Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker

Multi-object tracking has been a key research subject in many computer vision applications. We propose a novel approach based on multi-agent deep reinforcement learning (MADRL) for multi-object tracking to solve the problems in the existing tracking methods, such as a varying number of targets, non-...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 32400 - 32407
Main Authors Jiang, Mingxin, Hai, Tao, Pan, Zhigeng, Wang, Haiyan, Jia, Yinjie, Deng, Chao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2901300

Cover

Loading…
Abstract Multi-object tracking has been a key research subject in many computer vision applications. We propose a novel approach based on multi-agent deep reinforcement learning (MADRL) for multi-object tracking to solve the problems in the existing tracking methods, such as a varying number of targets, non-causal, and non-realtime. At first, we choose YOLO V3 to detect the objects included in each frame. Unsuitable candidates were screened out and the rest of detection results are regarded as multiple agents and forming a multi-agent system. Independent Q-Learners (IQL) is used to learn the agents' policy, in which, each agent treats other agents as part of the environment. Then, we conducted offline learning in the training and online learning during the tracking. Our experiments demonstrate that the use of MADRL achieves better performance than the other state-of-art methods in precision, accuracy, and robustness.
AbstractList Multi-object tracking has been a key research subject in many computer vision applications. We propose a novel approach based on multi-agent deep reinforcement learning (MADRL) for multi-object tracking to solve the problems in the existing tracking methods, such as a varying number of targets, non-causal, and non-realtime. At first, we choose YOLO V3 to detect the objects included in each frame. Unsuitable candidates were screened out and the rest of detection results are regarded as multiple agents and forming a multi-agent system. Independent Q-Learners (IQL) is used to learn the agents' policy, in which, each agent treats other agents as part of the environment. Then, we conducted offline learning in the training and online learning during the tracking. Our experiments demonstrate that the use of MADRL achieves better performance than the other state-of-art methods in precision, accuracy, and robustness.
Author Jia, Yinjie
Pan, Zhigeng
Wang, Haiyan
Deng, Chao
Jiang, Mingxin
Hai, Tao
Author_xml – sequence: 1
  givenname: Mingxin
  orcidid: 0000-0003-0766-5841
  surname: Jiang
  fullname: Jiang, Mingxin
  email: jiangmingxin@126.com
  organization: Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huaian, China
– sequence: 2
  givenname: Tao
  surname: Hai
  fullname: Hai, Tao
  organization: Computer Science Department, Baoji University of Arts and Sciences, Baoji, China
– sequence: 3
  givenname: Zhigeng
  surname: Pan
  fullname: Pan, Zhigeng
  email: zgpan@hznu.edu.cn
  organization: Digital Media and Interaction Research Center, Hangzhou Normal University, Hangzhou, China
– sequence: 4
  givenname: Haiyan
  surname: Wang
  fullname: Wang, Haiyan
  organization: Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huaian, China
– sequence: 5
  givenname: Yinjie
  surname: Jia
  fullname: Jia, Yinjie
  organization: Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huaian, China
– sequence: 6
  givenname: Chao
  surname: Deng
  fullname: Deng, Chao
  organization: School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, China
BookMark eNqFUEtLAzEQDqKgVn-BlwXPW_PcJjdLfUJF8HEOkzgpqXVTs-nBf-_WFREvzmWGj-8xfIdkt00tEnLC6Jgxas6ms9nl4-OYU2bG3FAmKN0hB5w1phZKNLu_7n1y3HVL2o_uITU5IOd3m1WJ9XSBbakuENfVA8Y2pOzxbQvNEXIb20XVQ9XAvXdL9KV6yuBfMR-RvQCrDo-_94g8X10-zW7q-f317Ww6r72kutRSMMV8MA6CCN57bpgGxxrOmHCgjA568uK0dwhBNwaclKiNlNwoFtTEiBG5HXxfEiztOsc3yB82QbRfQMoLC7lEv0KrjZPeORSBBsmDAwOKgmeUuhC0dL3X6eC1zul9g12xy7TJbf--5VKpRmghdc8SA8vn1HUZw08qo3bbvB2at9vm7Xfzvcr8UflYoMTUlgxx9Y_2ZNBGRPxJ043q3-HiE2aNkno
CODEN IAECCG
CitedBy_id crossref_primary_10_1002_cav_2079
crossref_primary_10_1007_s11042_023_17297_3
crossref_primary_10_3390_electronics11101661
crossref_primary_10_1109_ACCESS_2024_3521334
crossref_primary_10_1109_JSEN_2020_3035355
crossref_primary_10_1109_ACCESS_2024_3355018
crossref_primary_10_1007_s00521_021_05738_9
crossref_primary_10_1115_1_4064478
crossref_primary_10_1016_j_neucom_2024_127954
crossref_primary_10_3390_app9163419
crossref_primary_10_1109_ACCESS_2021_3108623
crossref_primary_10_1016_j_eswa_2023_121258
crossref_primary_10_1115_1_4056660
crossref_primary_10_1109_ACCESS_2022_3203443
crossref_primary_10_3389_fpsyg_2022_979657
crossref_primary_10_1109_ACCESS_2023_3321290
crossref_primary_10_1109_TIP_2022_3208437
crossref_primary_10_1109_ACCESS_2019_2961174
crossref_primary_10_1109_TSG_2023_3310893
crossref_primary_10_1109_ACCESS_2019_2930640
crossref_primary_10_3390_electronics10192406
crossref_primary_10_3390_e25010135
crossref_primary_10_3390_app10217462
crossref_primary_10_3390_s23156822
crossref_primary_10_1007_s10462_021_10061_9
crossref_primary_10_1109_ACCESS_2023_3283411
Cites_doi 10.1109/ICCV.2011.6126532
10.1109/ICCV.2015.169
10.1109/CVPRW.2016.59
10.1109/CVPR.2017.148
10.1109/TPAMI.2013.103
10.1109/TPAMI.2016.2577031
10.3390/s17010121
10.1007/978-3-319-46454-1_30
10.1109/ICCV.2015.534
10.1007/s11263-016-0960-z
10.1023/B:VISI.0000013087.49260.fb
10.1109/ICCV.2009.5459207
10.1109/CVPR.2016.91
10.1109/CVPR.2005.177
10.1109/CVPR.2013.241
10.1109/TIP.2016.2570553
10.1109/ROBOT.2004.1307456
10.1109/TPAMI.2015.2509979
10.1109/TPAMI.2010.232
10.1073/pnas.38.8.716
10.1109/TPAMI.2016.2533391
10.1109/CVPR.2017.403
10.1109/TNN.1998.712192
10.1613/jair.4818
10.1109/MSP.2017.2743240
10.1109/ICCV.2015.349
10.1109/TPAMI.2013.210
10.1109/TPAMI.2017.2691769
10.1109/TPAMI.2015.2505309
10.1038/nature16961
10.1109/CVPR.2017.292
10.1109/ICCV.2015.286
10.1109/HNICEM.2017.8269524
10.1109/CVPR.2017.748
10.5220/0006393400170026
10.1016/j.cviu.2016.07.003
10.1109/CVPR.2015.7298718
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2901300
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 32407
ExternalDocumentID oai_doaj_org_article_89b4cbbe3f0f42fba9a50ac100bff84b
10_1109_ACCESS_2019_2901300
8653482
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61801188
  funderid: 10.13039/501100001809
– fundername: 333 high-level talent training project of Jiangsu province
  grantid: BRA2018333
– fundername: Jiangsu Laboratory of Lake Environment Remote Sensing Technologies
  grantid: JSLERS-2018-005
– fundername: Major Program of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
  grantid: 18KJA520002
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20171267
  funderid: 10.13039/501100004608
– fundername: Six Talent Peaks Project in Jiangsu Province
  grantid: 2016XYDXXJS-012
  funderid: 10.13039/501100010014
– fundername: National Key Research and Development project
  grantid: 2017YFB1002803
– fundername: 533 Talents Engineering Project in Huaian
  grantid: HAA201738
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-43151cf9baf3fccc2918ab162113ba598f87db8cbeaf869ab44e89442951f5793
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:55 EDT 2025
Sun Jun 29 12:41:29 EDT 2025
Tue Jul 01 02:18:11 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Aug 27 02:50:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-43151cf9baf3fccc2918ab162113ba598f87db8cbeaf869ab44e89442951f5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0766-5841
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8653482
PQID 2455638348
PQPubID 4845423
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_89b4cbbe3f0f42fba9a50ac100bff84b
crossref_citationtrail_10_1109_ACCESS_2019_2901300
proquest_journals_2455638348
ieee_primary_8653482
crossref_primary_10_1109_ACCESS_2019_2901300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref36
ref14
kumar k c (ref3) 2017; 39
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
redmon (ref40) 2018
ref16
ref19
milan (ref43) 2017
ref18
zhang (ref30) 2017
andriyenko (ref9) 2016; 38
ref24
ref45
ref23
ref48
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
jiang deng ch pan chen wang (ref46) 2018; 2018
luo (ref31) 2017
li (ref27) 2017
buçoniu (ref37) 2010; 310
jie (ref34) 2016
wu (ref15) 2012
ref8
ref7
silver (ref29) 2016; 529
ref4
ref6
ref5
jayaraman (ref28) 2016
leal-taixé (ref47) 2015
References_xml – ident: ref13
  doi: 10.1109/ICCV.2011.6126532
– start-page: 4225
  year: 2017
  ident: ref43
  article-title: Online multi-target tracking using recurrent neural networksm
  publication-title: Proc AAAI
– year: 2017
  ident: ref31
  publication-title: End-to-end active object tracking via reinforcement learning
– volume: 310
  start-page: 183
  year: 2010
  ident: ref37
  publication-title: Multi-agent reinforcement learning an Overview
– ident: ref10
  doi: 10.1109/ICCV.2015.169
– ident: ref44
  doi: 10.1109/CVPRW.2016.59
– volume: 2018
  year: 2018
  ident: ref46
  article-title: Multiple object tracking in videos based on LSTM and deep reinforcement learning
  publication-title: Complexity
– ident: ref32
  doi: 10.1109/CVPR.2017.148
– year: 2017
  ident: ref30
  publication-title: Deep reinforcement learning for visual object tracking in videos
– ident: ref12
  doi: 10.1109/TPAMI.2013.103
– start-page: 127
  year: 2016
  ident: ref34
  article-title: Tree-structured reinforcement learning for sequential object localization
  publication-title: Proc Adv Neural Inf Process
– year: 2015
  ident: ref47
  publication-title: Motchallenge 2015 Towards a benchmark for multi-target tracking
– ident: ref8
  doi: 10.1109/TPAMI.2016.2577031
– year: 2017
  ident: ref27
  publication-title: Deep reinforcement learning An overview
– ident: ref2
  doi: 10.3390/s17010121
– ident: ref33
  doi: 10.1007/978-3-319-46454-1_30
– ident: ref42
  doi: 10.1109/ICCV.2015.534
– ident: ref45
  doi: 10.1007/s11263-016-0960-z
– ident: ref21
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref23
  doi: 10.1109/ICCV.2009.5459207
– ident: ref11
  doi: 10.1109/CVPR.2016.91
– ident: ref22
  doi: 10.1109/CVPR.2005.177
– ident: ref14
  doi: 10.1109/CVPR.2013.241
– ident: ref19
  doi: 10.1109/TIP.2016.2570553
– ident: ref26
  doi: 10.1109/ROBOT.2004.1307456
– ident: ref17
  doi: 10.1109/TPAMI.2015.2509979
– ident: ref18
  doi: 10.1109/TPAMI.2010.232
– ident: ref39
  doi: 10.1073/pnas.38.8.716
– volume: 39
  start-page: 61
  year: 2017
  ident: ref3
  article-title: Discriminative and efficient label propagation on complementary graphs for multi-object tracking
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2533391
– ident: ref1
  doi: 10.1109/CVPR.2017.403
– ident: ref25
  doi: 10.1109/TNN.1998.712192
– start-page: 1948
  year: 2012
  ident: ref15
  article-title: Coupling detection and data association for multiple object tracking
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref36
  doi: 10.1613/jair.4818
– ident: ref24
  doi: 10.1109/MSP.2017.2743240
– ident: ref48
  doi: 10.1109/ICCV.2015.349
– ident: ref6
  doi: 10.1109/TPAMI.2013.210
– ident: ref16
  doi: 10.1109/TPAMI.2017.2691769
– volume: 38
  start-page: 2054
  year: 2016
  ident: ref9
  article-title: Multi-target tracking by discrete-continuous energy minimization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2505309
– volume: 529
  start-page: 484
  year: 2016
  ident: ref29
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref7
  doi: 10.1109/CVPR.2017.292
– ident: ref35
  doi: 10.1109/ICCV.2015.286
– ident: ref4
  doi: 10.1109/HNICEM.2017.8269524
– ident: ref41
  doi: 10.1109/CVPR.2017.748
– year: 2018
  ident: ref40
  publication-title: YOLOv3 An Incremental Improvement
– ident: ref38
  doi: 10.5220/0006393400170026
– ident: ref5
  doi: 10.1016/j.cviu.2016.07.003
– ident: ref20
  doi: 10.1109/CVPR.2015.7298718
– year: 2016
  ident: ref28
  publication-title: Look-ahead before you leap end-to-end active recognition by forecasting the effect of motion
SSID ssj0000816957
Score 2.3647766
Snippet Multi-object tracking has been a key research subject in many computer vision applications. We propose a novel approach based on multi-agent deep reinforcement...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32400
SubjectTerms Computer vision
Deep learning
Distance learning
IQL
MADRL
Multi-object tracking
Multiagent systems
Multiple target tracking
Neural networks
Object detection
Object recognition
Real-time systems
Reinforcement learning
Target tracking
Training
YOLO V3
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLHjxaN2mTdHJzXRURVBCFvYUkTbzIKrr-fzNpXAqCXrym6SMzzbwy8w0hx06a2nkWKmBMVdy1TQV4XOhdFyCa0NA0WI18eyevn_jNVEwHrb4wJ6yHB-4JNwJlubPWN4EGXgdrlBHUOEapDQG4Rekbdd7AmUoyGJhUos0wQ4yq0XgyiSvCXC51imeHDda0DVRRQuzPLVZ-yOWkbK7WyVq2Estx_3UbZMnPNsnqADtwi5yl0tlqjKVR5YX3b-WDTyioLgX8ygyc-lzGobKfe28x6FJG9YS5FNvk6erycXJd5XYIleMU5lVU9YK5oKwJTXDO1YqBsUxGF66xRigI0HYWnPUmgFTGcu5B8ahwBAsi7sMdsjx7nfldUspOeitpoMow3onoY3S-Vl3jqQ-utVCQ-psy2mWscGxZ8aKTz0CV7smpkZw6k7MgJ4ub3nqojN-nnyPJF1MR5zoNRO7rzH39F_cLsoUMWzwEpEC0noIcfDNQ5z35oWuOYGgQr-_9x6v3yQoupw_HHJDl-funP4wGytwepX_xC9d54OY
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
URI https://ieeexplore.ieee.org/document/8653482
https://www.proquest.com/docview/2455638348
https://doaj.org/article/89b4cbbe3f0f42fba9a50ac100bff84b
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PbUHHn2IhVLlwLHZ2omdtW8sC1WFVJAQlXqz7MmYA2hbtbuX_no8jjeqCkLcImcc2R478_DMNwDvsPMNkoy1kdLWCmdtbfi6kLCPJqnQpm05G_nyS3dxpT5f6-stOB1zYYgoB5_RlB_zXX5_g2t2lZ2ZTjMWyzZsJ8NtyNUa_SlcQMLqWQEWksKezReLNAeO3rJTvi1sOYvtkfDJGP2lqMoff-IsXs6fw-VmYENUyc_pehWm-PAEs_F_R_4CnhU9s5oPG-MlbNFyH_YeoQ8ewPucfFvPObmq-kh0W32jjKOK2WVYFejVH1Vqqgbar4HdNlUScByNcQhX55--Ly7qUlChRiXMqk7KgpYYbfCxjYjYWGl8kF0yAtvgtTXRzPpgMJCPprM-KEXGqiSytIw6neQj2FneLOkVVF3fUehEFNZL1etkpfTU2L4lQRFnwUyg2ay0w4I2zkUvfrlsdQjrBvY4Zo8r7JnA6djpdgDb-Df5B2bhSMpI2bkhLb0rB88ZGxSGQG0UUTUxeOu18CiFCDEaFSZwwOwaP1I4NYHjzYZw5VTfu0YxnJpJ71__vdcb2OUBDi6aY9hZ3a3pbVJaVuEkG_snec_-BkxZ6ZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPbQc6IMillLIoUey2ImdtW_dbkFLy1KpAombZTtjDqAFtbuX_vp6HG-E2qriFjl2NPZ4MuPxzDcAH3xjK488lIpzXQo_qktF14Xo26CiCa3qmrKRZxfN9Ep8uZbXa3DU58IgYgo-wyE9prv89t4vyVV2rBpJWCzr8CzqfaG7bK3eo0IlJLQcZWghzvTxeDKJs6D4LT2k-8Ka8tgeqZ-E0p_Lqvz1L04K5vQlzFakdXElt8Plwg39rz9QG59K-yvYypZmMe62xmtYw_kb2HyEP7gNH1P6bTmm9KriM-JD8R0TkqpPTsMig6_eFLGp6Pp-c-S4KaKKo3iMt3B1enI5mZa5pELpBVOLMpoLkvugnQ118N5XmivreBOPgbWzUqugRq1T3qENqtHWCYFKi6i0JA8yyvIObMzv57gLRdM26BoWmLZctDKeU1qsdFsjw-BHTg2gWq208RlvnMpe3Jl07mDadOwxxB6T2TOAo37QQwe38f_un4iFfVfCyk4NcelNFj2jtBPeOawDC6IKzmormfWcMReCEm4A28Su_iOZUwPYX20Ik-X6p6kEAaqp-H7v36MO4fn0cnZuzs8uvr6DF0Rs57DZh43FjyW-jybMwh2knfsbMS_r6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Deep+Reinforcement+Learning+for+Multi-Object+Tracker&rft.jtitle=IEEE+access&rft.au=Jiang%2C+Mingxin&rft.au=Hai%2C+Tao&rft.au=Pan%2C+Zhigeng&rft.au=Wang%2C+Haiyan&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=32400&rft.epage=32407&rft_id=info:doi/10.1109%2FACCESS.2019.2901300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2901300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon