Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment

This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 59196 - 59210
Main Authors Tang, Gang, Tang, Congqiang, Claramunt, Christophe, Hu, Xiong, Zhou, Peipei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3070054

Cover

Loading…
Abstract This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <inline-formula> <tex-math notation="LaTeX">P\left ({{x,y} }\right) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">W\left ({{x,y} }\right) </tex-math></inline-formula> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm.
AbstractList This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <inline-formula> <tex-math notation="LaTeX">P\left ({{x,y} }\right) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">W\left ({{x,y} }\right) </tex-math></inline-formula> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm.
This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions <tex-math notation="LaTeX">$P\left ({{x,y} }\right)$ </tex-math> and <tex-math notation="LaTeX">$W\left ({{x,y} }\right)$ </tex-math> and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm.
This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in order to avoid the problems of many nodes, long-distance and large turning angle, and these problems usually exist in the sawtooth and cross paths produced by the traditional A-star algorithm. First, a grid method models a port environment. Second, the nodes in the close-list are filtered by the functions [Formula Omitted] and [Formula Omitted] and the nodes that do not meet the requirements are removed to avoid the generation of irregular paths. Simultaneously, to enhance the stability of the AGV regarding turning paths, the polyline at the turning path is replaced by a cubic B-spline curve. The path planning experimental results applied to different scenarios and different specifications showed that compared with other seven different algorithms, the geometric A-star algorithm reduces the number of nodes by 10% ~ 40%, while the number of turns is reduced by 25%, the turning angle is reduced by 33.3%, and the total distance is reduced by 25.5%. Overall, the simulation results of the path planning confirmed the effectiveness of the geometric A-star algorithm.
Author Tang, Gang
Claramunt, Christophe
Hu, Xiong
Tang, Congqiang
Zhou, Peipei
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-8706-4431
  surname: Tang
  fullname: Tang, Gang
  organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China
– sequence: 2
  givenname: Congqiang
  orcidid: 0000-0002-0282-1609
  surname: Tang
  fullname: Tang, Congqiang
  organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China
– sequence: 3
  givenname: Christophe
  orcidid: 0000-0002-5586-1997
  surname: Claramunt
  fullname: Claramunt, Christophe
  organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China
– sequence: 4
  givenname: Xiong
  surname: Hu
  fullname: Hu, Xiong
  organization: School of Logistics Engineering, Shanghai Maritime University, Shanghai, China
– sequence: 5
  givenname: Peipei
  orcidid: 0000-0002-6293-543X
  surname: Zhou
  fullname: Zhou, Peipei
  email: zhoupeipei@gpnu.edu.cn
  organization: School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China
BookMark eNp9kV1PHCEUhkmjSa36C7wh8Xq2h-Fjht5NNtvtJibdZNVbwjDMymYGlEET_73YsaapiVzA4XCelwPvN3Tkg7cIXRBYEALye7Ncrna7RQklWVCoADj7gk5KImRBORVH_8Rf0fk0HSCPOqd4dYK6tQ2jTdEZ3BS7pCNuhn2ILt2NP3Dj8Wa8j-HJdh9OcR_ybn2Ltzrd4e2gvXd-j53HGm9DTHjln1wMfrQ-naHjXg-TPX9bT9HNz9X18ldx9Xu9WTZXhWFQp4IJQa0RghhOpRGG0Ypr1msiwRIDlcmzAVNrVlZtxS0AlYR1bcd7UkOp6SnazLpd0Ad1H92o47MK2qk_iRD3SsfkzGCVpla00kDb2nw5p5qXDATLen0LNWuz1uWsld__8GinpA7hMfrcvio5qYAykCJXybnKxDBN0fbKuKSTCz5F7QZFQL16pGaP1KtH6s2jzNL_2L8df05dzJSz1r4TMv-EkDV9AQI5nNU
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10846_024_02179_z
crossref_primary_10_3390_su141912720
crossref_primary_10_1038_s41598_024_84821_2
crossref_primary_10_3390_app14188339
crossref_primary_10_3390_aerospace11090720
crossref_primary_10_1016_j_autcon_2022_104699
crossref_primary_10_1080_23335777_2024_2385910
crossref_primary_10_1109_TVT_2023_3348140
crossref_primary_10_3390_sym13112213
crossref_primary_10_3390_s24051422
crossref_primary_10_1109_ACCESS_2023_3263734
crossref_primary_10_1007_s41315_023_00294_y
crossref_primary_10_3390_agriculture15020118
crossref_primary_10_54097_n2x2e183
crossref_primary_10_3390_aerospace11050394
crossref_primary_10_1142_S1793962325500138
crossref_primary_10_14775_ksmpe_2024_23_1_024
crossref_primary_10_1016_j_compag_2023_108446
crossref_primary_10_1109_ACCESS_2022_3181131
crossref_primary_10_1109_ACCESS_2022_3183154
crossref_primary_10_3390_s24248145
crossref_primary_10_1109_ACCESS_2022_3206356
crossref_primary_10_3390_app14178015
crossref_primary_10_3390_biomimetics9010035
crossref_primary_10_1038_s41598_024_59413_9
crossref_primary_10_1177_09544062231181838
crossref_primary_10_3390_s22093579
crossref_primary_10_1016_j_matcom_2024_12_015
crossref_primary_10_3390_drones8050171
crossref_primary_10_1007_s11370_023_00494_2
crossref_primary_10_3923_itj_2023_1_8
crossref_primary_10_1088_1742_6596_2477_1_012059
crossref_primary_10_1016_j_inffus_2025_103033
crossref_primary_10_1007_s44196_024_00511_x
crossref_primary_10_1007_s11227_024_06842_y
crossref_primary_10_3390_machines10080660
crossref_primary_10_1142_S0218001422590091
crossref_primary_10_1186_s13638_022_02205_4
crossref_primary_10_1109_ACCESS_2024_3359643
crossref_primary_10_3390_su16124963
crossref_primary_10_3390_sym16121573
crossref_primary_10_1017_S0263574725000256
crossref_primary_10_3390_en15238910
crossref_primary_10_3390_s22166198
crossref_primary_10_1080_00207543_2024_2440795
crossref_primary_10_3390_a18010041
crossref_primary_10_1016_j_ast_2024_109071
crossref_primary_10_1038_s41598_024_72530_9
crossref_primary_10_1108_RIA_01_2024_0011
crossref_primary_10_3390_electronics13020340
crossref_primary_10_1016_j_ocecoaman_2024_107087
crossref_primary_10_1007_s41693_024_00135_9
crossref_primary_10_3390_s24010101
crossref_primary_10_3390_drones8100546
crossref_primary_10_1016_j_ijar_2022_11_013
crossref_primary_10_1016_j_trc_2024_104724
crossref_primary_10_1109_ACCESS_2024_3394569
crossref_primary_10_1007_s11042_024_19267_9
crossref_primary_10_1016_j_tust_2023_105471
crossref_primary_10_1109_JSTARS_2022_3226527
crossref_primary_10_1109_ACCESS_2023_3272223
crossref_primary_10_1109_ACCESS_2023_3260646
crossref_primary_10_3389_fnbot_2021_770361
crossref_primary_10_1109_ACCESS_2022_3225571
crossref_primary_10_3390_app14166918
crossref_primary_10_3390_app14198606
crossref_primary_10_1007_s11370_025_00595_0
crossref_primary_10_1016_j_jobe_2024_109757
crossref_primary_10_1109_ACCESS_2023_3306239
crossref_primary_10_1115_1_4063013
crossref_primary_10_1016_j_cie_2024_110746
crossref_primary_10_1088_1742_6596_2891_11_112001
crossref_primary_10_3390_app14114613
crossref_primary_10_1016_j_oceaneng_2023_115333
crossref_primary_10_3390_wevj15110481
crossref_primary_10_3389_fpls_2023_1101828
crossref_primary_10_3390_math11214552
crossref_primary_10_1007_s11227_022_04395_6
crossref_primary_10_3390_s25041206
crossref_primary_10_1016_j_eswa_2024_125804
crossref_primary_10_1177_09544070221100677
crossref_primary_10_1186_s10033_024_01014_8
crossref_primary_10_3390_app132413090
crossref_primary_10_3390_robotics11060117
crossref_primary_10_1016_j_robot_2024_104828
crossref_primary_10_1016_j_dajour_2024_100471
crossref_primary_10_1007_s12541_022_00756_6
crossref_primary_10_1109_OJVT_2025_3540174
crossref_primary_10_1016_j_asoc_2024_112269
crossref_primary_10_1016_j_eswa_2023_121948
crossref_primary_10_1016_j_forpol_2025_103456
crossref_primary_10_1016_j_ocecoaman_2024_107349
crossref_primary_10_1016_j_asoc_2023_110868
crossref_primary_10_1155_2023_8984451
crossref_primary_10_1016_j_oceaneng_2024_119907
crossref_primary_10_1007_s10489_024_05915_y
crossref_primary_10_1016_j_ress_2024_110044
crossref_primary_10_3390_pr11082447
crossref_primary_10_1109_TITS_2024_3384576
crossref_primary_10_3390_s23063248
crossref_primary_10_3390_sym15112034
crossref_primary_10_1016_j_ijdrr_2024_104252
crossref_primary_10_1109_ACCESS_2024_3389152
crossref_primary_10_1109_LRA_2024_3455765
crossref_primary_10_3390_s23084102
crossref_primary_10_3390_drones6120393
crossref_primary_10_1088_1742_6596_2764_1_012052
crossref_primary_10_54097_hset_v63i_10886
crossref_primary_10_3233_JIFS_232076
crossref_primary_10_1109_OJVT_2024_3402129
crossref_primary_10_1109_TCDS_2023_3237612
crossref_primary_10_3390_app13021105
crossref_primary_10_3390_app13042725
crossref_primary_10_1109_ACCESS_2023_3262169
crossref_primary_10_3390_biomimetics9050259
crossref_primary_10_1109_TNSE_2024_3389657
crossref_primary_10_3390_s24061784
crossref_primary_10_1177_01423312241265524
crossref_primary_10_1007_s12204_024_2731_2
crossref_primary_10_3390_rs15020487
crossref_primary_10_1016_j_apm_2022_08_009
crossref_primary_10_3390_electronics11213628
crossref_primary_10_1038_s41598_022_17684_0
crossref_primary_10_1016_j_compeleceng_2024_109824
crossref_primary_10_1109_TITS_2023_3253479
crossref_primary_10_3390_agronomy14112669
crossref_primary_10_1016_j_jfranklin_2022_05_040
crossref_primary_10_3390_s22187079
crossref_primary_10_3390_math11132802
crossref_primary_10_1007_s00607_024_01293_y
crossref_primary_10_3390_act12040166
crossref_primary_10_3390_ijgi12020082
crossref_primary_10_1371_journal_pone_0263841
crossref_primary_10_1016_j_isatra_2023_02_018
crossref_primary_10_1088_1742_6596_2755_1_012040
crossref_primary_10_1016_j_procir_2023_08_041
crossref_primary_10_9726_kspse_2024_28_5_014
crossref_primary_10_1109_ACCESS_2023_3293125
crossref_primary_10_3390_sym15051052
crossref_primary_10_1016_j_oceaneng_2023_114156
crossref_primary_10_1088_1742_6596_2807_1_012026
crossref_primary_10_3390_s24134041
crossref_primary_10_1007_s12652_024_04854_3
crossref_primary_10_1007_s00170_024_14873_1
crossref_primary_10_3390_en15197267
crossref_primary_10_3390_s22176615
crossref_primary_10_3390_jmse12040575
crossref_primary_10_1016_j_autcon_2024_105523
crossref_primary_10_32604_cmes_2024_054002
crossref_primary_10_1080_23307706_2024_2428315
crossref_primary_10_1016_j_asoc_2023_110773
crossref_primary_10_1016_j_compag_2024_109596
crossref_primary_10_1038_s41467_025_57845_z
crossref_primary_10_3390_app12125791
crossref_primary_10_1016_j_foreco_2023_121530
crossref_primary_10_3390_electronics13020455
crossref_primary_10_1038_s41598_024_80712_8
crossref_primary_10_3390_s24113573
crossref_primary_10_1016_j_egyr_2023_04_247
crossref_primary_10_3390_drones9010047
crossref_primary_10_3390_app122211338
crossref_primary_10_1016_j_oceaneng_2025_120475
crossref_primary_10_1016_j_cogr_2024_02_001
crossref_primary_10_3390_sym17010085
crossref_primary_10_3390_app14178029
crossref_primary_10_1109_ACCESS_2025_3550572
crossref_primary_10_1155_2021_4312592
crossref_primary_10_3390_electronics12081754
crossref_primary_10_1177_00202940241228725
crossref_primary_10_1142_S0218001423510060
crossref_primary_10_3390_jmse12010160
crossref_primary_10_3390_app132011290
crossref_primary_10_3390_sym15101891
crossref_primary_10_1016_j_isatra_2022_07_032
crossref_primary_10_3390_machines10080600
Cites_doi 10.1016/j.robot.2016.12.008
10.1016/j.asoc.2016.06.046
10.3390/s18093170
10.1016/j.jmsy.2019.11.003
10.1016/j.cor.2020.105046
10.1016/j.asoc.2017.03.035
10.1016/j.asoc.2017.05.012
10.2307/2372560
10.1007/s00500-016-2161-7
10.1016/j.autcon.2018.08.008
10.1109/TASE.2016.2603781
10.1016/j.eswa.2019.06.067
10.1016/j.robot.2019.103320
10.1109/ACCESS.2020.3015976
10.1016/j.oceaneng.2019.04.055
10.1109/TSSC.1968.300136
10.1016/j.cie.2018.10.007
10.1016/j.cie.2020.106371
10.1016/j.swevo.2015.10.011
10.1016/j.conengprac.2017.01.007
10.1109/TASE.2015.2446614
10.1080/13658816.2014.887087
10.1109/ACCESS.2019.2935964
10.1016/j.apor.2018.12.001
10.1109/ACCESS.2018.2853146
10.1016/j.proeng.2014.12.098
10.1016/j.autcon.2018.11.020
10.1016/j.robot.2016.08.001
10.1109/TMC.2018.2863293
10.1093/comjnl/11.3.299
10.3390/electronics7120375
10.1109/ACCESS.2020.2990153
10.1016/j.robot.2018.04.007
10.1016/j.knosys.2017.05.009
10.1016/j.robot.2019.02.002
10.1016/j.cad.2006.12.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3070054
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 59210
ExternalDocumentID oai_doaj_org_article_a3e6b9c0bbec4053a524064914fb084b
10_1109_ACCESS_2021_3070054
9391698
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51905557
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4663ec661c539c6c4375a4fa190e1c07ce1cc0c8a427b75e003914dbd5f1802a3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:55 EDT 2025
Mon Jun 30 07:08:42 EDT 2025
Tue Jul 01 04:03:24 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Wed Aug 27 02:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4663ec661c539c6c4375a4fa190e1c07ce1cc0c8a427b75e003914dbd5f1802a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5586-1997
0000-0002-0282-1609
0000-0002-8706-4431
0000-0002-6293-543X
OpenAccessLink https://doaj.org/article/a3e6b9c0bbec4053a524064914fb084b
PQID 2517034096
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_a3e6b9c0bbec4053a524064914fb084b
crossref_citationtrail_10_1109_ACCESS_2021_3070054
proquest_journals_2517034096
crossref_primary_10_1109_ACCESS_2021_3070054
ieee_primary_9391698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.robot.2016.12.008
– ident: ref32
  doi: 10.1016/j.asoc.2016.06.046
– ident: ref36
  doi: 10.3390/s18093170
– ident: ref5
  doi: 10.1016/j.jmsy.2019.11.003
– ident: ref11
  doi: 10.1016/j.cor.2020.105046
– ident: ref31
  doi: 10.1016/j.asoc.2017.03.035
– ident: ref27
  doi: 10.1016/j.asoc.2017.05.012
– ident: ref21
  doi: 10.2307/2372560
– ident: ref26
  doi: 10.1007/s00500-016-2161-7
– ident: ref3
  doi: 10.1016/j.autcon.2018.08.008
– ident: ref6
  doi: 10.1109/TASE.2016.2603781
– ident: ref7
  doi: 10.1016/j.eswa.2019.06.067
– ident: ref30
  doi: 10.1016/j.robot.2019.103320
– ident: ref22
  doi: 10.1109/ACCESS.2020.3015976
– ident: ref14
  doi: 10.1016/j.oceaneng.2019.04.055
– ident: ref13
  doi: 10.1109/TSSC.1968.300136
– ident: ref2
  doi: 10.1016/j.cie.2018.10.007
– ident: ref4
  doi: 10.1016/j.cie.2020.106371
– ident: ref17
  doi: 10.1016/j.swevo.2015.10.011
– ident: ref9
  doi: 10.1016/j.conengprac.2017.01.007
– ident: ref1
  doi: 10.1109/TASE.2015.2446614
– ident: ref15
  doi: 10.1080/13658816.2014.887087
– ident: ref16
  doi: 10.1109/ACCESS.2019.2935964
– ident: ref29
  doi: 10.1016/j.apor.2018.12.001
– ident: ref34
  doi: 10.1109/ACCESS.2018.2853146
– ident: ref23
  doi: 10.1016/j.proeng.2014.12.098
– ident: ref10
  doi: 10.1016/j.autcon.2018.11.020
– ident: ref8
  doi: 10.1016/j.robot.2016.08.001
– ident: ref35
  doi: 10.1109/TMC.2018.2863293
– ident: ref24
  doi: 10.1093/comjnl/11.3.299
– ident: ref12
  doi: 10.3390/electronics7120375
– ident: ref33
  doi: 10.1109/ACCESS.2020.2990153
– ident: ref28
  doi: 10.1016/j.robot.2018.04.007
– ident: ref25
  doi: 10.1016/j.knosys.2017.05.009
– ident: ref19
  doi: 10.1016/j.robot.2019.02.002
– ident: ref20
  doi: 10.1016/j.cad.2006.12.006
SSID ssj0000816957
Score 2.5994952
Snippet This research introduces a path planning method based on the geometric A-star algorithm. The whole approach is applied to an Automated Guided Vehicle (AGV) in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59196
SubjectTerms A-star algorithm
Algorithms
automated guided vehicle (AGV)
Automated guided vehicles
B spline functions
Computational modeling
Environment models
Grid method
Heuristic algorithms
Layout
Nodes
Path planning
Satellites
Splines (mathematics)
Turning
SummonAdditionalLinks – databaseName: IEL
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBFgpiS0E-cGy23tqO497Cqg8hFXGgqDfLdhyoaLNom7301zPjeMOjCHGJovghW9_Y_jyxvwF42xqJex3OC09TIK5QsnA8ikI7H2aq0jqkYBMXH8rzS_n-Sl1twMF4FybGmA6fxSm9pn_5zSKsyFV2aOiWqKk2YRM3bsNdrdGfQgEkjNJZWGjGzWE9n2MfcAt4NJuSZXMlf1t8kkZ_DqryYCZOy8vpNlysGzacKvk2XfV-Gu7_0Gz835bvwJPMM1k9GMZT2IjdM3j8i_rgLjRncXFLAbUCqwsknUtW33xZLK_7r7fHrO7Y4G-IzYNUhkSX1Wef2Uekj2wd9ohdd8wxOpnKTn7ennsOl6cnn-bnRQ66UATJq76QSEFiwFU7KGFCGaTQysnWIXGIs8B1wGfgoXKIsdcqJol52fhGtSQm58QL2OoWXXwJTOioDfcVplI1pS9b5ZxAClF64Z2cwNEaDRuyIjkFxrixaWfCjR0gtAShzRBO4GAs9H0Q5Ph39ncE85iV1LTTB4TH5sFpnYilN4F7NGgksMIp4jkS-9V6Xkk_gV2CdKwkozmB_bXR2Dzy7yxJwHHsoyn3_l7qFTyiBg5unH3Y6per-BqJTe_fJIv-AZvU8fU
  priority: 102
  providerName: IEEE
Title Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment
URI https://ieeexplore.ieee.org/document/9391698
https://www.proquest.com/docview/2517034096
https://doaj.org/article/a3e6b9c0bbec4053a524064914fb084b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpyiPygMjoQ6245gtVC0VEoiBom6W7TqABCmC8v-5c9JSVAkWlgyx48TfXe5h2d8RclJqAbkOY4lDEwgeSiSWBZ4o63wqc6V8LDZxc5sNhuJ6JEcLpb5wT1hND1wD17E8ZE575uBlEFxwK9EHCZ2K0rFcOLS-4PMWkqlog_M001I1NEMp052i24UZQUJ4np6hnjMpfriiyNjflFhZssvR2fQ3yUYTJdKi_rotshKqbbK-wB24Q8ZXYfKK5bA8LRIIGd9p8fI4gVT_6fWCFhWtVwvCeKmVQphKi6sHegfBH50VLaLPFbUU95XS3vfZt10y7Pfuu4OkKZmQADj5NBEQQAQPPtdLrn3mBVfSitKC2w-pZ8rD1TOfW5CQUzJEgngxdmNZIhWc5XtktZpUYZ9QroLSzOXQisNkLiultRzAzxx3VrTI-Qw94xs-cSxr8WJiXsG0qSE3CLlpIG-R0_lDbzWdxu_dL1Es867IhR1vgIaYRkPMXxrSIjso1PkgGs8a67xFjmZCNs1_-2GQwI3BHHV28B-vPiRrOJ16yeaIrE7fP8MxBDFT14762o7nDb8Af1zpQg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAe-CqoCwV84NhsndqOY25h1XaBbsWhRb1ZtuPQqm0WLdkLv56x400pRYhLFMUfsvXGnmfHfgPwrlEc1zqUZjZMgeiheGaoZ5k01uWilNLFYBOz42J6yj-dibM12Bnuwnjv4-EzPw6v8V9-PXfLsFW2q8ItUVXeg_vo90Xe39YadlRCCAklZJIWyqnarSYT7AUuAvfycbBtKvgt9xNV-lNYlTtzcXQwB49htmpaf67kcrzs7Nj9_EO18X_b_gQeJaZJqt40nsKab5_Bxm_6g5tQH_r5dQip5UiVIe1ckOrq23xx0Z1fvydVS_odB1_fSSVIdUl1-JV8QQJJVoGPyEVLDAlnU8n-zf2553B6sH8ymWYp7ELmOC27jCMJ8Q79thNMucJxJoXhjUHq4HNHpcOno640iLKVwkeReV7bWjRBTs6wF7Dezlu_BYRJLxW1JaaGagpbNMIYhiSisMwaPoK9FRraJU3yEBrjSse1CVW6h1AHCHWCcAQ7Q6HvvSTHv7N_CDAPWYOedvyA8Og0PLVhvrDKUYsmjRSWGRGYDsd-NZaW3I5gM0A6VJLQHMH2ymh0Gvs_dBCBo9hHVbz8e6m38GB6MjvSRx-PP7-Ch6Gx_abONqx3i6V_jTSns2-idf8CYCH1Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+A-Star+Algorithm%3A+An+Improved+A-Star+Algorithm+for+AGV+Path+Planning+in+a+Port+Environment&rft.jtitle=IEEE+access&rft.au=Tang%2C+Gang&rft.au=Tang%2C+Congqiang&rft.au=Claramunt%2C+Christophe&rft.au=Hu%2C+Xiong&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=59196&rft.epage=59210&rft_id=info:doi/10.1109%2FACCESS.2021.3070054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3070054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon