Deep Residual Network-Based Fusion Framework for Hyperspectral and LiDAR Data

This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2458 - 2472
Main Authors Ge, Chiru, Du, Qian, Sun, Weiwei, Wang, Keyan, Li, Jiaojiao, Li, Yunsong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and the residual network-based probability multiplication fusion (RNPMF). The three methods use extinction profile (EP), local binary pattern (LBP), and deep residual network. Specifically, EP and LBP features are extracted from two sources and stacked as spatial features. For RNDFF, the deep features of each source are extracted by a deep residual network, and then the deep features are stacked to create the fusion features which are classified by softmax classifier. For RNPRF, the deep features of each source are input to the softmax classifier to obtain the probability matrices, and then the probability matrices are fused by weighted addition to producing the final label assignment. For RNPMF, the probability matrices are fused by array multiplication. Experimental results demonstrate that the classification performance of the proposed methods significantly outperform existing methods in hyperspectral and LiDAR data fusion.
AbstractList This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are proposed, which are the residual network-based deep feature fusion (RNDFF), the residual network-based probability reconstruction fusion (RNPRF) and the residual network-based probability multiplication fusion (RNPMF). The three methods use extinction profile (EP), local binary pattern (LBP), and deep residual network. Specifically, EP and LBP features are extracted from two sources and stacked as spatial features. For RNDFF, the deep features of each source are extracted by a deep residual network, and then the deep features are stacked to create the fusion features which are classified by softmax classifier. For RNPRF, the deep features of each source are input to the softmax classifier to obtain the probability matrices, and then the probability matrices are fused by weighted addition to producing the final label assignment. For RNPMF, the probability matrices are fused by array multiplication. Experimental results demonstrate that the classification performance of the proposed methods significantly outperform existing methods in hyperspectral and LiDAR data fusion.
Author Ge, Chiru
Li, Jiaojiao
Li, Yunsong
Du, Qian
Wang, Keyan
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Chiru
  orcidid: 0000-0001-6562-8040
  surname: Ge
  fullname: Ge, Chiru
  email: gechirumsu@gmail.com
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 2
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
– sequence: 3
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
– sequence: 4
  givenname: Keyan
  orcidid: 0000-0002-9545-718X
  surname: Wang
  fullname: Wang, Keyan
  email: kywang@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Jiaojiao
  orcidid: 0000-0002-0470-9469
  surname: Li
  fullname: Li, Jiaojiao
  email: jjli@xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Yunsong
  orcidid: 0000-0002-0234-6270
  surname: Li
  fullname: Li, Yunsong
  email: ysli@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi, China
BookMark eNp9kUFP3DAQha2KSl1ofwGXSJyztT22Ex8XtltASyst9Gw5zqTydomDnRXi3-MlwIFDTyON5nt6894xOepDj4ScMjpnjOrv17d3i83tnFPO5kClAM0_kRlnkpVMgjwiM6ZBl0xQ8YUcp7SlVPFKw4zcLBGHYoPJt3u7K37h-Bjiv_LcJmyL1T750BeraO_xsC66EIvLpwFjGtCNMQO2b4u1Xy42xdKO9iv53Nldwm-v84T8Wf24u7gs179_Xl0s1qUTtB5LoVABBUabytZN27rsBSteSck5Ols73rUoXM0qKivZ0YZS0MAF1AoENBJOyNWk2wa7NUP09zY-mWC9eVmE-NfYOHq3Q6OqWoLiyjndCcZV3bkGZAeusVxy4FnrbNIaYnjYYxrNNuxjn-0bLjSvpRKg8pWerlwMKUXsjPOjHXM8OQa_M4yaQxNmasIcmjCvTWQWPrBvjv9PnU6UR8R3QkN-BiQ8A4BelCY
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_jag_2023_103302
crossref_primary_10_1109_TGRS_2024_3430373
crossref_primary_10_1109_TGRS_2021_3135084
crossref_primary_10_1109_TGRS_2023_3285097
crossref_primary_10_1109_JSTARS_2023_3321776
crossref_primary_10_1016_j_jag_2024_104177
crossref_primary_10_1109_TGRS_2021_3103964
crossref_primary_10_5194_essd_15_113_2023
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_1109_TGRS_2023_3336771
crossref_primary_10_1109_TCSVT_2022_3148257
crossref_primary_10_1016_j_jag_2022_102926
crossref_primary_10_1016_j_knosys_2023_111190
crossref_primary_10_3390_rs13173393
crossref_primary_10_1109_TCYB_2021_3104100
crossref_primary_10_1109_TBDATA_2024_3433494
crossref_primary_10_1117_1_JRS_16_034523
crossref_primary_10_1016_j_neucom_2025_129380
crossref_primary_10_3934_era_2024190
crossref_primary_10_3390_rs16214073
crossref_primary_10_1109_LGRS_2021_3121028
crossref_primary_10_1109_TGRS_2024_3368509
crossref_primary_10_1016_j_energy_2025_134870
crossref_primary_10_1007_s10489_024_06217_z
crossref_primary_10_1155_2022_1044597
crossref_primary_10_1109_TGRS_2024_3476975
crossref_primary_10_1016_j_inffus_2021_12_008
Cites_doi 10.1002/ecy.2109
10.1007/978-3-319-46493-0_38
10.1080/15481603.2017.1364837
10.3390/rs10101639
10.1109/TCYB.2018.2864670
10.1109/TGRS.2014.2312793
10.1109/CVPR.2016.90
10.1109/TGRS.2017.2743110
10.1109/LGRS.2019.2906839
10.1109/TNNLS.2019.2920857
10.1109/JSTARS.2018.2802041
10.1016/j.rse.2007.07.028
10.1109/IGARSS.2018.8518295
10.1016/j.rse.2017.07.009
10.3390/rs10101649
10.1109/IGARSS.2017.8128347
10.1109/TPAMI.2002.1017623
10.1109/TGRS.2016.2616355
10.1109/TGRS.2017.2756851
10.1109/TGRS.2015.2480863
10.1007/978-1-4757-1904-8
10.1109/TGRS.2008.916480
10.1109/TGRS.2017.2702197
10.1109/LGRS.2017.2687519
10.1890/ES13-00255.1
10.1109/TGRS.2017.2755542
10.3390/rs9121237
10.1109/TITS.2015.2477817
10.1016/j.rse.2018.04.050
10.1016/j.patcog.2018.11.004
10.1109/TGRS.2018.2815044
10.1109/LGRS.2016.2521684
10.1109/TGRS.2014.2381602
10.1016/j.isprsjprs.2014.01.001
10.1109/TGRS.2017.2686450
10.1109/LGRS.2014.2350263
10.1016/j.jag.2018.08.020
10.1109/JSTARS.2014.2347276
10.1109/LGRS.2011.2158185
10.1109/PRRS.2018.8486164
10.14358/PERS.70.5.627
10.3390/rs5084045
10.1109/TGRS.2016.2561842
10.1109/JSTARS.2019.2913206
10.1109/JSTARS.2016.2634863
10.1109/TGRS.2017.2726901
10.1109/LGRS.2016.2600244
10.3390/rs11050550
10.1109/JSTARS.2014.2305441
10.1016/j.ins.2016.02.021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3054392
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2472
ExternalDocumentID oai_doaj_org_article_67853626cc9f41268fcb35f3cba25232
10_1109_JSTARS_2021_3054392
9336235
Genre orig-research
GrantInformation_xml – fundername: Higher Education Discipline Innovation Project; 111 project
  grantid: B08038
  funderid: 10.13039/501100013314
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2016JQ6023
  funderid: 10.13039/501100007128
– fundername: Open Fund of State Laboratory of Information Engineering in Surveying
– fundername: Yangtze River Scholar Bonus Schemes of China
  grantid: CJT160102
– fundername: National Natural Science Foundation of China
  grantid: 61901343; 41971296; 61871177; 61571345; 91538101; 61501346; 61502367; 61701360
  funderid: 10.13039/501100001809
– fundername: Wuhan University
  grantid: 18R05
  funderid: 10.13039/501100007046
– fundername: Mapping and Remote Sensing
– fundername: Science and Technology on Space Intelligent Control Laboratory
  grantid: ZDSYS-2019-03
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR19D010001
  funderid: 10.13039/501100004731
– fundername: Ten Thousand Talent Program
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-46e630310b7a8bddc279e7275522eca8c2fde4c8170575f0b0039324386343b53
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:23:24 EDT 2025
Fri Jul 25 10:12:11 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Wed Aug 27 02:50:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-46e630310b7a8bddc279e7275522eca8c2fde4c8170575f0b0039324386343b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0470-9469
0000-0002-9545-718X
0000-0003-3399-7858
0000-0001-8354-7500
0000-0001-6562-8040
0000-0002-0234-6270
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9336235
PQID 2492856436
PQPubID 75722
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_67853626cc9f41268fcb35f3cba25232
ieee_primary_9336235
crossref_citationtrail_10_1109_JSTARS_2021_3054392
proquest_journals_2492856436
crossref_primary_10_1109_JSTARS_2021_3054392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
hu (ref16) 2014; 52
ref14
ref52
ref11
ref54
ref10
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
li (ref53) 2018; 10
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref38
goodfellow (ref36) 2016
wei (ref39) 2017; 55
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – year: 2016
  ident: ref36
  publication-title: Deep Learning 6 2 2 3 Softmax Units for Multinoulli Output Distributions
– ident: ref21
  doi: 10.1002/ecy.2109
– ident: ref32
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref25
  doi: 10.1080/15481603.2017.1364837
– ident: ref5
  doi: 10.3390/rs10101639
– ident: ref52
  doi: 10.1109/TCYB.2018.2864670
– ident: ref33
  doi: 10.1109/TCYB.2018.2864670
– volume: 52
  start-page: 7448
  year: 2014
  ident: ref16
  article-title: Road centerline extraction in complex urban scenes from LiDAR data based on multiple features
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2312793
– ident: ref31
  doi: 10.1109/CVPR.2016.90
– ident: ref4
  doi: 10.1109/TGRS.2017.2743110
– ident: ref3
  doi: 10.1109/LGRS.2019.2906839
– ident: ref11
  doi: 10.1109/TNNLS.2019.2920857
– ident: ref6
  doi: 10.1109/JSTARS.2018.2802041
– ident: ref37
  doi: 10.1016/j.rse.2007.07.028
– ident: ref34
  doi: 10.1109/IGARSS.2018.8518295
– ident: ref47
  doi: 10.1016/j.rse.2017.07.009
– ident: ref35
  doi: 10.3390/rs10101649
– ident: ref13
  doi: 10.1109/IGARSS.2017.8128347
– ident: ref43
  doi: 10.1109/TPAMI.2002.1017623
– volume: 55
  start-page: 844
  year: 2017
  ident: ref39
  article-title: Hyperspectral image classification using deep pixel-pair features
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2616355
– ident: ref22
  doi: 10.1109/TGRS.2017.2756851
– ident: ref9
  doi: 10.1109/TGRS.2015.2480863
– ident: ref45
  doi: 10.1007/978-1-4757-1904-8
– ident: ref26
  doi: 10.1109/TGRS.2008.916480
– ident: ref7
  doi: 10.1109/TGRS.2017.2702197
– ident: ref24
  doi: 10.1109/LGRS.2017.2687519
– ident: ref18
  doi: 10.1890/ES13-00255.1
– volume: 10
  start-page: p. 1649
  year: 2018
  ident: ref53
  article-title: Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks
  publication-title: Remote Sens
  doi: 10.3390/rs10101649
– ident: ref38
  doi: 10.1109/TGRS.2017.2755542
– ident: ref8
  doi: 10.3390/rs9121237
– ident: ref14
  doi: 10.1109/TITS.2015.2477817
– ident: ref1
  doi: 10.1016/j.rse.2018.04.050
– ident: ref12
  doi: 10.1016/j.patcog.2018.11.004
– ident: ref10
  doi: 10.1109/TGRS.2018.2815044
– ident: ref15
  doi: 10.1109/LGRS.2016.2521684
– ident: ref44
  doi: 10.1109/TGRS.2014.2381602
– ident: ref19
  doi: 10.1016/j.isprsjprs.2014.01.001
– ident: ref28
  doi: 10.1109/TGRS.2017.2686450
– ident: ref23
  doi: 10.1109/LGRS.2014.2350263
– ident: ref54
  doi: 10.1109/TGRS.2017.2756851
– ident: ref20
  doi: 10.1016/j.jag.2018.08.020
– ident: ref17
  doi: 10.1109/JSTARS.2014.2347276
– ident: ref50
  doi: 10.1109/LGRS.2011.2158185
– ident: ref51
  doi: 10.1109/PRRS.2018.8486164
– ident: ref49
  doi: 10.14358/PERS.70.5.627
– ident: ref48
  doi: 10.3390/rs5084045
– ident: ref41
  doi: 10.1109/TGRS.2016.2561842
– ident: ref30
  doi: 10.1109/JSTARS.2019.2913206
– ident: ref29
  doi: 10.1109/JSTARS.2016.2634863
– ident: ref27
  doi: 10.1109/TGRS.2017.2726901
– ident: ref42
  doi: 10.1109/LGRS.2016.2600244
– ident: ref40
  doi: 10.3390/rs11050550
– ident: ref2
  doi: 10.1109/JSTARS.2014.2305441
– ident: ref46
  doi: 10.1016/j.ins.2016.02.021
SSID ssj0062793
Score 2.4080791
Snippet This article presents a deep residual network-based fusion framework for hyperspectral and LiDAR data. In this framework, three new fusion methods are...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2458
SubjectTerms Classifiers
Data integration
Data mining
Deep residual network
extinction profile
Feature extraction
Frameworks
Goddard 's LiDAR
hyperspectral
hyperspectral and thermal (G-LiHT) data
Hyperspectral imaging
image fusion
Laser radar
Lidar
light detection and ranging (LiDAR)
local binary pattern (LBP)
Matrices (mathematics)
Methods
Multiplication
probability fusion
Probability theory
Residual neural networks
Stacking
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF5EnWJ1Sg4erWuTtE2Pm7MOcTtMB7uF5qMgyBxbd_C_9yVphyLoxWtJ2ubll_cR3vs9hK5VoiDYKfOQMcNCJhmcOUZUGDOd60jHWeV6A44n6WjGHufJ_EurL5sT5umBveB6oEwTS5miVF6xmKS8UpImFVWyJBBEOe0LNq8NprwOTgnAruEYiqO8ByDvT58hGiTxLQAcjDD5ZoccXX_TX-WHUnaWpjhEB42LiPv-147Qjlkco70H14L3o4PGQ2OWeGrWrowKT3wedzgAc6RxsbG3X7hoU64w-KR4BLGmL6lcwYRyofHT67A_xcOyLk_QrLh_uRuFTVOEULGI1yFLTUotn6fMSi61VrBUA05IAo6UUSVXpNKGKcu7B55YFUlXfUsY5SllVCb0FO0u3hfmDOHMSJUTY4uoY7DjOuec6UzavePKyCxApBWRUA1juG1c8SZc5BDlwstVWLmKRq4ButlOWnrCjN-HD6zst0Mt27V7ABgQDQbEXxgIUMfu3PYlOYXRNAlQt91J0ZzMtbAMiTwBPyw9_49PX6B9uxx_KdNFu_VqYy7BTanllUPkJ7rV3bU
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Residual Network-Based Fusion Framework for Hyperspectral and LiDAR Data
URI https://ieeexplore.ieee.org/document/9336235
https://www.proquest.com/docview/2492856436
https://doaj.org/article/67853626cc9f41268fcb35f3cba25232
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BUqVe-kVRt6XIhx7JkjhO4hyXLssKdTlsi8TNiscTCYEWBNkD_PqOHWeltgj1FkW25XjGnjfOzBuAb1ggOztNnShFKlFW8Z5TEpNMudqlLqvaUBtwcV7OL9TZZXG5BYebXBgiCsFnNPaP4V--u8W1vyo7YuebrXWxDdvsuPW5WsOpW8oqEOwyHqkTTxkTGYaytD5iFZ8sf7IvKLMxqzebYPmHFQpk_bG6yj9HcrAzs7ewGGbYh5dcj9edHePTX-SN__sJ7-BNBJxi0mvIe9ii1Qd4dRoK-j7uwmJKdCeW9BCSssR5HxWeHLNxc2K29ndpYjYEcAlGuGLOnmufoHnPHZqVEz-uppOlmDZd8xEuZie_vs-TWGIhQZXqLlEllblnB7VVo61zyMtIDGkKhmWEjUbZOlLoWfwY17WpDbm8UuW6zFVui3wPdla3K_oEoiKLtSSfkp0xKnC11spV1muCRrLVCOSw5AYj_7gvg3Fjgh-S1qaXk_FyMlFOIzjcdLrr6Tdebn7sZblp6rmzwwuWgYlb0bB5LjwJD2LdqkyWukWbF22OtpHslvMgu15um0GiyEawP2iGifv8wXi-RV0wqis_P9_rC7z2E-wvbfZhp7tf01eGMZ09CO7_QdDi3_pC6qM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcRexo-BVjbAD3tcusSxE-exW-kKtH0om7Q3K7YvEgJ105Y-wF_P2XEqbSC0tyiyLcd39n3n3H0HcGSlJWenrhIhUCTCCNpzgtskE65yqcvKJtQGnC-K6aX4ciWvtuB4kwuDiCH4DIf-MfzLd9d27a_KTsj5Jmstn8BTsvsy67K1-nO34GWg2CVEUiWeNCZyDGVpdUJKPlp-I2-QZ0NScDLC_J4dCnT9sb7KX4dysDSTFzDv59gFmPwYrlsztL8f0Dc-9iNewm6EnGzU6cgr2MLVa3h2Hkr6_tqD-Rjxhi3xLqRlsUUXF56cknlzbLL2t2ls0odwMcK4bEq-a5eieUsd6pVjs-_j0ZKN67Z-A5eTTxdn0yQWWUisSFWbiAKL3PODmrJWxjlLy4gEaiQBM7S1srxxKKzn8SNk16QmZPNykasiF7mR-VvYXl2vcB9YicZWHH1Sdka4wFVKCVcarwvKoikHwPsl1zYykPtCGD918ETSSndy0l5OOsppAMebTjcdAcf_m596WW6aevbs8IJkoONm1GSgpafhsbZqRMYL1ViTyya3pubkmNMge15um0GiyAZw2GuGjjv9TnvGRSUJ1xXv_t3rIzyfXsxnevZ58fUAdvxkuyucQ9hub9f4nkBNaz4EXf4D2Lbs9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Network-Based+Fusion+Framework+for+Hyperspectral+and+LiDAR+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ge%2C+Chiru&rft.au=Du%2C+Qian&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Keyan&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=2458&rft.epage=2472&rft_id=info:doi/10.1109%2FJSTARS.2021.3054392&rft.externalDocID=9336235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon