Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering

Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framew...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 41998 - 42012
Main Authors He, Yuru, Cao, Shuangliang, Zhang, Hongyan, Sun, Hao, Wang, Fanghu, Zhu, Huobiao, Lv, Wenbing, Lu, Lijun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3064926

Cover

Loading…
Abstract Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framework for simultaneously incorporating information from longer acquisition PET frames and high-resolution magnetic resonance (MR) images into the short frames. The network inputs are noisy PET images and corresponding MR images while the outputs are linear coefficients of spatially variant linear representation model. The composite of all dynamic frames is used as training label in each sample, and it is down-sampled to 1/10th of counts as the training input. L1-norm combined with two gradient-based regularizations constitute the loss function during training. Ten realistic dynamic PET/MR phantoms based on BrainWeb are used for pre-training and eleven clinical subjects from Alzheimer's Disease Neuroimaging Initiative further for fine-tuning. Simulation results show that the proposed method can reduce the statistical noise while preserving image details and achieve quantitative enhancements compared with Gaussian, guided filter, and convolutional neural network trained with the mean squared error. The clinical results perform better than others in terms of the mean activity and standard deviation. All of the results indicate that the proposed deep learning-based joint filtering framework is of great potential for dynamic PET image denoising.
AbstractList Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to improve the image quality of the short frames by utilizing information from other modality. We develop a deep learning-based joint filtering framework for simultaneously incorporating information from longer acquisition PET frames and high-resolution magnetic resonance (MR) images into the short frames. The network inputs are noisy PET images and corresponding MR images while the outputs are linear coefficients of spatially variant linear representation model. The composite of all dynamic frames is used as training label in each sample, and it is down-sampled to 1/10th of counts as the training input. L1-norm combined with two gradient-based regularizations constitute the loss function during training. Ten realistic dynamic PET/MR phantoms based on BrainWeb are used for pre-training and eleven clinical subjects from Alzheimer’s Disease Neuroimaging Initiative further for fine-tuning. Simulation results show that the proposed method can reduce the statistical noise while preserving image details and achieve quantitative enhancements compared with Gaussian, guided filter, and convolutional neural network trained with the mean squared error. The clinical results perform better than others in terms of the mean activity and standard deviation. All of the results indicate that the proposed deep learning-based joint filtering framework is of great potential for dynamic PET image denoising.
Author Zhang, Hongyan
Lu, Lijun
Cao, Shuangliang
Zhu, Huobiao
Lv, Wenbing
He, Yuru
Sun, Hao
Wang, Fanghu
Author_xml – sequence: 1
  givenname: Yuru
  orcidid: 0000-0001-5291-6959
  surname: He
  fullname: He, Yuru
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Shuangliang
  orcidid: 0000-0002-8193-0714
  surname: Cao
  fullname: Cao, Shuangliang
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Hongyan
  orcidid: 0000-0002-6953-1040
  surname: Zhang
  fullname: Zhang, Hongyan
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Hao
  orcidid: 0000-0003-4873-6992
  surname: Sun
  fullname: Sun, Hao
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 5
  givenname: Fanghu
  orcidid: 0000-0002-9185-3054
  surname: Wang
  fullname: Wang, Fanghu
  organization: Department of Nuclear Medicine, WeiLun PET Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
– sequence: 6
  givenname: Huobiao
  orcidid: 0000-0002-3164-9801
  surname: Zhu
  fullname: Zhu, Huobiao
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 7
  givenname: Wenbing
  orcidid: 0000-0002-5358-5319
  surname: Lv
  fullname: Lv, Wenbing
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 8
  givenname: Lijun
  orcidid: 0000-0003-3315-3276
  surname: Lu
  fullname: Lu, Lijun
  email: ljlubme@gmail.com
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
BookMark eNp9kU9PGzEQxS1EJSjlE3BZqedNx3939whJoKkitRJUPVre9Th1lNjBaw58e0wXEOLQuczM0_yeRnqfyXGIAQm5oDCjFLpvl_P58vZ2xoDRGQclOqaOyCmjqqu55Or43XxCzsdxC6XaIsnmlCwWj8Hs_VD9Wt5Vq73ZYLXAEP3ow6b64_PfsuKhWqNJoUj1lRnRVj-iD7m69ruMqahfyCdndiOev_Qz8vt6eTf_Xq9_3qzml-t6ENDmWsiOOtuDtKaM1gGzlDMHTW-kFFIgbRvrBErDwHGrpEUE1TohYQAnOD8jq8nXRrPVh-T3Jj3qaLz-J8S00SZlP-xQWyZAqEGi4L1QAjslewuKKjVw1beseH2dvA4p3j_gmPU2PqRQ3tdMgmygFbQtV910NaQ4jgmdHnw22ceQk_E7TUE_Z6CnDPRzBvolg8LyD-zrx_-nLibKI-Ib0fGG847yJ4ESkXc
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TCYB_2023_3241165
crossref_primary_10_1109_TMI_2023_3342809
crossref_primary_10_1109_TBME_2022_3176097
crossref_primary_10_1002_mp_17764
crossref_primary_10_1016_j_compmedimag_2021_102010
crossref_primary_10_1002_mp_17105
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1016_j_cpet_2021_06_005
crossref_primary_10_3389_fnume_2024_1502419
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_3934_mbe_2022537
crossref_primary_10_1109_TMI_2023_3266455
Cites_doi 10.1002/jmri.21049
10.1007/978-3-319-48881-3_56
10.1016/j.cpet.2007.08.001
10.1007/s00259-019-04468-4
10.1186/2191-219X-1-23
10.1109/TRPMS.2018.2877644
10.1109/ICIP.2017.8297089
10.1109/NSSMIC.2014.7430922
10.1109/ICCV.1998.710815
10.1109/42.816072
10.1016/j.neuroimage.2018.03.045
10.1109/ACCESS.2019.2929230
10.1016/j.media.2018.03.007
10.1007/s10278-018-0150-3
10.1088/0031-9155/60/3/961
10.1148/radiol.2018180940
10.1109/TRPMS.2018.2869936
10.2967/jnumed.109.073999
10.1109/ISBI.2004.1398617
10.1371/journal.pone.0081390
10.1007/978-3-319-66179-7_48
10.1016/j.cpet.2007.08.003
10.1088/0031-9155/60/6/2145
10.1109/TPAMI.2012.213
10.1088/0031-9155/57/15/5035
10.1016/j.media.2020.101770
10.1109/CVPR.2019.00180
10.1109/TMI.2014.2343916
10.1109/CVPR.2015.7298965
10.1016/j.neucom.2017.06.048
10.1109/TMI.2011.2173766
10.1109/TMI.2006.883453
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3064926
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 42012
ExternalDocumentID oai_doaj_org_article_d24046c5e43b464e965bd06166c36b82
10_1109_ACCESS_2021_3064926
9373391
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation Funded Project
  grantid: 2020M682792
  funderid: 10.13039/501100002858
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019A1515011104; 2020A1515110683
– fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
– fundername: National Natural Science Foundation of China
  grantid: 81871437
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4591fdb05da459df02d132f07ba55454e187df4e5a20f3d65dee068f450c0f433
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:21:06 EDT 2025
Sun Jun 29 15:29:54 EDT 2025
Tue Jul 01 04:03:20 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Wed Aug 27 02:47:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4591fdb05da459df02d132f07ba55454e187df4e5a20f3d65dee068f450c0f433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4873-6992
0000-0003-3315-3276
0000-0001-5291-6959
0000-0002-8193-0714
0000-0002-5358-5319
0000-0002-9185-3054
0000-0002-6953-1040
0000-0002-3164-9801
OpenAccessLink https://doaj.org/article/d24046c5e43b464e965bd06166c36b82
PQID 2505708418
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_2505708418
crossref_primary_10_1109_ACCESS_2021_3064926
ieee_primary_9373391
crossref_citationtrail_10_1109_ACCESS_2021_3064926
doaj_primary_oai_doaj_org_article_d24046c5e43b464e965bd06166c36b82
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
fessler (ref27) 2010
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
krizhevsky (ref18) 2012
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1002/jmri.21049
– ident: ref16
  doi: 10.1007/978-3-319-48881-3_56
– ident: ref2
  doi: 10.1016/j.cpet.2007.08.001
– ident: ref19
  doi: 10.1007/s00259-019-04468-4
– ident: ref10
  doi: 10.1186/2191-219X-1-23
– ident: ref23
  doi: 10.1109/TRPMS.2018.2877644
– ident: ref31
  doi: 10.1109/ICIP.2017.8297089
– ident: ref12
  doi: 10.1109/NSSMIC.2014.7430922
– ident: ref9
  doi: 10.1109/ICCV.1998.710815
– ident: ref24
  doi: 10.1109/42.816072
– ident: ref32
  doi: 10.1016/j.neuroimage.2018.03.045
– year: 2010
  ident: ref27
  publication-title: Image reconstruction toolbox
– ident: ref21
  doi: 10.1109/ACCESS.2019.2929230
– ident: ref8
  doi: 10.1016/j.media.2018.03.007
– ident: ref22
  doi: 10.1007/s10278-018-0150-3
– ident: ref14
  doi: 10.1088/0031-9155/60/3/961
– ident: ref33
  doi: 10.1148/radiol.2018180940
– ident: ref13
  doi: 10.1109/TRPMS.2018.2869936
– ident: ref6
  doi: 10.2967/jnumed.109.073999
– ident: ref29
  doi: 10.1109/ISBI.2004.1398617
– ident: ref7
  doi: 10.1371/journal.pone.0081390
– ident: ref30
  doi: 10.1007/978-3-319-66179-7_48
– ident: ref1
  doi: 10.1016/j.cpet.2007.08.003
– start-page: 1097
  year: 2012
  ident: ref18
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref4
  doi: 10.1088/0031-9155/60/6/2145
– ident: ref11
  doi: 10.1109/TPAMI.2012.213
– ident: ref3
  doi: 10.1088/0031-9155/57/15/5035
– ident: ref20
  doi: 10.1016/j.media.2020.101770
– ident: ref15
  doi: 10.1109/CVPR.2019.00180
– ident: ref26
  doi: 10.1109/TMI.2014.2343916
– ident: ref17
  doi: 10.1109/CVPR.2015.7298965
– ident: ref34
  doi: 10.1016/j.neucom.2017.06.048
– ident: ref5
  doi: 10.1109/TMI.2011.2173766
– ident: ref25
  doi: 10.1109/TMI.2006.883453
SSID ssj0000816957
Score 2.2811182
Snippet Dynamic positron emission tomography (PET) imaging usually suffers from high statistical noise due to low counts of the short frames. This study aims to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41998
SubjectTerms Alzheimer's disease
Artificial neural networks
Convolution
convolution neural network
Deep learning
denoising
Filtration
Frames
Image acquisition
Image edge detection
Image quality
Image resolution
joint filtering
Magnetic resonance imaging
Maximum likelihood detection
Mean
Medical imaging
Noise reduction
Nonlinear filters
Positron emission
Positron emission tomography
spatially variant linear representation model
Tomography
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxwhFCfqqR7shzVuaxsOPTorMzwYOOquG2vSpgdNvZHhq27UWdPOXvrX9zHDTkzbNL0xBCbAA97vPeD3CPngmkZJVUJRgxdFOmkqdMB1BQ6VgStjFZue7fOzvLiGyxtxs0WOx7cwIYT-8lmYpmR_lu9Xbp1cZSeoSjlPT9W30XAb3mqN_pQUQEKLOhMLlUyfnM5m2Ac0AatymnC2TgQKT5RPz9Gfg6r8sRP36mXxnHzaNGy4VXI3XXd26n7-xtn4vy1_QfYyzqSnw8R4SbZC-4rsPmEf3Cfz-RCNnn45v6IfH3BjofPQrpbJe0C_Lrtb_AyPNDOwfivOUOF5erlath1dLNMpO-a-JteL86vZRZGDKhQOmOoKELqM3jLhG0z6yCqPBmlktW0QWQgIpap9hCCaikXupfAhMKkiCOZYBM4PyE67asMhoV5bxaPl4BBDWquVq6Ksse8lNI0FMSHVZrSNy4zjKfDFvektD6bNICKTRGSyiCbkeKz0OBBu_Lv4WRLjWDSxZfcZOPwmLz7jEbaAdCIAtyAhaCmsRyAjpePSqmpC9pPIxp9kaU3I0WZSmLyyf5gEGWumoFRv_l7rLXmWGji4aY7ITvd9Hd4hcOns-37G_gIfMueV
  priority: 102
  providerName: IEEE
Title Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering
URI https://ieeexplore.ieee.org/document/9373391
https://www.proquest.com/docview/2505708418
https://doaj.org/article/d24046c5e43b464e965bd06166c36b82
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSACrTqtoB86LEBOx479hF2WVEOVQ8guFnxF12pzaI2_f-MHbNaCam99JZEzofH43lv4uQNIZ9832ulOTQdBNnklabGRJxX4BEMPE9t6ova51d1dQvX9_J-q9RX_iZskgeeDHcWEHJAeRlBOFAQjZIuIAgp5YVyukRfxLytZKrEYM2VkV2VGeLMnJ3P59gjTAhbfppZt8lyCltQVBT7a4mVF3G5gM3yDdmrLJGeT0-3T17F4YC83tIOPCSLxVRLnn67vKFffmJYoIs4rFc596d3q_E77sZHWvVTH5oLhKtAr9erYaTLVV4jx6Nvye3y8mZ-1dSSCI0HpscGpOEpOCZDj5shsTZgOplY53rkBRIi111IEGXfsiSCkiFGpnQCyTxLIMQ7sjOsh_ie0GCcFskJ8MgAnTPat0l12HsOfe9Azkj7bB3rq154Llvxw5a8gRk7mdRmk9pq0hn5vDnpcZLL-Hvzi2z2TdOsdV0OoAfY6gH2Xx4wI4d50DYXQcIlhOEzcvQ8iLbOy982E76OaeD6w_-49Ueym7szvZI5Ijvjrz_xGEnK6E6KP56U_wmfALQc3gY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbxQhFCdNe1APVq3GtVU5eOxsYfgYOLa73Wxr23jYxt7I8FU36myjsxf_-j5m2EmjxnhjCEyAB7zfe8DvIfTB1bWSivKi4l4U6aSp0AHWFXegDByNZaw7ts8rOb_m5zfiZgsdDm9hQgjd5bMwTsnuLN-v3Dq5yo5AlTKWnqrvgN4XtH-tNXhUUggJLapMLUSJPjqeTKAXYASWdJyQtk4UCg_UT8fSn8Oq_LEXdwpmtosuN03r75V8Ha9bO3a_fmNt_N-2P0NPM9LEx_3UeI62QvMCPXnAP7iHptM-Hj3-dLrAZ99ha8HT0KyWyX-APy_bL_AZ7nDmYL0tTkDleXy-WjYtni3TOTvkvkTXs9PFZF7ksAqF40S1BReaRm-J8DUkfSSlB5M0ksrWgC0ED1RVPvIg6pJE5qXwIRCpIhfEkcgZe4W2m1UTXiPstVUsWsYdoEhrtXJllBX0nfK6tlyMULkZbeMy53gKffHNdLYH0aYXkUkiMllEI3Q4VLrrKTf-XfwkiXEomviyuwwYfpOXn_EAXLh0InBmueRBS2E9QBkpHZNWlSO0l0Q2_CRLa4QONpPC5LX90yTQWBHFqXrz91rv0aP54vLCXJxdfdxHj1Nje6fNAdpuf6zDW4AxrX3Xzd57W_jq3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+PET+Image+Denoising+With+Deep+Learning-Based+Joint+Filtering&rft.jtitle=IEEE+access&rft.au=He%2C+Yuru&rft.au=Cao%2C+Shuangliang&rft.au=Zhang%2C+Hongyan&rft.au=Sun%2C+Hao&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=41998&rft.epage=42012&rft_id=info:doi/10.1109%2FACCESS.2021.3064926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3064926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon