Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering
Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framew...
Saved in:
Published in | IEEE access Vol. 9; pp. 41998 - 42012 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3064926 |
Cover
Loading…
Abstract | Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framework for simultaneously incorporating information from longer acquisition PET frames and high-resolution magnetic resonance (MR) images into the short frames. The network inputs are noisy PET images and corresponding MR images while the outputs are linear coefficients of spatially variant linear representation model. The composite of all dynamic frames is used as training label in each sample, and it is down-sampled to 1/10th of counts as the training input. L1-norm combined with two gradient-based regularizations constitute the loss function during training. Ten realistic dynamic PET/MR phantoms based on BrainWeb are used for pre-training and eleven clinical subjects from Alzheimer's Disease Neuroimaging Initiative further for fine-tuning. Simulation results show that the proposed method can reduce the statistical noise while preserving image details and achieve quantitative enhancements compared with Gaussian, guided filter, and convolutional neural network trained with the mean squared error. The clinical results perform better than others in terms of the mean activity and standard deviation. All of the results indicate that the proposed deep learning-based joint filtering framework is of great potential for dynamic PET image denoising. |
---|---|
AbstractList | Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framework for simultaneously incorporating information from longer acquisition PET frames and high-resolution magnetic resonance (MR) images into the short frames. The network inputs are noisy PET images and corresponding MR images while the outputs are linear coefficients of spatially variant linear representation model. The composite of all dynamic frames is used as training label in each sample, and it is down-sampled to 1/10th of counts as the training input. L1-norm combined with two gradient-based regularizations constitute the loss function during training. Ten realistic dynamic PET/MR phantoms based on BrainWeb are used for pre-training and eleven clinical subjects from Alzheimer’s Disease Neuroimaging Initiative further for fine-tuning. Simulation results show that the proposed method can reduce the statistical noise while preserving image details and achieve quantitative enhancements compared with Gaussian, guided filter, and convolutional neural network trained with the mean squared error. The clinical results perform better than others in terms of the mean activity and standard deviation. All of the results indicate that the proposed deep learning-based joint filtering framework is of great potential for dynamic PET image denoising. |
Author | Zhang, Hongyan Lu, Lijun Cao, Shuangliang Zhu, Huobiao Lv, Wenbing He, Yuru Sun, Hao Wang, Fanghu |
Author_xml | – sequence: 1 givenname: Yuru orcidid: 0000-0001-5291-6959 surname: He fullname: He, Yuru organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 2 givenname: Shuangliang orcidid: 0000-0002-8193-0714 surname: Cao fullname: Cao, Shuangliang organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 3 givenname: Hongyan orcidid: 0000-0002-6953-1040 surname: Zhang fullname: Zhang, Hongyan organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 4 givenname: Hao orcidid: 0000-0003-4873-6992 surname: Sun fullname: Sun, Hao organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 5 givenname: Fanghu orcidid: 0000-0002-9185-3054 surname: Wang fullname: Wang, Fanghu organization: Department of Nuclear Medicine, WeiLun PET Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China – sequence: 6 givenname: Huobiao orcidid: 0000-0002-3164-9801 surname: Zhu fullname: Zhu, Huobiao organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 7 givenname: Wenbing orcidid: 0000-0002-5358-5319 surname: Lv fullname: Lv, Wenbing organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 8 givenname: Lijun orcidid: 0000-0003-3315-3276 surname: Lu fullname: Lu, Lijun email: ljlubme@gmail.com organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China |
BookMark | eNp9kU9PGzEQxS1EJSjlE3BZqedNx3939whJoKkitRJUPVre9Th1lNjBaw58e0wXEOLQuczM0_yeRnqfyXGIAQm5oDCjFLpvl_P58vZ2xoDRGQclOqaOyCmjqqu55Or43XxCzsdxC6XaIsnmlCwWj8Hs_VD9Wt5Vq73ZYLXAEP3ow6b64_PfsuKhWqNJoUj1lRnRVj-iD7m69ruMqahfyCdndiOev_Qz8vt6eTf_Xq9_3qzml-t6ENDmWsiOOtuDtKaM1gGzlDMHTW-kFFIgbRvrBErDwHGrpEUE1TohYQAnOD8jq8nXRrPVh-T3Jj3qaLz-J8S00SZlP-xQWyZAqEGi4L1QAjslewuKKjVw1beseH2dvA4p3j_gmPU2PqRQ3tdMgmygFbQtV910NaQ4jgmdHnw22ceQk_E7TUE_Z6CnDPRzBvolg8LyD-zrx_-nLibKI-Ib0fGG847yJ4ESkXc |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TCYB_2023_3241165 crossref_primary_10_1109_TMI_2023_3342809 crossref_primary_10_1109_TBME_2022_3176097 crossref_primary_10_1002_mp_17764 crossref_primary_10_1016_j_compmedimag_2021_102010 crossref_primary_10_1002_mp_17105 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1016_j_cpet_2021_06_005 crossref_primary_10_3389_fnume_2024_1502419 crossref_primary_10_1007_s00259_022_05746_4 crossref_primary_10_3934_mbe_2022537 crossref_primary_10_1109_TMI_2023_3266455 |
Cites_doi | 10.1002/jmri.21049 10.1007/978-3-319-48881-3_56 10.1016/j.cpet.2007.08.001 10.1007/s00259-019-04468-4 10.1186/2191-219X-1-23 10.1109/TRPMS.2018.2877644 10.1109/ICIP.2017.8297089 10.1109/NSSMIC.2014.7430922 10.1109/ICCV.1998.710815 10.1109/42.816072 10.1016/j.neuroimage.2018.03.045 10.1109/ACCESS.2019.2929230 10.1016/j.media.2018.03.007 10.1007/s10278-018-0150-3 10.1088/0031-9155/60/3/961 10.1148/radiol.2018180940 10.1109/TRPMS.2018.2869936 10.2967/jnumed.109.073999 10.1109/ISBI.2004.1398617 10.1371/journal.pone.0081390 10.1007/978-3-319-66179-7_48 10.1016/j.cpet.2007.08.003 10.1088/0031-9155/60/6/2145 10.1109/TPAMI.2012.213 10.1088/0031-9155/57/15/5035 10.1016/j.media.2020.101770 10.1109/CVPR.2019.00180 10.1109/TMI.2014.2343916 10.1109/CVPR.2015.7298965 10.1016/j.neucom.2017.06.048 10.1109/TMI.2011.2173766 10.1109/TMI.2006.883453 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3064926 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 42012 |
ExternalDocumentID | oai_doaj_org_article_d24046c5e43b464e965bd06166c36b82 10_1109_ACCESS_2021_3064926 9373391 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation Funded Project grantid: 2020M682792 funderid: 10.13039/501100002858 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2019A1515011104; 2020A1515110683 – fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme – fundername: National Natural Science Foundation of China grantid: 81871437 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-4591fdb05da459df02d132f07ba55454e187df4e5a20f3d65dee068f450c0f433 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:21:06 EDT 2025 Sun Jun 29 15:29:54 EDT 2025 Tue Jul 01 04:03:20 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Wed Aug 27 02:47:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-4591fdb05da459df02d132f07ba55454e187df4e5a20f3d65dee068f450c0f433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4873-6992 0000-0003-3315-3276 0000-0001-5291-6959 0000-0002-8193-0714 0000-0002-5358-5319 0000-0002-9185-3054 0000-0002-6953-1040 0000-0002-3164-9801 |
OpenAccessLink | https://doaj.org/article/d24046c5e43b464e965bd06166c36b82 |
PQID | 2505708418 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2505708418 crossref_primary_10_1109_ACCESS_2021_3064926 ieee_primary_9373391 crossref_citationtrail_10_1109_ACCESS_2021_3064926 doaj_primary_oai_doaj_org_article_d24046c5e43b464e965bd06166c36b82 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 fessler (ref27) 2010 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 krizhevsky (ref18) 2012 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1002/jmri.21049 – ident: ref16 doi: 10.1007/978-3-319-48881-3_56 – ident: ref2 doi: 10.1016/j.cpet.2007.08.001 – ident: ref19 doi: 10.1007/s00259-019-04468-4 – ident: ref10 doi: 10.1186/2191-219X-1-23 – ident: ref23 doi: 10.1109/TRPMS.2018.2877644 – ident: ref31 doi: 10.1109/ICIP.2017.8297089 – ident: ref12 doi: 10.1109/NSSMIC.2014.7430922 – ident: ref9 doi: 10.1109/ICCV.1998.710815 – ident: ref24 doi: 10.1109/42.816072 – ident: ref32 doi: 10.1016/j.neuroimage.2018.03.045 – year: 2010 ident: ref27 publication-title: Image reconstruction toolbox – ident: ref21 doi: 10.1109/ACCESS.2019.2929230 – ident: ref8 doi: 10.1016/j.media.2018.03.007 – ident: ref22 doi: 10.1007/s10278-018-0150-3 – ident: ref14 doi: 10.1088/0031-9155/60/3/961 – ident: ref33 doi: 10.1148/radiol.2018180940 – ident: ref13 doi: 10.1109/TRPMS.2018.2869936 – ident: ref6 doi: 10.2967/jnumed.109.073999 – ident: ref29 doi: 10.1109/ISBI.2004.1398617 – ident: ref7 doi: 10.1371/journal.pone.0081390 – ident: ref30 doi: 10.1007/978-3-319-66179-7_48 – ident: ref1 doi: 10.1016/j.cpet.2007.08.003 – start-page: 1097 year: 2012 ident: ref18 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref4 doi: 10.1088/0031-9155/60/6/2145 – ident: ref11 doi: 10.1109/TPAMI.2012.213 – ident: ref3 doi: 10.1088/0031-9155/57/15/5035 – ident: ref20 doi: 10.1016/j.media.2020.101770 – ident: ref15 doi: 10.1109/CVPR.2019.00180 – ident: ref26 doi: 10.1109/TMI.2014.2343916 – ident: ref17 doi: 10.1109/CVPR.2015.7298965 – ident: ref34 doi: 10.1016/j.neucom.2017.06.048 – ident: ref5 doi: 10.1109/TMI.2011.2173766 – ident: ref25 doi: 10.1109/TMI.2006.883453 |
SSID | ssj0000816957 |
Score | 2.2811182 |
Snippet | Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41998 |
SubjectTerms | Alzheimer's disease Artificial neural networks Convolution convolution neural network Deep learning denoising Filtration Frames Image acquisition Image edge detection Image quality Image resolution joint filtering Magnetic resonance imaging Maximum likelihood detection Mean Medical imaging Noise reduction Nonlinear filters Positron emission Positron emission tomography spatially variant linear representation model Tomography Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxwhFCfqqR7shzVuaxsOPTorMzwYOOquG2vSpgdNvZHhq27UWdPOXvrX9zHDTkzbNL0xBCbAA97vPeD3CPngmkZJVUJRgxdFOmkqdMB1BQ6VgStjFZue7fOzvLiGyxtxs0WOx7cwIYT-8lmYpmR_lu9Xbp1cZSeoSjlPT9W30XAb3mqN_pQUQEKLOhMLlUyfnM5m2Ac0AatymnC2TgQKT5RPz9Gfg6r8sRP36mXxnHzaNGy4VXI3XXd26n7-xtn4vy1_QfYyzqSnw8R4SbZC-4rsPmEf3Cfz-RCNnn45v6IfH3BjofPQrpbJe0C_Lrtb_AyPNDOwfivOUOF5erlath1dLNMpO-a-JteL86vZRZGDKhQOmOoKELqM3jLhG0z6yCqPBmlktW0QWQgIpap9hCCaikXupfAhMKkiCOZYBM4PyE67asMhoV5bxaPl4BBDWquVq6Ksse8lNI0FMSHVZrSNy4zjKfDFvektD6bNICKTRGSyiCbkeKz0OBBu_Lv4WRLjWDSxZfcZOPwmLz7jEbaAdCIAtyAhaCmsRyAjpePSqmpC9pPIxp9kaU3I0WZSmLyyf5gEGWumoFRv_l7rLXmWGji4aY7ITvd9Hd4hcOns-37G_gIfMueV priority: 102 providerName: IEEE |
Title | Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering |
URI | https://ieeexplore.ieee.org/document/9373391 https://www.proquest.com/docview/2505708418 https://doaj.org/article/d24046c5e43b464e965bd06166c36b82 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSACrTqtoB86LEBOx479hF2WVEOVQ8guFnxF12pzaI2_f-MHbNaCam99JZEzofH43lv4uQNIZ9832ulOTQdBNnklabGRJxX4BEMPE9t6ova51d1dQvX9_J-q9RX_iZskgeeDHcWEHJAeRlBOFAQjZIuIAgp5YVyukRfxLytZKrEYM2VkV2VGeLMnJ3P59gjTAhbfppZt8lyCltQVBT7a4mVF3G5gM3yDdmrLJGeT0-3T17F4YC83tIOPCSLxVRLnn67vKFffmJYoIs4rFc596d3q_E77sZHWvVTH5oLhKtAr9erYaTLVV4jx6Nvye3y8mZ-1dSSCI0HpscGpOEpOCZDj5shsTZgOplY53rkBRIi111IEGXfsiSCkiFGpnQCyTxLIMQ7sjOsh_ie0GCcFskJ8MgAnTPat0l12HsOfe9Azkj7bB3rq154Llvxw5a8gRk7mdRmk9pq0hn5vDnpcZLL-Hvzi2z2TdOsdV0OoAfY6gH2Xx4wI4d50DYXQcIlhOEzcvQ8iLbOy982E76OaeD6w_-49Ueym7szvZI5Ijvjrz_xGEnK6E6KP56U_wmfALQc3gY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbxQhFCdNe1APVq3GtVU5eOxsYfgYOLa73Wxr23jYxt7I8FU36myjsxf_-j5m2EmjxnhjCEyAB7zfe8DvIfTB1bWSivKi4l4U6aSp0AHWFXegDByNZaw7ts8rOb_m5zfiZgsdDm9hQgjd5bMwTsnuLN-v3Dq5yo5AlTKWnqrvgN4XtH-tNXhUUggJLapMLUSJPjqeTKAXYASWdJyQtk4UCg_UT8fSn8Oq_LEXdwpmtosuN03r75V8Ha9bO3a_fmNt_N-2P0NPM9LEx_3UeI62QvMCPXnAP7iHptM-Hj3-dLrAZ99ha8HT0KyWyX-APy_bL_AZ7nDmYL0tTkDleXy-WjYtni3TOTvkvkTXs9PFZF7ksAqF40S1BReaRm-J8DUkfSSlB5M0ksrWgC0ED1RVPvIg6pJE5qXwIRCpIhfEkcgZe4W2m1UTXiPstVUsWsYdoEhrtXJllBX0nfK6tlyMULkZbeMy53gKffHNdLYH0aYXkUkiMllEI3Q4VLrrKTf-XfwkiXEomviyuwwYfpOXn_EAXLh0InBmueRBS2E9QBkpHZNWlSO0l0Q2_CRLa4QONpPC5LX90yTQWBHFqXrz91rv0aP54vLCXJxdfdxHj1Nje6fNAdpuf6zDW4AxrX3Xzd57W_jq3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+PET+Image+Denoising+With+Deep+Learning-Based+Joint+Filtering&rft.jtitle=IEEE+access&rft.au=He%2C+Yuru&rft.au=Cao%2C+Shuangliang&rft.au=Zhang%2C+Hongyan&rft.au=Sun%2C+Hao&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=41998&rft.epage=42012&rft_id=info:doi/10.1109%2FACCESS.2021.3064926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3064926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |