DMS: Dynamic Model Scaling for Quality-Aware Deep Learning Inference in Mobile and Embedded Devices

Recently, deep learning has brought revolutions to many mobile and embedded systems that interact with the physical world using continuous video streams. Although there have been significant efforts to reduce the computational overheads of deep learning inference in such systems, previous approaches...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 168048 - 168059
Main Authors Kang, Woochul, Kim, Daeyeon, Park, Junyoung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2954546

Cover

Loading…
Abstract Recently, deep learning has brought revolutions to many mobile and embedded systems that interact with the physical world using continuous video streams. Although there have been significant efforts to reduce the computational overheads of deep learning inference in such systems, previous approaches have focused on delivering `best-effort' performance, resulting in unpredictable performance under variable environments. In this paper, we propose a runtime control method, called DMS (Dynamic Model Scaling), that enables dynamic resource-accuracy trade-offs to support various QoS requirements of deep learning applications. In DMS, the resource demands of deep learning inference can be controlled by adaptive pruning of computation-intensive convolution filters. DMS avoids irregularity of pruned models by reorganizing filters according to their importance so that varying number of filters can be applied efficiently. Since DMS's pruning method incurs no runtime overhead and preserves the full capacity of original deep learning models, DMS can tailor the models at runtime for concurrent deep learning applications with their respective resource-accuracy trade-offs. We demonstrate the viability of DMS by implementing a prototype. The evaluation results demonstrate that, if properly coordinated with system level resource managers, DMS can support highly robust and efficient inference performance against unpredictable workloads.
AbstractList Recently, deep learning has brought revolutions to many mobile and embedded systems that interact with the physical world using continuous video streams. Although there have been significant efforts to reduce the computational overheads of deep learning inference in such systems, previous approaches have focused on delivering `best-effort' performance, resulting in unpredictable performance under variable environments. In this paper, we propose a runtime control method, called DMS (Dynamic Model Scaling), that enables dynamic resource-accuracy trade-offs to support various QoS requirements of deep learning applications. In DMS, the resource demands of deep learning inference can be controlled by adaptive pruning of computation-intensive convolution filters. DMS avoids irregularity of pruned models by reorganizing filters according to their importance so that varying number of filters can be applied efficiently. Since DMS's pruning method incurs no runtime overhead and preserves the full capacity of original deep learning models, DMS can tailor the models at runtime for concurrent deep learning applications with their respective resource-accuracy trade-offs. We demonstrate the viability of DMS by implementing a prototype. The evaluation results demonstrate that, if properly coordinated with system level resource managers, DMS can support highly robust and efficient inference performance against unpredictable workloads.
Author Kim, Daeyeon
Park, Junyoung
Kang, Woochul
Author_xml – sequence: 1
  givenname: Woochul
  orcidid: 0000-0002-4757-8999
  surname: Kang
  fullname: Kang, Woochul
  email: wchkang@inu.ac.kr
  organization: Department of Embedded Systems Engineering, Incheon National University, Incheon, South Korea
– sequence: 2
  givenname: Daeyeon
  surname: Kim
  fullname: Kim, Daeyeon
  organization: Department of Embedded Systems Engineering, Incheon National University, Incheon, South Korea
– sequence: 3
  givenname: Junyoung
  surname: Park
  fullname: Park, Junyoung
  organization: Department of Embedded Systems Engineering, Incheon National University, Incheon, South Korea
BookMark eNp9kUFrGzEQhUVJoWmSX5CLoOd1Ja20WvVmbLcxOJTg5ixmpdkgs5Zc7brB_77rbFJKD53LDDPvewy8j-QipoiE3HI245yZz_PFYrXdzgTjZiaMkkpW78il4JUpSlVWF3_NH8hN3-_YWPW4UvqSuOX99gtdniLsg6P3yWNHtw66EJ9omzJ9OI7zcCrmz5CRLhEPdIOQ4_m-ji1mjA5piCPahA4pRE9X-wa9Rz_KfwWH_TV530LX481rvyKPX1c_FnfF5vu39WK-KZxk9VBIpUvfQCkqV5raOSgNADa65sobYaQGRCcqU3vWemiUZ5WS2ikDQleyNeUVWU--PsHOHnLYQz7ZBMG-LFJ-spCH4Dq0SjvOKlSAICU3HhRvfOMl58JrjfXo9WnyOuT084j9YHfpmOP4vhVSKWWM4XxUmUnlcur7jK11YYAhpDhkCJ3lzJ4jslNE9hyRfY1oZMt_2LeP_0_dTlRAxD9EbZiuhSh_A1d9nYk
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3384233
crossref_primary_10_1016_j_neucom_2025_129402
crossref_primary_10_1109_TCSII_2020_3017538
crossref_primary_10_3390_s22207714
crossref_primary_10_1145_3476990
crossref_primary_10_1007_s11265_022_01784_1
crossref_primary_10_1038_s41598_022_25089_2
Cites_doi 10.1145/3005348
10.1109/MPRV.2009.82
10.1109/CVPR.2016.90
10.1007/978-3-030-01261-8_25
10.23919/DATE.2018.8342119
10.1145/3079856.3080246
10.1109/ACCESS.2018.2887099
10.1109/CVPR.2016.91
10.1145/2893356
10.1109/CVPR.2017.194
10.1109/TPAMI.2018.2878258
10.1162/neco.1989.1.4.541
10.1109/CPSNA.2015.23
10.1007/978-3-030-01234-2_48
10.1145/2647868.2654889
10.1145/3241539.3241559
10.21437/Interspeech.2013-552
10.1145/3007787.3001163
10.1109/CVPR.2014.81
10.1109/ICPR.2016.7900006
10.1109/MC.2007.443
10.1145/2815400.2815403
10.1109/IPSN.2016.7460664
10.1109/ICCV.2017.298
10.1007/s11241-018-9314-y
10.1007/s11263-015-0816-y
10.1007/978-3-319-06486-4_7
10.1002/047166880X
10.1145/2749469.2750389
10.1109/MS.2017.79
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2954546
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 168059
ExternalDocumentID oai_doaj_org_article_57c106e5aea4419da51bdbd4112d77e8
10_1109_ACCESS_2019_2954546
8907822
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: NRF-2019R1F1A1060959
  funderid: 10.13039/501100003725
– fundername: Ministry of Education
  grantid: NRF-2016R1D1A1B03934266
  funderid: 10.13039/100010002
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4573dba326c398cca39aaeb7815d92947aeec2698d0fdab5d06547c59a2764f93
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:24:08 EDT 2025
Mon Jun 30 02:41:44 EDT 2025
Tue Jul 01 01:21:52 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Wed Aug 27 02:44:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4573dba326c398cca39aaeb7815d92947aeec2698d0fdab5d06547c59a2764f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4757-8999
OpenAccessLink https://doaj.org/article/57c106e5aea4419da51bdbd4112d77e8
PQID 2455599911
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_57c106e5aea4419da51bdbd4112d77e8
crossref_citationtrail_10_1109_ACCESS_2019_2954546
ieee_primary_8907822
proquest_journals_2455599911
crossref_primary_10_1109_ACCESS_2019_2954546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref10
ref17
ref16
ref18
lin (ref45) 2017
(ref19) 2019
huang (ref42) 2018
ref46
ref48
ref47
ref41
simonyan (ref25) 2015
ref44
ref43
ref49
lecun (ref39) 1990
ref7
ref9
ref4
ref6
ref40
iandola (ref37) 2016
han (ref12) 2015
(ref8) 2019
ref35
ref34
li (ref13) 2017
abadi (ref32) 2016
ref36
ref31
zhang (ref5) 2017
ref30
howard (ref38) 2017
han (ref21) 2016
ref2
goodfellow (ref1) 2016
jaderberg (ref24) 2014
ref26
ref20
ref22
krizhevsky (ref3) 2012
pallipadi (ref33) 2006; 2
denton (ref11) 2014
ref28
krizhevsky (ref27) 2009
ref29
xue (ref23) 2013
References_xml – year: 2017
  ident: ref38
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref22
  doi: 10.1145/3005348
– year: 2016
  ident: ref37
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡ 0.5 MB model size
  publication-title: arXiv 1602 07360
– start-page: 598
  year: 1990
  ident: ref39
  article-title: Optimal brain damage
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/MPRV.2009.82
– year: 2019
  ident: ref19
  publication-title: Nvidia tensorrt
– ident: ref4
  doi: 10.1109/CVPR.2016.90
– ident: ref46
  doi: 10.1007/978-3-030-01261-8_25
– ident: ref49
  doi: 10.23919/DATE.2018.8342119
– ident: ref16
  doi: 10.1145/3079856.3080246
– start-page: 1097
  year: 2012
  ident: ref3
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1109/ACCESS.2018.2887099
– start-page: 1135
  year: 2015
  ident: ref12
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/CVPR.2016.91
– start-page: 265
  year: 2016
  ident: ref32
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– ident: ref48
  doi: 10.1145/2893356
– start-page: 1
  year: 2017
  ident: ref13
  article-title: Pruning filters for efficient convnets
  publication-title: Proc Int Conf Learn Represent
– year: 2009
  ident: ref27
  article-title: Learning multiple layers of features from tiny images
– year: 2019
  ident: ref8
  publication-title: This Powerful Wearable is a Life-Changer for the Blind
– start-page: 1
  year: 2015
  ident: ref25
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref43
  doi: 10.1109/CVPR.2017.194
– ident: ref44
  doi: 10.1109/TPAMI.2018.2878258
– ident: ref2
  doi: 10.1162/neco.1989.1.4.541
– ident: ref36
  doi: 10.1109/CPSNA.2015.23
– ident: ref28
  doi: 10.1007/978-3-030-01234-2_48
– start-page: 2181
  year: 2017
  ident: ref45
  article-title: Runtime neural pruning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1145/2647868.2654889
– year: 2016
  ident: ref1
  publication-title: Deep Learning
– ident: ref47
  doi: 10.1145/3241539.3241559
– start-page: 377
  year: 2017
  ident: ref5
  article-title: Live video analytics at scale with approximation and delay-tolerance
  publication-title: Proc USENIX Symp Netw Syst Design Implem (NSDI)
– start-page: 1
  year: 2016
  ident: ref21
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Proc Int Conf Learn Represent
– start-page: 2365
  year: 2013
  ident: ref23
  article-title: Restructuring of deep neural network acoustic models with singular value decomposition
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2013-552
– ident: ref14
  doi: 10.1145/3007787.3001163
– ident: ref7
  doi: 10.1109/CVPR.2014.81
– start-page: 1269
  year: 2014
  ident: ref11
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/ICPR.2016.7900006
– ident: ref35
  doi: 10.1109/MC.2007.443
– ident: ref34
  doi: 10.1145/2815400.2815403
– ident: ref10
  doi: 10.1109/IPSN.2016.7460664
– ident: ref40
  doi: 10.1109/ICCV.2017.298
– ident: ref31
  doi: 10.1007/s11241-018-9314-y
– ident: ref26
  doi: 10.1007/s11263-015-0816-y
– ident: ref17
  doi: 10.1007/978-3-319-06486-4_7
– start-page: 1
  year: 2014
  ident: ref24
  article-title: Speeding up convolutional neural networks with low rank expansions
  publication-title: Proc Brit Mach Vis Conf
– ident: ref30
  doi: 10.1002/047166880X
– ident: ref15
  doi: 10.1145/2749469.2750389
– ident: ref9
  doi: 10.1109/MS.2017.79
– volume: 2
  start-page: 215
  year: 2006
  ident: ref33
  article-title: The ondemand governor
  publication-title: Proc Linux Symp
– start-page: 1
  year: 2018
  ident: ref42
  article-title: Multi-scale dense networks for resource efficient image classification
  publication-title: Proc Int Conf Learn Represent
SSID ssj0000816957
Score 2.2033188
Snippet Recently, deep learning has brought revolutions to many mobile and embedded systems that interact with the physical world using continuous video streams....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168048
SubjectTerms Adaptation models
Adaptive filters
Computational modeling
Control methods
Convolution
Deep learning
Dynamic models
edge devices
Electronic devices
Embedded systems
energy efficiency
feedback control
filter pruning
Inference
mobile devices
Model accuracy
model compression
Pruning
QoS
Quality of service
Run time (computers)
Runtime
Task analysis
Tradeoffs
Video data
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3roA1p1Ka184EiWbGLHdm_bXRCttFwoEjfLj0lVFQKCXVXtr-_Y8UaorRC3KLEjR99k5vNjvgE40Ly0FJfbQkjkBa-bptC2bYqghRONcmgx5g4vzprTC_7lUlxuwOGQC4OI6fAZjuNl2ssPN34Vl8qOlE4BbRM2aeLW52oN6ymxgIQWMgsLTUp9NJ3N6Bvi6S09jrtZIpLcB8EnafTnoir_eOIUXk5ewGI9sP5UyY_xaunG_vdfmo1PHflLeJ55Jpv2hvEKNrDbgWcP1Ad3wc8X5x_ZvC9Jz2JRtCt2TpDRQ0ZUlvXyGr-K6U97h2yOeMuyGus39nmdJ8i-d9TVkW9htgvs-NohubJAzZMLeg0XJ8dfZ6dFrrlQeF6qZcGFrIOzROp8rRXBW2tr0Uk1EYGYFJcW0VeNVqFsg3UixORU6YW2lWx4q-s3sNXddPgWmCDX4Yh-KpoBcpTaEtOStiW-WSmiNXYE1RoM47MgeayLcWXSxKTUpkfQRARNRnAEh0On216P4_HmnyLKQ9Mopp1uEDom_5tGSE8TYxRklkQOdbBi4oILnKhokBLVCHYjosNLMpgj2F_bjMk__r2puIgabhRC9v7f6x1sxwH2qzj7sLW8W-F74jVL9yEZ9B81A_Jn
  priority: 102
  providerName: IEEE
Title DMS: Dynamic Model Scaling for Quality-Aware Deep Learning Inference in Mobile and Embedded Devices
URI https://ieeexplore.ieee.org/document/8907822
https://www.proquest.com/docview/2455599911
https://doaj.org/article/57c106e5aea4419da51bdbd4112d77e8
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFUnlgJJAmdmyzlX6oIJWlVOpm2bGDkEqoShHi33N23CoSEiysiZ3Ed5e7d4nvHUKXgsQK4nIRUWZJRNIsi4QqssgIqmnGtVXW1Q5PHrPxjDzM6bzW6svtCavogSvBQcKeQ9ZiKcyByC2Mol1ttCGAEwxj1pf5QsyrJVPeB_NuJigLNEPdWNz0-n1YkdvLJa7dvy3qIG8tFHnG_tBi5Ydf9sFmdID2A0rEverpDtGOLY_QXo07sInywWR6iwdVQ3nsWpot8BQEDicxAFFckWN8Rb1PtbJ4YO0SBy7VZ3y_qfLDLyVM1eAZsCoNHr5qC47IwHDvQI7RbDR86o-j0DEhyknM1xGhLDVaASTLU8FBOalQymrGu9QADiJMWZsnmeAmLozS1LjSUpZToRKWkUKkJ6hRvpX2FGEKL74G8MghfyOWCQU4iakC0GLCAZSoFko2wpN5oBN3XS0W0qcVsZCVxKWTuAwSb6Gr7aRlxabx-_A7p5XtUEeF7Q-AgchgIPIvA2mhptPp9iJceFTUQu2NjmV4bd9lQqhjYIMAcPYftz5Hu2451RebNmqsVx_2AjDMWne8uXZ8ueE30z7qPw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remg50Aet2Ja2PvRIlmxix3Fv213Q0rJcAImb5ccEVUBAdFdV-fUdO94ItVXVW5TYkaNvMvP5Md8AfFQ8NxSXm0xI5BkvqypTpqkyr4QVVW3RYMgdnh9XszP-5Vycr8FunwuDiPHwGQ7DZdzL9zduGZbK9moVA9ojeExxn6suW6tfUQklJJSQSVpolKu98WRCXxHOb6lh2M8SgeY-CD9RpT-VVfnDF8cAc_AM5quhdedKLofLhR26-99UG_937M9hMzFNNu5M4wWsYfsSNh7oD26Bm85PPrFpV5SehbJoV-yEQKOHjMgs6wQ2fmbjH-YO2RTxliU91gt2uMoUZN9a6mrJuzDTerZ_bZGcmafm0Qm9grOD_dPJLEtVFzLH83qRcSFLbw3ROleqmgAulTFoZT0SnrgUlwbRFZWqfd54Y4UP6anSCWUKWfFGla9hvb1pcRuYIOdhiYDWNAfkKJUhriVNQ4yzqInYmAEUKzC0S5LkoTLGlY5Tk1zpDkEdENQJwQHs9p1uO0WOfzf_HFDumwY57XiD0NHp79RCOpoaoyDDJHqovBEj663nREa9lFgPYCsg2r8kgTmAnZXN6PTrf9cFF0HFjYLIm7_3-gBPZqfzI310ePz1LTwNg-3WdHZgfXG3xHfEchb2fTTuXxPw9bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMS%3A+Dynamic+Model+Scaling+for+Quality-Aware+Deep+Learning+Inference+in+Mobile+and+Embedded+Devices&rft.jtitle=IEEE+access&rft.au=Kang%2C+Woochul&rft.au=Kim%2C+Daeyeon&rft.au=Park%2C+Junyoung&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=168048&rft.epage=168059&rft_id=info:doi/10.1109%2FACCESS.2019.2954546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2954546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon