stacking Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF5EnWJ1Sg4erWuTtE2Pm7MOcTtMB7uF5qMgyBxbd_C_9yVphyLoxWtJ2ubll_cR3vs9hK5VoiDYKfOQMcNCJhmcOUZUGDOd60jHWeV6A44n6WjGHufJ_EurL5sT5umBveB6oEwTS5miVF6xmKS8UpImFVWyJBBEOe0LNq8NprwOTgnAruEYiqO8ByDvT58hGiTxLQAcjDD5ZoccXX_TX-WHUnaWpjhEB42LiPv-147Qjlkco70H14L3o4PGQ2OWeGrWrowKT3wedzgAc6RxsbG3X7hoU64w-KR4BLGmL6lcwYRyofHT67A_xcOyLk_QrLh_uRuFTVOEULGI1yFLTUotn6fMSi61VrBUA05IAo6UUSVXpNKGKcu7B55YFUlXfUsY5SllVCb0FO0u3hfmDOHMSJUTY4uoY7DjOuec6UzavePKyCxApBWRUA1juG1c8SZc5BDlwstVWLmKRq4ButlOWnrCjN-HD6zst0Mt27V7ABgQDQbEXxgIUMfu3PYlOYXRNAlQt91J0ZzMtbAMiTwBPyw9_49PX6B9uxx_KdNFu_VqYy7BTanllUPkJ7rV3bU priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Residual Network-Based Fusion Framework for Hyperspectral and LiDAR Data |
URI | https://ieeexplore.ieee.org/document/9336235 https://www.proquest.com/docview/2492856436 https://doaj.org/article/67853626cc9f41268fcb35f3cba25232 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BUqVe-kVRt6XIhx7JkjhO4hyXLssKdTlsi8TNiscTCYEWBNkD_PqOHWeltgj1FkW25XjGnjfOzBuAb1ggOztNnShFKlFW8Z5TEpNMudqlLqvaUBtwcV7OL9TZZXG5BYebXBgiCsFnNPaP4V--u8W1vyo7YuebrXWxDdvsuPW5WsOpW8oqEOwyHqkTTxkTGYaytD5iFZ8sf7IvKLMxqzebYPmHFQpk_bG6yj9HcrAzs7ewGGbYh5dcj9edHePTX-SN__sJ7-BNBJxi0mvIe9ii1Qd4dRoK-j7uwmJKdCeW9BCSssR5HxWeHLNxc2K29ndpYjYEcAlGuGLOnmufoHnPHZqVEz-uppOlmDZd8xEuZie_vs-TWGIhQZXqLlEllblnB7VVo61zyMtIDGkKhmWEjUbZOlLoWfwY17WpDbm8UuW6zFVui3wPdla3K_oEoiKLtSSfkp0xKnC11spV1muCRrLVCOSw5AYj_7gvg3Fjgh-S1qaXk_FyMlFOIzjcdLrr6Tdebn7sZblp6rmzwwuWgYlb0bB5LjwJD2LdqkyWukWbF22OtpHslvMgu15um0GiyEawP2iGifv8wXi-RV0wqis_P9_rC7z2E-wvbfZhp7tf01eGMZ09CO7_QdDi3_pC6qM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcRexo-BVjbAD3tcusSxE-exW-kKtH0om7Q3K7YvEgJ105Y-wF_P2XEqbSC0tyiyLcd39n3n3H0HcGSlJWenrhIhUCTCCNpzgtskE65yqcvKJtQGnC-K6aX4ciWvtuB4kwuDiCH4DIf-MfzLd9d27a_KTsj5Jmstn8BTsvsy67K1-nO34GWg2CVEUiWeNCZyDGVpdUJKPlp-I2-QZ0NScDLC_J4dCnT9sb7KX4dysDSTFzDv59gFmPwYrlsztL8f0Dc-9iNewm6EnGzU6cgr2MLVa3h2Hkr6_tqD-Rjxhi3xLqRlsUUXF56cknlzbLL2t2ls0odwMcK4bEq-a5eieUsd6pVjs-_j0ZKN67Z-A5eTTxdn0yQWWUisSFWbiAKL3PODmrJWxjlLy4gEaiQBM7S1srxxKKzn8SNk16QmZPNykasiF7mR-VvYXl2vcB9YicZWHH1Sdka4wFVKCVcarwvKoikHwPsl1zYykPtCGD918ETSSndy0l5OOsppAMebTjcdAcf_m596WW6aevbs8IJkoONm1GSgpafhsbZqRMYL1ViTyya3pubkmNMge15um0GiyAZw2GuGjjv9TnvGRSUJ1xXv_t3rIzyfXsxnevZ58fUAdvxkuyucQ9hub9f4nkBNaz4EXf4D2Lbs9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Network-Based+Fusion+Framework+for+Hyperspectral+and+LiDAR+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ge%2C+Chiru&rft.au=Du%2C+Qian&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Keyan&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=2458&rft.epage=2472&rft_id=info:doi/10.1109%2FJSTARS.2021.3054392&rft.externalDocID=9336235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |