Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment
This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross...
Saved in:
Published in | IEEE access Vol. 9; pp. 59196 - 59210 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3070054 |
Cover
Loading…
Abstract | This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <inline-formula> <tex-math notation="LaTeX">P\left ({{x,y} }\right) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">W\left ({{x,y} }\right) </tex-math></inline-formula> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm. |
---|---|
AbstractList | This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <inline-formula> <tex-math notation="LaTeX">P\left ({{x,y} }\right) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">W\left ({{x,y} }\right) </tex-math></inline-formula> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm. This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <tex-math notation="LaTeX">$P\left ({{x,y} }\right)$ </tex-math> and <tex-math notation="LaTeX">$W\left ({{x,y} }\right)$ </tex-math> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm. This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions [Formula Omitted] and [Formula Omitted] and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm. |
Author | Tang, Gang Claramunt, Christophe Hu, Xiong Tang, Congqiang Zhou, Peipei |
Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0002-8706-4431 surname: Tang fullname: Tang, Gang organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China – sequence: 2 givenname: Congqiang orcidid: 0000-0002-0282-1609 surname: Tang fullname: Tang, Congqiang organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China – sequence: 3 givenname: Christophe orcidid: 0000-0002-5586-1997 surname: Claramunt fullname: Claramunt, Christophe organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China – sequence: 4 givenname: Xiong surname: Hu fullname: Hu, Xiong organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China – sequence: 5 givenname: Peipei orcidid: 0000-0002-6293-543X surname: Zhou fullname: Zhou, Peipei email: zhoupeipei@gpnu.edu.cn organization: School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China |
BookMark | eNp9kV1PHCEUhkmjSa36C7wh8Xq2h-Fjht5NNtvtJibdZNVbwjDMymYGlEET_73YsaapiVzA4XCelwPvN3Tkg7cIXRBYEALye7Ncrna7RQklWVCoADj7gk5KImRBORVH_8Rf0fk0HSCPOqd4dYK6tQ2jTdEZ3BS7pCNuhn2ILt2NP3Dj8Wa8j-HJdh9OcR_ybn2Ltzrd4e2gvXd-j53HGm9DTHjln1wMfrQ-naHjXg-TPX9bT9HNz9X18ldx9Xu9WTZXhWFQp4IJQa0RghhOpRGG0Ypr1msiwRIDlcmzAVNrVlZtxS0AlYR1bcd7UkOp6SnazLpd0Ad1H92o47MK2qk_iRD3SsfkzGCVpla00kDb2nw5p5qXDATLen0LNWuz1uWsld__8GinpA7hMfrcvio5qYAykCJXybnKxDBN0fbKuKSTCz5F7QZFQL16pGaP1KtH6s2jzNL_2L8df05dzJSz1r4TMv-EkDV9AQI5nNU |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s10846_024_02179_z crossref_primary_10_3390_su141912720 crossref_primary_10_1038_s41598_024_84821_2 crossref_primary_10_3390_app14188339 crossref_primary_10_3390_aerospace11090720 crossref_primary_10_1016_j_autcon_2022_104699 crossref_primary_10_1080_23335777_2024_2385910 crossref_primary_10_1109_TVT_2023_3348140 crossref_primary_10_3390_sym13112213 crossref_primary_10_3390_s24051422 crossref_primary_10_1109_ACCESS_2023_3263734 crossref_primary_10_1007_s41315_023_00294_y crossref_primary_10_3390_agriculture15020118 crossref_primary_10_54097_n2x2e183 crossref_primary_10_3390_aerospace11050394 crossref_primary_10_1142_S1793962325500138 crossref_primary_10_14775_ksmpe_2024_23_1_024 crossref_primary_10_1016_j_compag_2023_108446 crossref_primary_10_1109_ACCESS_2022_3181131 crossref_primary_10_1109_ACCESS_2022_3183154 crossref_primary_10_3390_s24248145 crossref_primary_10_1109_ACCESS_2022_3206356 crossref_primary_10_3390_app14178015 crossref_primary_10_3390_biomimetics9010035 crossref_primary_10_1038_s41598_024_59413_9 crossref_primary_10_1177_09544062231181838 crossref_primary_10_3390_s22093579 crossref_primary_10_1016_j_matcom_2024_12_015 crossref_primary_10_3390_drones8050171 crossref_primary_10_1007_s11370_023_00494_2 crossref_primary_10_3923_itj_2023_1_8 crossref_primary_10_1088_1742_6596_2477_1_012059 crossref_primary_10_1016_j_inffus_2025_103033 crossref_primary_10_1007_s44196_024_00511_x crossref_primary_10_1007_s11227_024_06842_y crossref_primary_10_3390_machines10080660 crossref_primary_10_1142_S0218001422590091 crossref_primary_10_1186_s13638_022_02205_4 crossref_primary_10_1109_ACCESS_2024_3359643 crossref_primary_10_3390_su16124963 crossref_primary_10_3390_sym16121573 crossref_primary_10_1017_S0263574725000256 crossref_primary_10_3390_en15238910 crossref_primary_10_3390_s22166198 crossref_primary_10_1080_00207543_2024_2440795 crossref_primary_10_3390_a18010041 crossref_primary_10_1016_j_ast_2024_109071 crossref_primary_10_1038_s41598_024_72530_9 crossref_primary_10_1108_RIA_01_2024_0011 crossref_primary_10_3390_electronics13020340 crossref_primary_10_1016_j_ocecoaman_2024_107087 crossref_primary_10_1007_s41693_024_00135_9 crossref_primary_10_3390_s24010101 crossref_primary_10_3390_drones8100546 crossref_primary_10_1016_j_ijar_2022_11_013 crossref_primary_10_1016_j_trc_2024_104724 crossref_primary_10_1109_ACCESS_2024_3394569 crossref_primary_10_1007_s11042_024_19267_9 crossref_primary_10_1016_j_tust_2023_105471 crossref_primary_10_1109_JSTARS_2022_3226527 crossref_primary_10_1109_ACCESS_2023_3272223 crossref_primary_10_1109_ACCESS_2023_3260646 crossref_primary_10_3389_fnbot_2021_770361 crossref_primary_10_1109_ACCESS_2022_3225571 crossref_primary_10_3390_app14166918 crossref_primary_10_3390_app14198606 crossref_primary_10_1007_s11370_025_00595_0 crossref_primary_10_1016_j_jobe_2024_109757 crossref_primary_10_1109_ACCESS_2023_3306239 crossref_primary_10_1115_1_4063013 crossref_primary_10_1016_j_cie_2024_110746 crossref_primary_10_1088_1742_6596_2891_11_112001 crossref_primary_10_3390_app14114613 crossref_primary_10_1016_j_oceaneng_2023_115333 crossref_primary_10_3390_wevj15110481 crossref_primary_10_3389_fpls_2023_1101828 crossref_primary_10_3390_math11214552 crossref_primary_10_1007_s11227_022_04395_6 crossref_primary_10_3390_s25041206 crossref_primary_10_1016_j_eswa_2024_125804 crossref_primary_10_1177_09544070221100677 crossref_primary_10_1186_s10033_024_01014_8 crossref_primary_10_3390_app132413090 crossref_primary_10_3390_robotics11060117 crossref_primary_10_1016_j_robot_2024_104828 crossref_primary_10_1016_j_dajour_2024_100471 crossref_primary_10_1007_s12541_022_00756_6 crossref_primary_10_1109_OJVT_2025_3540174 crossref_primary_10_1016_j_asoc_2024_112269 crossref_primary_10_1016_j_eswa_2023_121948 crossref_primary_10_1016_j_forpol_2025_103456 crossref_primary_10_1016_j_ocecoaman_2024_107349 crossref_primary_10_1016_j_asoc_2023_110868 crossref_primary_10_1155_2023_8984451 crossref_primary_10_1016_j_oceaneng_2024_119907 crossref_primary_10_1007_s10489_024_05915_y crossref_primary_10_1016_j_ress_2024_110044 crossref_primary_10_3390_pr11082447 crossref_primary_10_1109_TITS_2024_3384576 crossref_primary_10_3390_s23063248 crossref_primary_10_3390_sym15112034 crossref_primary_10_1016_j_ijdrr_2024_104252 crossref_primary_10_1109_ACCESS_2024_3389152 crossref_primary_10_1109_LRA_2024_3455765 crossref_primary_10_3390_s23084102 crossref_primary_10_3390_drones6120393 crossref_primary_10_1088_1742_6596_2764_1_012052 crossref_primary_10_54097_hset_v63i_10886 crossref_primary_10_3233_JIFS_232076 crossref_primary_10_1109_OJVT_2024_3402129 crossref_primary_10_1109_TCDS_2023_3237612 crossref_primary_10_3390_app13021105 crossref_primary_10_3390_app13042725 crossref_primary_10_1109_ACCESS_2023_3262169 crossref_primary_10_3390_biomimetics9050259 crossref_primary_10_1109_TNSE_2024_3389657 crossref_primary_10_3390_s24061784 crossref_primary_10_1177_01423312241265524 crossref_primary_10_1007_s12204_024_2731_2 crossref_primary_10_3390_rs15020487 crossref_primary_10_1016_j_apm_2022_08_009 crossref_primary_10_3390_electronics11213628 crossref_primary_10_1038_s41598_022_17684_0 crossref_primary_10_1016_j_compeleceng_2024_109824 crossref_primary_10_1109_TITS_2023_3253479 crossref_primary_10_3390_agronomy14112669 crossref_primary_10_1016_j_jfranklin_2022_05_040 crossref_primary_10_3390_s22187079 crossref_primary_10_3390_math11132802 crossref_primary_10_1007_s00607_024_01293_y crossref_primary_10_3390_act12040166 crossref_primary_10_3390_ijgi12020082 crossref_primary_10_1371_journal_pone_0263841 crossref_primary_10_1016_j_isatra_2023_02_018 crossref_primary_10_1088_1742_6596_2755_1_012040 crossref_primary_10_1016_j_procir_2023_08_041 crossref_primary_10_9726_kspse_2024_28_5_014 crossref_primary_10_1109_ACCESS_2023_3293125 crossref_primary_10_3390_sym15051052 crossref_primary_10_1016_j_oceaneng_2023_114156 crossref_primary_10_1088_1742_6596_2807_1_012026 crossref_primary_10_3390_s24134041 crossref_primary_10_1007_s12652_024_04854_3 crossref_primary_10_1007_s00170_024_14873_1 crossref_primary_10_3390_en15197267 crossref_primary_10_3390_s22176615 crossref_primary_10_3390_jmse12040575 crossref_primary_10_1016_j_autcon_2024_105523 crossref_primary_10_32604_cmes_2024_054002 crossref_primary_10_1080_23307706_2024_2428315 crossref_primary_10_1016_j_asoc_2023_110773 crossref_primary_10_1016_j_compag_2024_109596 crossref_primary_10_1038_s41467_025_57845_z crossref_primary_10_3390_app12125791 crossref_primary_10_1016_j_foreco_2023_121530 crossref_primary_10_3390_electronics13020455 crossref_primary_10_1038_s41598_024_80712_8 crossref_primary_10_3390_s24113573 crossref_primary_10_1016_j_egyr_2023_04_247 crossref_primary_10_3390_drones9010047 crossref_primary_10_3390_app122211338 crossref_primary_10_1016_j_oceaneng_2025_120475 crossref_primary_10_1016_j_cogr_2024_02_001 crossref_primary_10_3390_sym17010085 crossref_primary_10_3390_app14178029 crossref_primary_10_1109_ACCESS_2025_3550572 crossref_primary_10_1155_2021_4312592 crossref_primary_10_3390_electronics12081754 crossref_primary_10_1177_00202940241228725 crossref_primary_10_1142_S0218001423510060 crossref_primary_10_3390_jmse12010160 crossref_primary_10_3390_app132011290 crossref_primary_10_3390_sym15101891 crossref_primary_10_1016_j_isatra_2022_07_032 crossref_primary_10_3390_machines10080600 |
Cites_doi | 10.1016/j.robot.2016.12.008 10.1016/j.asoc.2016.06.046 10.3390/s18093170 10.1016/j.jmsy.2019.11.003 10.1016/j.cor.2020.105046 10.1016/j.asoc.2017.03.035 10.1016/j.asoc.2017.05.012 10.2307/2372560 10.1007/s00500-016-2161-7 10.1016/j.autcon.2018.08.008 10.1109/TASE.2016.2603781 10.1016/j.eswa.2019.06.067 10.1016/j.robot.2019.103320 10.1109/ACCESS.2020.3015976 10.1016/j.oceaneng.2019.04.055 10.1109/TSSC.1968.300136 10.1016/j.cie.2018.10.007 10.1016/j.cie.2020.106371 10.1016/j.swevo.2015.10.011 10.1016/j.conengprac.2017.01.007 10.1109/TASE.2015.2446614 10.1080/13658816.2014.887087 10.1109/ACCESS.2019.2935964 10.1016/j.apor.2018.12.001 10.1109/ACCESS.2018.2853146 10.1016/j.proeng.2014.12.098 10.1016/j.autcon.2018.11.020 10.1016/j.robot.2016.08.001 10.1109/TMC.2018.2863293 10.1093/comjnl/11.3.299 10.3390/electronics7120375 10.1109/ACCESS.2020.2990153 10.1016/j.robot.2018.04.007 10.1016/j.knosys.2017.05.009 10.1016/j.robot.2019.02.002 10.1016/j.cad.2006.12.006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3070054 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 59210 |
ExternalDocumentID | oai_doaj_org_article_a3e6b9c0bbec4053a524064914fb084b 10_1109_ACCESS_2021_3070054 9391698 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51905557 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-4663ec661c539c6c4375a4fa190e1c07ce1cc0c8a427b75e003914dbd5f1802a3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:25:55 EDT 2025 Mon Jun 30 07:08:42 EDT 2025 Tue Jul 01 04:03:24 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Wed Aug 27 02:30:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-4663ec661c539c6c4375a4fa190e1c07ce1cc0c8a427b75e003914dbd5f1802a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5586-1997 0000-0002-0282-1609 0000-0002-8706-4431 0000-0002-6293-543X |
OpenAccessLink | https://doaj.org/article/a3e6b9c0bbec4053a524064914fb084b |
PQID | 2517034096 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3e6b9c0bbec4053a524064914fb084b crossref_citationtrail_10_1109_ACCESS_2021_3070054 proquest_journals_2517034096 crossref_primary_10_1109_ACCESS_2021_3070054 ieee_primary_9391698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1016/j.robot.2016.12.008 – ident: ref32 doi: 10.1016/j.asoc.2016.06.046 – ident: ref36 doi: 10.3390/s18093170 – ident: ref5 doi: 10.1016/j.jmsy.2019.11.003 – ident: ref11 doi: 10.1016/j.cor.2020.105046 – ident: ref31 doi: 10.1016/j.asoc.2017.03.035 – ident: ref27 doi: 10.1016/j.asoc.2017.05.012 – ident: ref21 doi: 10.2307/2372560 – ident: ref26 doi: 10.1007/s00500-016-2161-7 – ident: ref3 doi: 10.1016/j.autcon.2018.08.008 – ident: ref6 doi: 10.1109/TASE.2016.2603781 – ident: ref7 doi: 10.1016/j.eswa.2019.06.067 – ident: ref30 doi: 10.1016/j.robot.2019.103320 – ident: ref22 doi: 10.1109/ACCESS.2020.3015976 – ident: ref14 doi: 10.1016/j.oceaneng.2019.04.055 – ident: ref13 doi: 10.1109/TSSC.1968.300136 – ident: ref2 doi: 10.1016/j.cie.2018.10.007 – ident: ref4 doi: 10.1016/j.cie.2020.106371 – ident: ref17 doi: 10.1016/j.swevo.2015.10.011 – ident: ref9 doi: 10.1016/j.conengprac.2017.01.007 – ident: ref1 doi: 10.1109/TASE.2015.2446614 – ident: ref15 doi: 10.1080/13658816.2014.887087 – ident: ref16 doi: 10.1109/ACCESS.2019.2935964 – ident: ref29 doi: 10.1016/j.apor.2018.12.001 – ident: ref34 doi: 10.1109/ACCESS.2018.2853146 – ident: ref23 doi: 10.1016/j.proeng.2014.12.098 – ident: ref10 doi: 10.1016/j.autcon.2018.11.020 – ident: ref8 doi: 10.1016/j.robot.2016.08.001 – ident: ref35 doi: 10.1109/TMC.2018.2863293 – ident: ref24 doi: 10.1093/comjnl/11.3.299 – ident: ref12 doi: 10.3390/electronics7120375 – ident: ref33 doi: 10.1109/ACCESS.2020.2990153 – ident: ref28 doi: 10.1016/j.robot.2018.04.007 – ident: ref25 doi: 10.1016/j.knosys.2017.05.009 – ident: ref19 doi: 10.1016/j.robot.2019.02.002 – ident: ref20 doi: 10.1016/j.cad.2006.12.006 |
SSID | ssj0000816957 |
Score | 2.5994952 |
Snippet | This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59196 |
SubjectTerms | A-star algorithm Algorithms automated guided vehicle (AGV) Automated guided vehicles B spline functions Computational modeling Environment models Grid method Heuristic algorithms Layout Nodes Path planning Satellites Splines (mathematics) Turning |
SummonAdditionalLinks | – databaseName: IEL dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBFgpiS0E-cGy23tqO497Cqg8hFXGgqDfLdhyoaLNom7301zPjeMOjCHGJovghW9_Y_jyxvwF42xqJex3OC09TIK5QsnA8ikI7H2aq0jqkYBMXH8rzS_n-Sl1twMF4FybGmA6fxSm9pn_5zSKsyFV2aOiWqKk2YRM3bsNdrdGfQgEkjNJZWGjGzWE9n2MfcAt4NJuSZXMlf1t8kkZ_DqryYCZOy8vpNlysGzacKvk2XfV-Gu7_0Gz835bvwJPMM1k9GMZT2IjdM3j8i_rgLjRncXFLAbUCqwsknUtW33xZLK_7r7fHrO7Y4G-IzYNUhkSX1Wef2Uekj2wd9ohdd8wxOpnKTn7ennsOl6cnn-bnRQ66UATJq76QSEFiwFU7KGFCGaTQysnWIXGIs8B1wGfgoXKIsdcqJol52fhGtSQm58QL2OoWXXwJTOioDfcVplI1pS9b5ZxAClF64Z2cwNEaDRuyIjkFxrixaWfCjR0gtAShzRBO4GAs9H0Q5Ph39ncE85iV1LTTB4TH5sFpnYilN4F7NGgksMIp4jkS-9V6Xkk_gV2CdKwkozmB_bXR2Dzy7yxJwHHsoyn3_l7qFTyiBg5unH3Y6per-BqJTe_fJIv-AZvU8fU priority: 102 providerName: IEEE |
Title | Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment |
URI | https://ieeexplore.ieee.org/document/9391698 https://www.proquest.com/docview/2517034096 https://doaj.org/article/a3e6b9c0bbec4053a524064914fb084b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpyiPygMjoQ6245gtVC0VEoiBom6W7TqABCmC8v-5c9JSVAkWlgyx48TfXe5h2d8RclJqAbkOY4lDEwgeSiSWBZ4o63wqc6V8LDZxc5sNhuJ6JEcLpb5wT1hND1wD17E8ZE575uBlEFxwK9EHCZ2K0rFcOLS-4PMWkqlog_M001I1NEMp052i24UZQUJ4np6hnjMpfriiyNjflFhZssvR2fQ3yUYTJdKi_rotshKqbbK-wB24Q8ZXYfKK5bA8LRIIGd9p8fI4gVT_6fWCFhWtVwvCeKmVQphKi6sHegfBH50VLaLPFbUU95XS3vfZt10y7Pfuu4OkKZmQADj5NBEQQAQPPtdLrn3mBVfSitKC2w-pZ8rD1TOfW5CQUzJEgngxdmNZIhWc5XtktZpUYZ9QroLSzOXQisNkLiultRzAzxx3VrTI-Qw94xs-cSxr8WJiXsG0qSE3CLlpIG-R0_lDbzWdxu_dL1Es867IhR1vgIaYRkPMXxrSIjso1PkgGs8a67xFjmZCNs1_-2GQwI3BHHV28B-vPiRrOJ16yeaIrE7fP8MxBDFT14762o7nDb8Af1zpQg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqoCwV84NhsndqOY25h1XaBbsWhRb1ZtuPQqm0WLdkLv56x400pRYhLFMUfsvXGnmfHfgPwrlEc1zqUZjZMgeiheGaoZ5k01uWilNLFYBOz42J6yj-dibM12Bnuwnjv4-EzPw6v8V9-PXfLsFW2q8ItUVXeg_vo90Xe39YadlRCCAklZJIWyqnarSYT7AUuAvfycbBtKvgt9xNV-lNYlTtzcXQwB49htmpaf67kcrzs7Nj9_EO18X_b_gQeJaZJqt40nsKab5_Bxm_6g5tQH_r5dQip5UiVIe1ckOrq23xx0Z1fvydVS_odB1_fSSVIdUl1-JV8QQJJVoGPyEVLDAlnU8n-zf2553B6sH8ymWYp7ELmOC27jCMJ8Q79thNMucJxJoXhjUHq4HNHpcOno640iLKVwkeReV7bWjRBTs6wF7Dezlu_BYRJLxW1JaaGagpbNMIYhiSisMwaPoK9FRraJU3yEBrjSse1CVW6h1AHCHWCcAQ7Q6HvvSTHv7N_CDAPWYOedvyA8Og0PLVhvrDKUYsmjRSWGRGYDsd-NZaW3I5gM0A6VJLQHMH2ymh0Gvs_dBCBo9hHVbz8e6m38GB6MjvSRx-PP7-Ch6Gx_abONqx3i6V_jTSns2-idf8CYCH1Pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+A-Star+Algorithm%3A+An+Improved+A-Star+Algorithm+for+AGV+Path+Planning+in+a+Port+Environment&rft.jtitle=IEEE+access&rft.au=Tang%2C+Gang&rft.au=Tang%2C+Congqiang&rft.au=Claramunt%2C+Christophe&rft.au=Hu%2C+Xiong&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=59196&rft.epage=59210&rft_id=info:doi/10.1109%2FACCESS.2021.3070054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3070054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |