An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector
Main conclusion CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plant...
Saved in:
Published in | Planta Vol. 252; no. 3; p. 42 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Main conclusion
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species.
Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for
Brassica oleracea
until now. Here,
tobacco rattle virus
(TRV), pTYs and
cabbage leaf curl virus
(CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the
phytoene desaturase
(
PDS
) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of
PDS
and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an
Agrobacterium
OD
600
of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the
Mg-chelatase H subunit
(
ChlH
) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species,
B. rapa
and
B. nigra
, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. |
---|---|
AbstractList | MAIN CONCLUSION: CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD₆₀₀ of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. Main conclusion CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase ( PDS ) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD 600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit ( ChlH ) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra , and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. Main conclusionCaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species.Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.MAIN CONCLUSIONCaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species. |
ArticleNumber | 42 |
Author | Liu, Xing Xiao, Zhiliang Zhuang, Mu Zhang, Yangyong Lv, Honghao Fang, Zhiyuan Yang, Limei Xing, Miaomiao Wang, Yong |
Author_xml | – sequence: 1 givenname: Zhiliang surname: Xiao fullname: Xiao, Zhiliang organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 2 givenname: Miaomiao surname: Xing fullname: Xing, Miaomiao organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 3 givenname: Xing surname: Liu fullname: Liu, Xing organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 4 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 5 givenname: Limei surname: Yang fullname: Yang, Limei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 6 givenname: Yangyong surname: Zhang fullname: Zhang, Yangyong organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 7 givenname: Yong surname: Wang fullname: Wang, Yong organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 8 givenname: Mu surname: Zhuang fullname: Zhuang, Mu email: zhuangmu@caas.cn organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture – sequence: 9 givenname: Honghao orcidid: 0000-0003-2635-3042 surname: Lv fullname: Lv, Honghao email: lvhonghao@caas.cn organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32870402$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rFTEUhoNU7G31D7iQgJvbxejJ13ws68XWwgUXarchkzlzSZnJ1GRS6N_wF5vptAhdFFcJ5HnOSU7eE3LkJ4-EvGfwiQFUnyOA5KoADgUIqWRRvSIbJgUvOMj6iGwA8h4aoY7JSYw3APmwqt6QY8HrCiTwDflz7in2vbMO_UzvXEixcL5LFjt6QI80ugG9df5At9dXlz_OaLyPM460nwLtk7ezm7wZFnYanY3UefolmBidNZGmuIiGWtO25oB0QNNTm8KwdqLbndnv0vVZ0ZqYG96hnafwlrzuzRDx3eN6Sn5dfP25-1bsv19e7c73hZVQz0V-Z69qWzYdlsLwjklZsw5U2zLVcVZX2AvTISvbFoXqGCpbCuwaaNtelEKIU7Jd696G6XfCOOvRRYvDYDxOKWquuBSshvI_UCmaMvdkC_rxGXozpZBHtFKsVqpRmfrwSKV2xE7fBjeacK-fPiYD9QrYMMUYsNfWzWYZ9hyMGzQDvWRArxnQOQP6IQO6yip_pj5Vf1ESqxQz7A8Y_l37Besvh4PCgQ |
CitedBy_id | crossref_primary_10_1007_s11274_024_04143_3 crossref_primary_10_1016_j_gene_2023_147712 crossref_primary_10_3389_fmicb_2022_799345 crossref_primary_10_1007_s00425_021_03746_6 crossref_primary_10_1016_j_pmpp_2022_101923 crossref_primary_10_1016_j_gene_2024_149087 crossref_primary_10_1080_14620316_2021_1988729 crossref_primary_10_1186_s12870_025_06325_z crossref_primary_10_3390_horticulturae10040422 crossref_primary_10_3390_plants12071437 crossref_primary_10_1016_j_plaphy_2025_109714 crossref_primary_10_1016_j_scienta_2022_111759 crossref_primary_10_1016_j_scienta_2024_113828 crossref_primary_10_1002_fft2_455 crossref_primary_10_3390_ijms24010392 crossref_primary_10_3390_plants13192768 crossref_primary_10_1186_s13007_024_01241_z crossref_primary_10_3390_ijms25115670 crossref_primary_10_1016_j_envexpbot_2024_105794 crossref_primary_10_1016_j_jia_2024_03_059 crossref_primary_10_1016_j_scienta_2022_110927 crossref_primary_10_1016_j_envexpbot_2024_106015 |
Cites_doi | 10.1126/science.276.5318.1558 10.1093/jxb/ert218 10.1016/j.jviromet.2004.10.007 10.1134/s1021443708020027 10.1046/j.1365-313X.2002.01471.x 10.1007/s00122-018-3180-9 10.1186/s13059-015-0826-7 10.1006/meth.2001.1262 10.1111/mpp.12257 10.1007/978-1-62703-278-0_10 10.3390/genes8060147 10.1371/journal.pone.0185429 10.1105/tpc.109.070334 10.1104/pp.106.084624 10.1007/s00438-019-01564-w 10.1385/1-59259-413-1:287 10.1186/1746-4811-8-27 10.1186/1746-4811-7-15 10.1016/j.virol.2009.01.039 10.1002/biot.201100469 10.1111/j.1469-8137.2007.02225.x 10.1093/aob/mcr045 10.1046/j.1365-313X.2003.01733.x 10.1093/emboj/cdg74 10.1007/s11103-004-0590-7 10.1038/s41438-019-0135-5 10.1186/1746-4811-4-5 10.3389/fpls.2017.00393 10.1016/j.virusres.2014.08.009 10.1093/aob/mcs008 10.1007/978-1-62703-278-0_8 10.1007/978-1-62703-278-0_14 10.1046/j.1365-313X.2002.01291.x 10.1007/s10535-018-0803-6 10.1186/s12985-017-0716-6 10.1007/s11032-016-0509-4 10.1007/s00299-007-0460-2 10.1104/pp.103.037507 10.1186/1743-422X-6-152 10.1016/j.plaphy.2018.04.025 10.1080/09670878809371217 10.1007/s11769-002-0028-6 10.1007/bf03030544 10.1046/j.1365-313x.2001.00976.x 10.1111/j.1469-8137.2010.03213.x 10.1023/B:PLAN.0000040899.53378.83 10.1093/jxb/ert003 10.7717/peerj.4424 10.1111/nph.12304 10.1111/j.1365-313x.2005.02441.x 10.1007/s00425-017-2681-0 10.1007/978-1-4939-2453-0_11 10.1007/s11032-015-0354-x 10.1007/s11103-006-9016-z 10.3389/fpls.2017.00354 10.1023/A:1003026523150 10.1111/j.1365-313X.2004.02103.x 10.1007/s11103-004-0161-y 10.1126/science.286.5441.950 10.1111/j.1365-313x.2004.02158.x 10.1094/mpmi.2003.16.2.99 10.1007/s00299-019-02387-0 10.1104/pp.108.123869 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TM 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00425-020-03454-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Forestry Botany |
EISSN | 1432-2048 |
EndPage | 42 |
ExternalDocumentID | 32870402 10_1007_s00425_020_03454_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Central Public-interest Scientific Institution Basal Research Fund grantid: (Y2020PT01) – fundername: the Key Projects of the National Key Research and Development Program of China grantid: 2016YFD0100307 – fundername: the earmarked fund for the Modern Agro-Industry Technology Research System, China grantid: CARS-23 – fundername: the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences grantid: CAAS-ASTIP-IVFCAAS – fundername: the National Natural Science Foundation of China grantid: 31572139 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C .86 06C 06D 0R~ 0VY 123 199 1SB 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M4Y M7P MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P0- P19 P2P PF- PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT YLTOR Z45 Z7U Z7V Z7W Z7Y Z81 Z83 Z8O Z8P Z8Q Z8S Z8U Z8W ZCG ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7QR 7TM 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-432f58c69de63a2d14481d05bb15d2187ef3ade16bbe35d1e5c63ed90bbf36333 |
IEDL.DBID | U2A |
ISSN | 0032-0935 1432-2048 |
IngestDate | Fri Jul 11 01:57:19 EDT 2025 Tue Aug 05 10:43:44 EDT 2025 Fri Jul 25 19:20:43 EDT 2025 Wed Feb 19 02:27:24 EST 2025 Tue Jul 01 02:50:32 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Fri Feb 21 02:33:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CaLCuV Phytoene desaturase (PDS) pTYs Cabbage VIGS system Brassicas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-432f58c69de63a2d14481d05bb15d2187ef3ade16bbe35d1e5c63ed90bbf36333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2635-3042 |
PMID | 32870402 |
PQID | 2439185595 |
PQPubID | 54047 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2524318063 proquest_miscellaneous_2439621813 proquest_journals_2439185595 pubmed_primary_32870402 crossref_citationtrail_10_1007_s00425_020_03454_7 crossref_primary_10_1007_s00425_020_03454_7 springer_journals_10_1007_s00425_020_03454_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200900 2020-09-00 2020-Sep-01 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | An International Journal of Plant Biology |
PublicationTitle | Planta |
PublicationTitleAbbrev | Planta |
PublicationTitleAlternate | Planta |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ayako, Takumi, Chie, Kanako, Mizue, Jun, Nobuya (CR1) 2018; 131 Godge, Purkayastha, Dasgupta, Kumar (CR19) 2008; 27 Ratcliff, Harrison, Baulcombe (CR50) 1997; 276 Zhao, Mao, Chen, Wang, Dai, Dou, Zhang, Wei, Li, Zeng, Liu, Fan, Yan, Li, Jia (CR65) 2019; 6 Hericourt, Jupin (CR25) 1993; 3 Liu, Page (CR38) 2008; 4 Xiong, Liu, Jiang, Xu, Cao (CR61) 2019; 5 Fernandez-Moreno, Orzaez, Granell (CR15) 2013; 975 Tang, Lai, Liu (CR56) 2013; 975 Faivre-Rampant, Gilroy, Hrubikova, Hein, Millam, Loake, Birch, Taylor, Lacomme (CR11) 2004; 134 Thomas, Markus, Thomas, Manfred, Marco (CR58) 2017; 12 Cai, Xu, Wang, Zheng (CR5) 2006; 62 Fernández-Calvino, Guzmán-Benito, Del, Donaire, Castro-Sanz, Ruíz-Ferrer, Llave (CR14) 2016; 17 Hidalgo, Bartholmes, Gleissberg (CR26) 2012; 109 Chen, Zhang, Kong, Hu, Li, Wu, Qin, Zhang, Shi, Hong (CR9) 2015; 1287 Holzberg, Brosio, Gross, Pogue (CR28) 2010; 3 Hsieh, Pan, Lai, Lu, Yeh, Hsu, Wu, Chung, Wang, Chen, Chen (CR29) 2013; 64 Pandey, Choudhury, Mukherjee (CR47) 2009; 6 Fofana, Sangaré, Collier, Taylor, Fauquet (CR16) 2014; 56 Yu, Yang, Wang, Gao, Yang, Xiao, Liu, Li, Hou, Zhang (CR63) 2018; 62 Hands, Vosnakis, Betts, Irish, Drea (CR24) 2011; 107 Kang, Udayakumar, Mysore (CR33) 2010; 176 Zheng, Snoeren, Hogewoning, van Loon, Dicke (CR67) 2010; 186 Chen, Jiang, Gookin, Hunter, Clark, Reid (CR8) 2004; 55 Liu, Yang, Han, Fang, Yang, Zhuang, Lv, Liu, Li, Zhang (CR40) 2016; 36 Xu, Xu, Yang, Cao, Tang, He, Yuan, Ming (CR62) 2018; 6 Fu, Zhu, Zhu, Jiang, Luo (CR17) 2005; 43 Lee, Kim, Kim, Kim, Park (CR37) 2004; 47 Hamilton, Baulcombe (CR21) 1999; 286 George, Bauer, Blennow, Kossmann, Lloyd (CR18) 2012; 7 Nooduan, Christophe, Herve, Dominique (CR46) 2004; 38 Kim, Park, Jeong, Lee, Choi (CR34) 2017; 13 Richard, Haigler, Dominique (CR51) 2012; 8 Hiriart, Aro, Lehto (CR27) 2003; 16 Lawrenson, Shorinola, Stacey (CR36) 2015; 16 Jeuken, Zhang, McHale, Pelgrom, den Boer, Lindhout, Michelmore, Visser, Niks (CR31) 2009; 21 Zhao, Liu, Zhang, Qi, Chen, Lian (CR66) 2015; 42 Peng, Cui, Zhou (CR48) 2002; 28 Shao, Zhu, Tian, Wang, Lin, Zhu, Xie, Luo (CR53) 2003; 30 Fang, Sun, Liu, Wang, Hou, Bian (CR12) 1997; 97 Zhang, Yu, Zhang, Liu, Xu, Zhang, Wang, Tan, Nie, Ji, Zhao, Li (CR64) 2017; 8 Burch-Smith, Schiff, Liu, Dinesh-Kumar (CR4) 2006; 142 Liu, Nakayama, Schiff, Litt, Irish, Dinesh-Kumar (CR41) 2004; 54 Livak, Schmittgen (CR42) 2001; 25 Beyene, Chauhan, Taylor (CR2) 2017; 14 Spitzer-Rimon, Cna'Ani, Vainstein (CR54) 2013; 975 Jeyabharathy, Shakila, Usha (CR32) 2015; 195 Tuttle, Idris, Brown, Haigler, Robertson (CR59) 2008; 148 Igarashi, Yamagata, Sugai, Takahashi, Sugawara, Tamura, Yaegashi, Yamagishi, Takahashi, Isogai, Takahashi, Yoshikawa (CR30) 2009; 386 Gosselé, Faché, Meulewaeter, Cornelissen, Metzlaff (CR20) 2003; 32 Dinesh-Kumar, Anandalakshmi, Marathe, Schiff, Liu (CR10) 2011; 236 Burch-Smith, Anderson, Martin, Dinesh-Kumar (CR3) 2004; 39 Thomas, Jones, Baulcombe, Maule (CR57) 2010; 25 Fauquet, Fargette, Thouvenel (CR13) 1988; 34 Han, Yang, Fang, Yang, Zhuang, Lv, Liu, Li, Liu, Yu, Liu, Zhang (CR23) 2015; 35 Szittya, Dániel, Attila, Zoltán, Agnes, Lóránt, Bánfalvi, Burgyán (CR55) 2003; 22 CR150 Lacomme, Hrubikova, Hein (CR35) 2003; 34 Xiao, Hu, Zhang, Xue, Fang, Yang, Zhang, Liu, Li, Liu, Liu, Lv, Zhuang (CR60) 2017; 8 Liu, Han, Kong, Fang, Yang, Zhang, Zhuang, Liu, Li, Lv (CR39) 2017; 8 Qu, Guo, Ci, Qi, Wen (CR49) 2003; 18 Chen, Zeng, Wang, Wang, Ye, Zhu, Yuan, Hou, Wang (CR6) 2019; 38 Sasaki, Yamagishi, Yoshikawa (CR52) 2011; 7 Han, Yuan, Kong, Zhang, Yang, Zhuang, Zhang, Li, Fang, Lv (CR22) 2018; 131 Naylor, Reeves, Cooper, Edwards, Wang (CR45) 2005; 124 Chen, Chiu, Cheng, Hsu, Tsai (CR7) 2013; 199 Manmathan, Shaner, Snelling, Tisserat, Lapitan (CR43) 2013; 64 Navarro Gallón, Elejalde-Palmett, Daudu (CR44) 2017; 246 Y Liu (3454_CR41) 2004; 54 ZY Fang (3454_CR12) 1997; 97 MJW Jeuken (3454_CR31) 2009; 21 C Lacomme (3454_CR35) 2003; 34 T Lawrenson (3454_CR36) 2015; 16 J Zhang (3454_CR64) 2017; 8 DQ Fu (3454_CR17) 2005; 43 WW Chen (3454_CR9) 2015; 1287 J Kim (3454_CR34) 2017; 13 J Qu (3454_CR49) 2003; 18 A Igarashi (3454_CR30) 2009; 386 CL Thomas (3454_CR57) 2010; 25 X Liu (3454_CR39) 2017; 8 V Gosselé (3454_CR20) 2003; 32 MK Lee (3454_CR37) 2004; 47 KJ Livak (3454_CR42) 2001; 25 P Hands (3454_CR24) 2011; 107 3454_CR150 L Fernández-Calvino (3454_CR14) 2016; 17 G Chen (3454_CR6) 2019; 38 IBF Fofana (3454_CR16) 2014; 56 H Manmathan (3454_CR43) 2013; 64 MH Hsieh (3454_CR29) 2013; 64 TJ Richard (3454_CR51) 2012; 8 OM Hidalgo (3454_CR26) 2012; 109 TM Burch-Smith (3454_CR3) 2004; 39 MR Godge (3454_CR19) 2008; 27 Y Peng (3454_CR48) 2002; 28 JP Fernandez-Moreno (3454_CR15) 2013; 975 G Beyene (3454_CR2) 2017; 14 JR Tuttle (3454_CR59) 2008; 148 F Han (3454_CR22) 2018; 131 FQ Han (3454_CR23) 2015; 35 I Chen (3454_CR7) 2013; 199 GM George (3454_CR18) 2012; 7 W Thomas (3454_CR58) 2017; 12 F Ratcliff (3454_CR50) 1997; 276 Y Zhao (3454_CR65) 2019; 6 XP Liu (3454_CR40) 2016; 36 C Jeyabharathy (3454_CR32) 2015; 195 O Ayako (3454_CR1) 2018; 131 F Hericourt (3454_CR25) 1993; 3 JB Hiriart (3454_CR27) 2003; 16 SP Dinesh-Kumar (3454_CR10) 2011; 236 JC Chen (3454_CR8) 2004; 55 SM Navarro Gallón (3454_CR44) 2017; 246 Y Shao (3454_CR53) 2003; 30 Z Zhao (3454_CR66) 2015; 42 XZ Cai (3454_CR5) 2006; 62 H Xu (3454_CR62) 2018; 6 C Fauquet (3454_CR13) 1988; 34 SJ Zheng (3454_CR67) 2010; 186 E Liu (3454_CR38) 2008; 4 M Naylor (3454_CR45) 2005; 124 M Nooduan (3454_CR46) 2004; 38 S Holzberg (3454_CR28) 2010; 3 J Yu (3454_CR63) 2018; 62 L Kang (3454_CR33) 2010; 176 AJ Hamilton (3454_CR21) 1999; 286 O Faivre-Rampant (3454_CR11) 2004; 134 S Sasaki (3454_CR52) 2011; 7 G Szittya (3454_CR55) 2003; 22 Y Tang (3454_CR56) 2013; 975 Z Xiao (3454_CR60) 2017; 8 TM Burch-Smith (3454_CR4) 2006; 142 P Pandey (3454_CR47) 2009; 6 XP Xiong (3454_CR61) 2019; 5 B Spitzer-Rimon (3454_CR54) 2013; 975 |
References_xml | – ident: CR150 – volume: 276 start-page: 1558 year: 1997 end-page: 1560 ident: CR50 article-title: A similarity between viral defense and gene silencing in plants publication-title: Science doi: 10.1126/science.276.5318.1558 – volume: 64 start-page: 3869 year: 2013 end-page: 3884 ident: CR29 article-title: Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in orchids publication-title: J Exp Bot doi: 10.1093/jxb/ert218 – volume: 124 start-page: 27 year: 2005 end-page: 36 ident: CR45 article-title: Construction and properties of a based on Poplar mosaic virus (genus ) publication-title: J Virol Methods doi: 10.1016/j.jviromet.2004.10.007 – volume: 30 start-page: 296 year: 2003 end-page: 303 ident: CR53 article-title: Virus-induced gene silencing in plant species publication-title: Russ J Plant Physiol doi: 10.1134/s1021443708020027 – volume: 32 start-page: 859 year: 2003 end-page: 866 ident: CR20 article-title: SVISS—a novel transient gene silencing system for gene function discovery and validation in tobacco plants publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01471.x – volume: 131 start-page: 2651 year: 2018 end-page: 2661 ident: CR22 article-title: Fine mapping and candidate gene identification of the genic male-sterile gene in cabbage 51S publication-title: Theor Appl Genet doi: 10.1007/s00122-018-3180-9 – volume: 16 start-page: 258 year: 2015 ident: CR36 article-title: Induction of targeted, heritable mutations in barley and using RNA-guided Cas9 nuclease publication-title: Genome Biol doi: 10.1186/s13059-015-0826-7 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR42 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 42 start-page: 1495 issue: 8 year: 2015 end-page: 1504 ident: CR66 article-title: VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant publication-title: Acta Hortic Sin – volume: 17 start-page: 3 year: 2016 end-page: 15 ident: CR14 article-title: Activation of senescence-associated ( ) genes during infection contributes to enhanced susceptibility to plant viruses publication-title: Mol Plant Pathol doi: 10.1111/mpp.12257 – volume: 975 start-page: 139 year: 2013 end-page: 148 ident: CR54 article-title: Virus-aided gene expression and silencing using TRV for functional analysis of floral scent-related genes publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_10 – volume: 8 start-page: 2 year: 2017 end-page: 17 ident: CR60 article-title: Fine mapping and transcriptome analysis reveal candidate genes associated with hybrid lethality in cabbage ( ) publication-title: Genes doi: 10.3390/genes8060147 – volume: 12 start-page: e0185429 year: 2017 ident: CR58 article-title: Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of publication-title: PLoS ONE doi: 10.1371/journal.pone.0185429 – volume: 21 start-page: 3368 year: 2009 end-page: 3378 ident: CR31 article-title: causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid publication-title: Plant Cell doi: 10.1105/tpc.109.070334 – volume: 142 start-page: 21 year: 2006 end-page: 27 ident: CR4 article-title: Efficient virus-induced gene silencing in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.106.084624 – volume: 5 start-page: 1251 year: 2019 end-page: 1261 ident: CR61 article-title: Efficient genome editing of based on the CRISPR/Cas9 system publication-title: Mol Genet Genomics doi: 10.1007/s00438-019-01564-w – volume: 236 start-page: 287 year: 2011 end-page: 294 ident: CR10 article-title: Virus-induced gene silencing publication-title: Methods Mol Biol doi: 10.1385/1-59259-413-1:287 – volume: 8 start-page: 27 year: 2012 ident: CR51 article-title: Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system publication-title: Plant Methods doi: 10.1186/1746-4811-8-27 – volume: 7 start-page: 15 year: 2011 ident: CR52 article-title: Efficient virus-induced gene silencing in apple, pear and Japanese pear using apple latent spherical virus vectors publication-title: Plant Methods doi: 10.1186/1746-4811-7-15 – volume: 386 start-page: 407 year: 2009 end-page: 416 ident: CR30 article-title: Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, , cucurbits, and legumes publication-title: Virology doi: 10.1016/j.virol.2009.01.039 – volume: 7 start-page: 884 year: 2012 end-page: 890 ident: CR18 article-title: Virus-induced multiple gene silencing to study redundant metabolic pathways in plants: silencing the starch degradation pathway in publication-title: Biotechnol J doi: 10.1002/biot.201100469 – volume: 176 start-page: 782 year: 2010 end-page: 791 ident: CR33 article-title: A systematic study to determine the extent of gene silencing in and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02225.x – volume: 107 start-page: 1557 year: 2011 end-page: 1566 ident: CR24 article-title: Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in Opium poppy publication-title: Ann Bot doi: 10.1093/aob/mcr045 – volume: 34 start-page: 543 year: 2003 end-page: 553 ident: CR35 article-title: Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01733.x – volume: 22 start-page: 633 year: 2003 end-page: 640 ident: CR55 article-title: Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation publication-title: EMBO J doi: 10.1093/emboj/cdg74 – volume: 55 start-page: 521 year: 2004 end-page: 530 ident: CR8 article-title: Chalcone synthase as a reporter in virus induced gene silencing studies of flower senescence publication-title: Plant Mol Biol doi: 10.1007/s11103-004-0590-7 – volume: 6 start-page: 53 year: 2019 ident: CR65 article-title: Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits publication-title: Hortic Res doi: 10.1038/s41438-019-0135-5 – volume: 4 start-page: 5 year: 2008 ident: CR38 article-title: Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus publication-title: Plant Methods doi: 10.1186/1746-4811-4-5 – volume: 8 start-page: 393 year: 2017 ident: CR64 article-title: Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00393 – volume: 13 start-page: 3 year: 2017 ident: CR34 article-title: Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit publication-title: Plant Methods doi: 10.1016/j.virusres.2014.08.009 – volume: 109 start-page: 911 year: 2012 end-page: 920 ident: CR26 article-title: Virus-induced gene silencing (VIGS) in , a zygomorphic-flowered Papaveraceae (Ranunculales basal eudicots) publication-title: Ann Bot doi: 10.1093/aob/mcs008 – volume: 975 start-page: 99 year: 2013 end-page: 107 ident: CR56 article-title: Virus-induced gene silencing using artificial miRNAs in publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_8 – volume: 975 start-page: 183 year: 2013 ident: CR15 article-title: VIGS: a tool to study fruit development in publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_14 – volume: 3 start-page: 315 year: 2010 end-page: 327 ident: CR28 article-title: Barley stripe mosaic virus-induced gene silencing in a monocot plant publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01291.x – volume: 62 start-page: 826 year: 2018 end-page: 834 ident: CR63 article-title: Efficient virus-induced gene silencing in using a turnip yellow mosaic virus vector publication-title: Biol Plant doi: 10.1007/s10535-018-0803-6 – volume: 14 start-page: 47 year: 2017 ident: CR2 article-title: A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease publication-title: Virol J doi: 10.1186/s12985-017-0716-6 – volume: 36 start-page: 82 year: 2016 ident: CR40 article-title: Genetics and fine mapping of a yellow-green leaf gene (ygl-1) in cabbage ( var. L.) publication-title: Mol Breed doi: 10.1007/s11032-016-0509-4 – volume: 27 start-page: 209 year: 2008 end-page: 219 ident: CR19 article-title: Virus-induced gene silencing for functional analysis of selected genes publication-title: Plant Cell Rep doi: 10.1007/s00299-007-0460-2 – volume: 134 start-page: 1308 year: 2004 end-page: 1316 ident: CR11 article-title: Potato virus X-induced gene silencing in leaves and tubers of potato publication-title: Plant Physiol doi: 10.1104/pp.103.037507 – volume: 6 start-page: 152 year: 2009 ident: CR47 article-title: A geminiviral amplicon (VA) derived from (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector publication-title: Virol J doi: 10.1186/1743-422X-6-152 – volume: 131 start-page: 63 year: 2018 end-page: 69 ident: CR1 article-title: CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.025 – volume: 34 start-page: 92 year: 1988 end-page: 96 ident: CR13 article-title: Some aspects of the epidemiology of in ivory coast publication-title: Pans Pest Artic News Summ doi: 10.1080/09670878809371217 – volume: 28 start-page: 465 year: 2002 end-page: 472 ident: CR48 article-title: Plant viruses-novel vectors for expressing foreign genes publication-title: J Zhejiang Uni-SC A doi: 10.1007/s11769-002-0028-6 – volume: 47 start-page: 300 year: 2004 end-page: 306 ident: CR37 article-title: -mediated transformation system for large-scale producion of transgenic chinese cabbage ( L. ssp. ) plants for insertional mutagenesis publication-title: J Plant Biol doi: 10.1007/bf03030544 – volume: 25 start-page: 417 year: 2010 end-page: 425 ident: CR57 article-title: Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in using a potato virus X vector publication-title: Plant J doi: 10.1046/j.1365-313x.2001.00976.x – volume: 186 start-page: 733 year: 2010 end-page: 745 ident: CR67 article-title: Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03213.x – volume: 18 start-page: 87 year: 2003 end-page: 92 ident: CR49 article-title: Recent advances on molecular biology of potato virus X and its application to gene expression vector publication-title: Virol Sin – volume: 54 start-page: 701 year: 2004 end-page: 711 ident: CR41 article-title: Virus induced gene silencing of a deficiens ortholog in publication-title: Plant Mol Biol doi: 10.1023/B:PLAN.0000040899.53378.83 – volume: 64 start-page: 1381 year: 2013 end-page: 1392 ident: CR43 article-title: Virus-induced gene silencing of gene homologues in wheat identifies genes conferring improved drought tolerance publication-title: J Exp Bot doi: 10.1093/jxb/ert003 – volume: 6 start-page: e4424 year: 2018 ident: CR62 article-title: Tobacco rattle virus-induced ( ) and ( ) gene silencing in L publication-title: Peer J doi: 10.7717/peerj.4424 – volume: 199 start-page: 749 year: 2013 end-page: 757 ident: CR7 article-title: The glutathione transferase of NbGSTU4 plays a role in regulating the early replication of publication-title: New Phytol doi: 10.1111/nph.12304 – volume: 43 start-page: 299 year: 2005 end-page: 308 ident: CR17 article-title: Virus-induced gene silencing in tomato fruit publication-title: Plant J doi: 10.1111/j.1365-313x.2005.02441.x – volume: 246 start-page: 1 year: 2017 end-page: 16 ident: CR44 article-title: Virus-induced gene silencing of the two squalene synthase isoforms of apple tree ( × L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth publication-title: Planta doi: 10.1007/s00425-017-2681-0 – volume: 1287 start-page: 147 year: 2015 end-page: 157 ident: CR9 article-title: Mr VIGS: microRNA-based virus-induced gene silencing in plants publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2453-0_11 – volume: 3 start-page: 133 year: 1993 end-page: 134 ident: CR25 article-title: Infection of plants by Turnip yellow mosaic virus (TYMV) publication-title: Virologie – volume: 195 start-page: 73 year: 2015 end-page: 78 ident: CR32 article-title: Development of a VIGS vector based on the β-satellite DNA associated with bhendi yellow vein mosaic virus publication-title: Virus Res doi: 10.1016/j.virusres.2014.08.009 – volume: 35 start-page: 160 year: 2015 ident: CR23 article-title: Inheritance and InDel markers closely linked to petal color gene ( ) in publication-title: Mol Breed doi: 10.1007/s11032-015-0354-x – volume: 62 start-page: 223 year: 2006 end-page: 232 ident: CR5 article-title: Development of a virus-induced gene silencing system for functional analysis of the -dependent resistance signaling pathway in publication-title: Plant Mol Biol doi: 10.1007/s11103-006-9016-z – volume: 8 start-page: 354 year: 2017 ident: CR39 article-title: Rapid introgression of the Fusarium wilt resistance gene into an elite cabbage line through the combined application of a microspore culture, genome background analysis, and disease resistance-specific marker assisted foreground selection publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00354 – volume: 97 start-page: 265 year: 1997 end-page: 268 ident: CR12 article-title: A male sterile line with dominant gene (Ms) in cabbage ( var. ) and its utilization for hybrid seed production publication-title: Euphytica doi: 10.1023/A:1003026523150 – volume: 38 start-page: 1004 year: 2004 end-page: 1014 ident: CR46 article-title: Geminivirus VIGS of endogenous genes requires / and and defines a new branch in the genetic pathway for silencing in plants publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02103.x – volume: 56 start-page: 613 year: 2014 end-page: 624 ident: CR16 article-title: A geminivirus-induced gene silencing system for gene function validation in cassava publication-title: Plant Mol Biol doi: 10.1007/s11103-004-0161-y – volume: 286 start-page: 950 year: 1999 end-page: 952 ident: CR21 article-title: A species of small antisense RNA in posttranscriptional gene silencing in plants publication-title: Science doi: 10.1126/science.286.5441.950 – volume: 39 start-page: 734 year: 2004 end-page: 746 ident: CR3 article-title: Applications and advantages of virus-induced gene silencing for gene function studies in plants publication-title: Plant J doi: 10.1111/j.1365-313x.2004.02158.x – volume: 16 start-page: 99 year: 2003 end-page: 106 ident: CR27 article-title: Dynamics of the VIGS-mediated chimeric silencing of the gene and of the tobacco mosaic virus vector publication-title: Mol Plant Microbe In doi: 10.1094/mpmi.2003.16.2.99 – volume: 38 start-page: 577 year: 2019 end-page: 586 ident: CR6 article-title: Transgenic Wucai ( L.) produced via -mediated anther transformation in planta publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02387-0 – volume: 148 start-page: 41 year: 2008 end-page: 50 ident: CR59 article-title: Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton publication-title: Plant Physiol doi: 10.1104/pp.108.123869 – volume: 134 start-page: 1308 year: 2004 ident: 3454_CR11 publication-title: Plant Physiol doi: 10.1104/pp.103.037507 – volume: 47 start-page: 300 year: 2004 ident: 3454_CR37 publication-title: J Plant Biol doi: 10.1007/bf03030544 – volume: 62 start-page: 223 year: 2006 ident: 3454_CR5 publication-title: Plant Mol Biol doi: 10.1007/s11103-006-9016-z – volume: 6 start-page: 152 year: 2009 ident: 3454_CR47 publication-title: Virol J doi: 10.1186/1743-422X-6-152 – volume: 124 start-page: 27 year: 2005 ident: 3454_CR45 publication-title: J Virol Methods doi: 10.1016/j.jviromet.2004.10.007 – volume: 3 start-page: 315 year: 2010 ident: 3454_CR28 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01291.x – volume: 176 start-page: 782 year: 2010 ident: 3454_CR33 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02225.x – volume: 8 start-page: 354 year: 2017 ident: 3454_CR39 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00354 – volume: 16 start-page: 99 year: 2003 ident: 3454_CR27 publication-title: Mol Plant Microbe In doi: 10.1094/mpmi.2003.16.2.99 – volume: 8 start-page: 2 year: 2017 ident: 3454_CR60 publication-title: Genes doi: 10.3390/genes8060147 – volume: 43 start-page: 299 year: 2005 ident: 3454_CR17 publication-title: Plant J doi: 10.1111/j.1365-313x.2005.02441.x – volume: 62 start-page: 826 year: 2018 ident: 3454_CR63 publication-title: Biol Plant doi: 10.1007/s10535-018-0803-6 – volume: 276 start-page: 1558 year: 1997 ident: 3454_CR50 publication-title: Science doi: 10.1126/science.276.5318.1558 – volume: 1287 start-page: 147 year: 2015 ident: 3454_CR9 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2453-0_11 – volume: 6 start-page: 53 year: 2019 ident: 3454_CR65 publication-title: Hortic Res doi: 10.1038/s41438-019-0135-5 – volume: 7 start-page: 15 year: 2011 ident: 3454_CR52 publication-title: Plant Methods doi: 10.1186/1746-4811-7-15 – volume: 236 start-page: 287 year: 2011 ident: 3454_CR10 publication-title: Methods Mol Biol doi: 10.1385/1-59259-413-1:287 – volume: 12 start-page: e0185429 year: 2017 ident: 3454_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0185429 – volume: 27 start-page: 209 year: 2008 ident: 3454_CR19 publication-title: Plant Cell Rep doi: 10.1007/s00299-007-0460-2 – volume: 22 start-page: 633 year: 2003 ident: 3454_CR55 publication-title: EMBO J doi: 10.1093/emboj/cdg74 – volume: 286 start-page: 950 year: 1999 ident: 3454_CR21 publication-title: Science doi: 10.1126/science.286.5441.950 – volume: 18 start-page: 87 year: 2003 ident: 3454_CR49 publication-title: Virol Sin – volume: 32 start-page: 859 year: 2003 ident: 3454_CR20 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01471.x – volume: 35 start-page: 160 year: 2015 ident: 3454_CR23 publication-title: Mol Breed doi: 10.1007/s11032-015-0354-x – volume: 34 start-page: 543 year: 2003 ident: 3454_CR35 publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01733.x – volume: 3 start-page: 133 year: 1993 ident: 3454_CR25 publication-title: Virologie – volume: 39 start-page: 734 year: 2004 ident: 3454_CR3 publication-title: Plant J doi: 10.1111/j.1365-313x.2004.02158.x – volume: 97 start-page: 265 year: 1997 ident: 3454_CR12 publication-title: Euphytica doi: 10.1023/A:1003026523150 – ident: 3454_CR150 – volume: 186 start-page: 733 year: 2010 ident: 3454_CR67 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03213.x – volume: 34 start-page: 92 year: 1988 ident: 3454_CR13 publication-title: Pans Pest Artic News Summ doi: 10.1080/09670878809371217 – volume: 386 start-page: 407 year: 2009 ident: 3454_CR30 publication-title: Virology doi: 10.1016/j.virol.2009.01.039 – volume: 16 start-page: 258 year: 2015 ident: 3454_CR36 publication-title: Genome Biol doi: 10.1186/s13059-015-0826-7 – volume: 25 start-page: 417 year: 2010 ident: 3454_CR57 publication-title: Plant J doi: 10.1046/j.1365-313x.2001.00976.x – volume: 131 start-page: 63 year: 2018 ident: 3454_CR1 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.025 – volume: 25 start-page: 402 year: 2001 ident: 3454_CR42 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 36 start-page: 82 year: 2016 ident: 3454_CR40 publication-title: Mol Breed doi: 10.1007/s11032-016-0509-4 – volume: 54 start-page: 701 year: 2004 ident: 3454_CR41 publication-title: Plant Mol Biol doi: 10.1023/B:PLAN.0000040899.53378.83 – volume: 55 start-page: 521 year: 2004 ident: 3454_CR8 publication-title: Plant Mol Biol doi: 10.1007/s11103-004-0590-7 – volume: 17 start-page: 3 year: 2016 ident: 3454_CR14 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12257 – volume: 21 start-page: 3368 year: 2009 ident: 3454_CR31 publication-title: Plant Cell doi: 10.1105/tpc.109.070334 – volume: 199 start-page: 749 year: 2013 ident: 3454_CR7 publication-title: New Phytol doi: 10.1111/nph.12304 – volume: 107 start-page: 1557 year: 2011 ident: 3454_CR24 publication-title: Ann Bot doi: 10.1093/aob/mcr045 – volume: 109 start-page: 911 year: 2012 ident: 3454_CR26 publication-title: Ann Bot doi: 10.1093/aob/mcs008 – volume: 38 start-page: 577 year: 2019 ident: 3454_CR6 publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02387-0 – volume: 975 start-page: 139 year: 2013 ident: 3454_CR54 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_10 – volume: 38 start-page: 1004 year: 2004 ident: 3454_CR46 publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02103.x – volume: 8 start-page: 27 year: 2012 ident: 3454_CR51 publication-title: Plant Methods doi: 10.1186/1746-4811-8-27 – volume: 42 start-page: 1495 issue: 8 year: 2015 ident: 3454_CR66 publication-title: Acta Hortic Sin – volume: 14 start-page: 47 year: 2017 ident: 3454_CR2 publication-title: Virol J doi: 10.1186/s12985-017-0716-6 – volume: 64 start-page: 1381 year: 2013 ident: 3454_CR43 publication-title: J Exp Bot doi: 10.1093/jxb/ert003 – volume: 5 start-page: 1251 year: 2019 ident: 3454_CR61 publication-title: Mol Genet Genomics doi: 10.1007/s00438-019-01564-w – volume: 975 start-page: 183 year: 2013 ident: 3454_CR15 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_14 – volume: 4 start-page: 5 year: 2008 ident: 3454_CR38 publication-title: Plant Methods doi: 10.1186/1746-4811-4-5 – volume: 8 start-page: 393 year: 2017 ident: 3454_CR64 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00393 – volume: 30 start-page: 296 year: 2003 ident: 3454_CR53 publication-title: Russ J Plant Physiol doi: 10.1134/s1021443708020027 – volume: 975 start-page: 99 year: 2013 ident: 3454_CR56 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-278-0_8 – volume: 28 start-page: 465 year: 2002 ident: 3454_CR48 publication-title: J Zhejiang Uni-SC A doi: 10.1007/s11769-002-0028-6 – volume: 6 start-page: e4424 year: 2018 ident: 3454_CR62 publication-title: Peer J doi: 10.7717/peerj.4424 – volume: 246 start-page: 1 year: 2017 ident: 3454_CR44 publication-title: Planta doi: 10.1007/s00425-017-2681-0 – volume: 131 start-page: 2651 year: 2018 ident: 3454_CR22 publication-title: Theor Appl Genet doi: 10.1007/s00122-018-3180-9 – volume: 64 start-page: 3869 year: 2013 ident: 3454_CR29 publication-title: J Exp Bot doi: 10.1093/jxb/ert218 – volume: 148 start-page: 41 year: 2008 ident: 3454_CR59 publication-title: Plant Physiol doi: 10.1104/pp.108.123869 – volume: 13 start-page: 3 year: 2017 ident: 3454_CR34 publication-title: Plant Methods doi: 10.1016/j.virusres.2014.08.009 – volume: 7 start-page: 884 year: 2012 ident: 3454_CR18 publication-title: Biotechnol J doi: 10.1002/biot.201100469 – volume: 195 start-page: 73 year: 2015 ident: 3454_CR32 publication-title: Virus Res doi: 10.1016/j.virusres.2014.08.009 – volume: 142 start-page: 21 year: 2006 ident: 3454_CR4 publication-title: Plant Physiol doi: 10.1104/pp.106.084624 – volume: 56 start-page: 613 year: 2014 ident: 3454_CR16 publication-title: Plant Mol Biol doi: 10.1007/s11103-004-0161-y |
SSID | ssj0014377 |
Score | 2.4546294 |
Snippet | Main conclusion
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species.... CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing... Main conclusionCaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species.Virus-induced... MAIN CONCLUSION: CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42 |
SubjectTerms | Agriculture Agrobacterium Begomovirus - genetics Biomedical and Life Sciences Brassica Brassica - genetics Brassica - virology Brassica oleracea cabbage Cabbage leaf curl virus cole crops Crops Desaturase Ecology Forestry Gene Expression Regulation, Plant Gene silencing genes Genetic Vectors Genomics Inoculation inoculation methods Leaf-curl Leaves Life Sciences magnesium chelatase Original Article Osmosis Oxidoreductases - genetics Parameters Photobleaching Plant diseases Plant Sciences Plant viruses Post-transcription RNA Interference Species temperature Tobacco Tobacco rattle virus Vacuum Viruses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADB5B4cAF8SZQkJE4tIIRSeaR5ITaFaUg4AKt9hbNK2ilVbZsNpX4G_xi7Ek2FarY83oTK589_jweexh7XZU2UwWmJehIisug0Oe0ynjhTW6Vk0WuqDn56zd9eiY_z9V83HDrxmOV2zUxLtR-5WiP_F1OLaIl8l_1_uIXp1ujqLo6XqFxk92i0WVk1cV8SriQChTDzEyRcyr4jU0zsXUuWiun5CkVUkle_BuYrrHNa5XSGIBO7rG7I3OEowHq--xGaB-w28crZHe_H7I_Ry2EOA4CowhcLtZ9xzHdRuA8oI0E6BbUXoRPhoPzTx-_H8IwwxmQtAIFt2FPkGSpT7mDRQvHa2TWCGIHdDr-JxhwxlpcgGAZTAOuXy-HN8HBzHyZ9eeHnIKih8tYCnjEzk4-_Jid8vG-Be5kWm64FHmjSqcrH7QwucdcC9lsqizC6ZEKFKERxodMWxuE8llQTovgq9TaRmghxGO2167a8JSBKH3AzM2VppKyQeB92hgrG-1zV1UuJCzbfuzajcPI6U6MZT2NUY4A1QhQHQGqi4S9mf5zMYzi2Cm9v8WwHt2yq6-MKGGvpp_RoahKYtqw6gcZTcRH7JBRKJWVSO8S9mSwj0klQaVjzMoT9nZrMFcK_F_fZ7v1fc7u5NFY6XTbPtvbrPvwAunQxr6MNv8XLKEDxg priority: 102 providerName: ProQuest |
Title | An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector |
URI | https://link.springer.com/article/10.1007/s00425-020-03454-7 https://www.ncbi.nlm.nih.gov/pubmed/32870402 https://www.proquest.com/docview/2439185595 https://www.proquest.com/docview/2439621813 https://www.proquest.com/docview/2524318063 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sq6IPoudHo_VYwYcWDSTZ3Xw85o5r61cR9cr5FPYr5eDIleRS8N_wL3Z2k4tIteBTAplkF34zO7_J7MwCvM5SGfIEwxI0JO4zw9HmYh76iRaR5IolEbfFyZ_O4tM5e7_gi74orNnudt-mJN1KPRS7Of3ybbgTUMaZn-zAHsfY3W7kmkf5kDtgNOk6ZdLIt2m-vlTm79_40x1d45jX8qPO7Rw_hAc9XyR5B_AjuGWqEdzPL-q-Z4YZwe3JGhnejxHcmbkW1Hh31564aY9xeww_84oY1ycC3Qu5WtZt42McjohqgspjSLO0dUc4ODk8f3fy9Yh0zZ0JsllivV73s9DK2gLmhiwrMqmRciO6DbHb5i-IIEpIiSsTWRlREtXWq24kcjgVH6ft-ZFvvaUmVy5H8ATmx7Nv01O_P4jBVyxINz6jUclTFWfaxFREGoMwpLkBl4izRo6QmJIKbcJYSkO5Dg1XMTU6C6QsaUwpfQq71boy-0Boqg2GdCoVGWMlaoQOSiFZGetIZZkyHoRbPArVdym3h2WsiqG_ssOwQAwLh2GRePBmeOey69Fxo_TBFuait9emiGwBcorRFffg1fAYLc2mT0Rl1m0nE1tGRG-Q4SgVpsj7PHjWqdAwJWpzyhiue_B2q1O_J_Dv-T7_P_EXcC9y-m23wR3A7qZuzUvkTRs5hp1kkYxhLz_5_mGG18ns7POXsTOeXzylD6g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VBQkuiDeGAosEUitYYe_DjwNCbaAkNO2FtsrNeB9GkSKnxHFR_wY_hN_IzNpOhSpy6zkTe-T5duabnZ1ZQl5nqY5UAmkJLCTFpFOw5mIVscQWXCsjE66wOfnwKB6eyK8TNdkgf_peGDxW2ftE76jt3OAe-XuOLaIp8F_18ewnw1ujsLraX6HRwuLAXfyClK3-MPoE9n3D-f7n48GQdbcKMCPDdMmk4KVKTZxZF4uCW8gogLOFSoPSFgJe4kpRWBfFWjuhbOSUiYWzWah1KWKBG6Dg8m9A4A0x2UsmqwQPqEfSzugUnGGBsWvS8a16fnUwTNZCIZVkyb-B8Aq7vVKZ9QFv_y650zFVuttC6x7ZcNV9cnNvDmzy4gH5vVtR58dPQNSi59NFUzNI7wEolgImHa2n2M4ET6bbp6Mv33ZoOzOaAkmmGEzbPUiUxb7omk4rurcAJg-gqSmexv9BC2oKrcHh0ZkrSmqaxax9E90eFONBc7rDMAhbeu5LDw_JybVY4hHZrOaVe0KoSK2DTNGkRSZlCUCzYVloWcaWmywzLiBR_7Fz0w0_xzs4ZvlqbLM3UA4Gyr2B8iQgb1f_OWtHf6yV3uptmHduoM4vQRuQV6ufYQFjVaao3LxpZWIkWmKNjAKpKAU6GZDHLT5WKgksVcuQB-RdD5hLBf6v79P1-r4kt4bHh-N8PDo6eEZucw9cPFm3RTaXi8Y9Byq21C88_in5ft0L7i9tQ0EL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF1VKUK8IO41FFgkkFrBqvZefHlAqEkbGlqiCmjVN-O9GEWKnBLHRf0NPoevY8aXVKgib33OJF5nzsyc2dmZJeR1EutARZCWgCEpJp0CmwtVwCKbca2MjLjC5uTP4_DgRH46U2dr5E_XC4PHKjufWDtqOzO4R77DsUU0Bv6rdvL2WMTx3vDD-U-GN0hhpbW7TqOByKG7_AXpW_l-tAe6fsP5cP_b4IC1NwwwI_14waTguYpNmFgXioxbyC6Av_lKwwtYCH6Ry0VmXRBq7YSygVMmFM4mvta5CAVuhoL7X48wK-qR9f7--PjLsoYhRdRM7BScYbmxbdmpG_dqW2GYuvlCKsmif8PiNa57rU5bh7_hPXK35a10twHafbLmigfkVn8G3PLyIfm9W1BXD6OAGEYvJvOqZJDsA2wsBYQ6Wk6wuQl-mW6djj5-3abNBGkKlJliaG12JFEWu6RLOilofw68HiBUUjyb_4Nm1GRag_ujU5fl1FTzafMkujXIjgbV6TbDkGzpRV2IeERObkQXj0mvmBVug1ARWwd5o4mzRMocYGf9PNMyDy03SWKcR4Luz05NOwodb-SYpsshzrWCUlBQWisojTzydvmd82YQyErpzU6HaesUyvQKwh55tfwYzBlrNFnhZlUjEyLtEitkFEgFMZBLjzxp8LFcksDCtfS5R951gLlawP_X-3T1el-S22Bs6dFofPiM3OE1bvGY3SbpLeaVew68bKFftAZAyfebtrm_FnpGpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+virus-induced+gene+silencing+%28VIGS%29+system+for+functional+genomics+in+Brassicas+using+a+cabbage+leaf+curl+virus+%28CaLCuV%29-based+vector&rft.jtitle=Planta&rft.au=Xiao%2C+Zhiliang&rft.au=Xing%2C+Miaomiao&rft.au=Liu%2C+Xing&rft.au=Fang%2C+Zhiyuan&rft.date=2020-09-01&rft.issn=1432-2048&rft.eissn=1432-2048&rft.volume=252&rft.issue=3&rft.spage=42&rft_id=info:doi/10.1007%2Fs00425-020-03454-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon |