Comparison analysis of six purely satellite-derived global precipitation estimates

•Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in l...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 581; p. 124376
Main Authors Chen, Hanqing, Yong, Bin, Shen, Yan, Liu, Jiufu, Hong, Yang, Zhang, Jianyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in light rainfall still exhibit large errors. We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world.
AbstractList We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world.
•Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in light rainfall still exhibit large errors. We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world.
ArticleNumber 124376
Author Liu, Jiufu
Shen, Yan
Hong, Yang
Chen, Hanqing
Yong, Bin
Zhang, Jianyun
Author_xml – sequence: 1
  givenname: Hanqing
  surname: Chen
  fullname: Chen, Hanqing
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0003-1466-2091
  surname: Yong
  fullname: Yong, Bin
  email: yongbin@hhu.edu.cn
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Yan
  surname: Shen
  fullname: Shen, Yan
  organization: National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China
– sequence: 4
  givenname: Jiufu
  surname: Liu
  fullname: Liu, Jiufu
  organization: Nanjing Hydraulic Research Institute, Nanjing 210029, China
– sequence: 5
  givenname: Yang
  surname: Hong
  fullname: Hong, Yang
  organization: School of Civil Engineering and Environment Sciences, University of Oklahoma, Norman, OK 73019, USA
– sequence: 6
  givenname: Jianyun
  surname: Zhang
  fullname: Zhang, Jianyun
  organization: Nanjing Hydraulic Research Institute, Nanjing 210029, China
BookMark eNqFkE1LwzAYx4NMcJt-BKFHL61JmrYJHkSGbzAQRM8hTVJNyZqaZMN-ezO2k5c9l-fy_z0vvwWYDW7QAFwjWCCI6tu-6L8n5Z0tMESsQJiUTX0G5og2LMcNbGZgDiHGOaoZuQCLEHqYqizJHLyv3GYU3gQ3ZGIQdgomZK7LgvnNxq3XdsqCiNpaE3WutDc7rbIv61phs9FraUYTRTSJ1iGaTYqGS3DeCRv01bEvwefT48fqJV-_Pb-uHta5JJDGnGDFUNWSqmplRTvUtRKjqkKUdTVlNekUKTFtEWOUKAUb1aIaUoVQyYjucFsuwc1h7ujdzzat5xsTZDpVDNptA8cEQlI3Fa5T9O4Qld6F4HXH5fHs6IWxHEG-N8l7fjTJ9yb5wWSiq3_06NOrfjrJ3R84nSzsjPY8SKMHqZVJ5iJXzpyY8AcJr5P6
CitedBy_id crossref_primary_10_1016_j_atmosres_2021_105570
crossref_primary_10_3390_rs15041115
crossref_primary_10_1016_j_atmosres_2024_107517
crossref_primary_10_1002_joc_8817
crossref_primary_10_1016_j_atmosres_2024_107637
crossref_primary_10_3390_atmos13111936
crossref_primary_10_3390_w13223200
crossref_primary_10_1029_2023WR035643
crossref_primary_10_1016_j_atmosres_2020_104952
crossref_primary_10_3390_rs15133381
crossref_primary_10_1029_2020GL091950
crossref_primary_10_3390_rs15215230
crossref_primary_10_5194_hess_25_3087_2021
crossref_primary_10_47190_nric_v4i3_254
crossref_primary_10_1109_TGRS_2021_3131238
crossref_primary_10_1109_TGRS_2021_3127943
crossref_primary_10_3390_rs16020275
crossref_primary_10_1029_2023GL105120
crossref_primary_10_3390_rs13132574
crossref_primary_10_1016_j_atmosres_2024_107520
crossref_primary_10_3390_rs15174154
crossref_primary_10_3390_w12092626
crossref_primary_10_1016_j_ejrh_2023_101405
crossref_primary_10_1109_JSTARS_2024_3392601
crossref_primary_10_1007_s11069_021_05117_6
crossref_primary_10_1016_j_jhydrol_2024_131024
crossref_primary_10_3390_rs12182886
crossref_primary_10_3390_rs15071819
crossref_primary_10_1029_2022WR032117
crossref_primary_10_1039_D2EA00073C
crossref_primary_10_3390_atmos11111223
crossref_primary_10_1109_JSTARS_2021_3105562
crossref_primary_10_1016_j_atmosres_2023_106606
crossref_primary_10_3390_rs14194748
crossref_primary_10_1016_j_atmosres_2025_108075
crossref_primary_10_1007_s40808_025_02299_x
crossref_primary_10_3390_rs15071823
crossref_primary_10_1016_j_jhydrol_2024_130947
crossref_primary_10_1016_j_jhydrol_2023_129234
crossref_primary_10_1016_j_atmosres_2022_106403
crossref_primary_10_1175_JHM_D_21_0019_1
crossref_primary_10_1016_j_jhydrol_2024_131757
crossref_primary_10_1016_j_atmosres_2021_105510
crossref_primary_10_1109_TGRS_2022_3168928
crossref_primary_10_1016_j_jhydrol_2020_124789
crossref_primary_10_5194_hess_27_4529_2023
crossref_primary_10_1016_j_atmosres_2025_108061
crossref_primary_10_3390_w13233381
crossref_primary_10_1016_j_ejrh_2022_101070
crossref_primary_10_3390_rs14071605
crossref_primary_10_1016_j_atmosres_2025_107929
crossref_primary_10_1007_s12145_024_01612_z
crossref_primary_10_20965_jdr_2021_p0786
crossref_primary_10_1016_j_ejrh_2024_102019
crossref_primary_10_1016_j_jhydrol_2022_127985
crossref_primary_10_3390_atmos14111653
crossref_primary_10_1016_j_jhydrol_2023_129500
crossref_primary_10_1016_j_atmosres_2022_106017
crossref_primary_10_1016_j_jhydrol_2023_129384
crossref_primary_10_3390_rs13020202
crossref_primary_10_1029_2021WR029682
crossref_primary_10_3390_e23091194
crossref_primary_10_1109_JSTARS_2024_3418429
crossref_primary_10_1016_j_jhydrol_2022_128076
crossref_primary_10_1016_j_atmosres_2023_106875
crossref_primary_10_1109_ACCESS_2023_3318739
crossref_primary_10_3390_rs13224552
crossref_primary_10_3390_rs16142671
crossref_primary_10_1007_s40899_024_01171_7
crossref_primary_10_1016_j_atmosres_2021_105813
crossref_primary_10_3390_rs13163061
crossref_primary_10_3390_rs13050906
crossref_primary_10_3390_w16111553
crossref_primary_10_1175_JHM_D_20_0103_1
crossref_primary_10_1109_JSTARS_2024_3358829
crossref_primary_10_1007_s40710_022_00613_8
Cites_doi 10.1002/2013WR014710
10.1016/j.jhydrol.2013.10.050
10.1175/JCLI-D-15-0618.1
10.1029/2011JD016118
10.1109/TGRS.2010.2057513
10.1002/2013JD019964
10.1002/2016JD025418
10.1175/JHM-D-14-0048.1
10.1175/JHM-D-18-0161.1
10.1175/JHM-D-16-0277.1
10.1016/j.atmosres.2011.10.021
10.1038/sdata.2018.296
10.1175/BAMS-D-14-00017.1
10.5194/hess-21-6201-2017
10.1175/JHM-D-16-0174.1
10.5194/hess-23-207-2019
10.1007/978-3-662-48297-1_4
10.1029/2007JD009132
10.1175/BAMS-D-13-00164.1
10.1029/2010GL046008
10.1016/j.scitotenv.2019.01.119
10.1175/JHM583.1
10.1007/s00704-013-1072-0
10.3390/rs8050440
10.1175/JHM-D-17-0161.1
10.1175/JAM2173.1
10.1016/j.atmosres.2017.06.020
10.1029/2009WR008965
10.1175/JHM560.1
10.5194/hess-20-903-2016
10.1002/2017RG000574
10.3390/rs10091420
10.1080/02626667.2010.543087
10.1175/JHM-D-15-0190.1
10.1016/j.jhydrol.2016.01.029
10.1175/JHM-D-15-0068.1
10.1016/j.jhydrol.2019.05.020
10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
10.1016/j.atmosres.2018.07.022
10.1175/BAMS-D-11-00171.1
10.1002/wrcr.20246
10.1002/2017JD026877
10.1016/j.jhydrol.2018.02.057
10.1016/j.jhydrol.2018.06.064
10.1175/JHM-D-12-030.1
10.3390/rs10122022
10.1016/j.atmosres.2017.11.005
10.1029/2009JD011949
10.2151/jmsj.87A.137
10.1109/JSTARS.2018.2825336
10.1109/TGRS.2007.895337
10.1016/j.jhydrol.2015.12.008
10.1016/j.atmosres.2016.02.020
10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
10.1002/joc.1688
10.1002/2013JD020686
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2019.124376
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2019_124376
S0022169419311114
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c408t-42d915b455bc58f1fbc2155189f68964fd4328b19984dd07db1608d11394ef2b3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 16:33:39 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 01:53:17 EDT 2025
Fri Feb 23 02:49:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mainland China
Satellite-only precipitation products
Light rainfall
RMSE
Error source
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-42d915b455bc58f1fbc2155189f68964fd4328b19984dd07db1608d11394ef2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1466-2091
PQID 2400467526
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400467526
crossref_citationtrail_10_1016_j_jhydrol_2019_124376
crossref_primary_10_1016_j_jhydrol_2019_124376
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yong, Ren, Hong, Wang, Gourley, Jiang, Chen, Wang (b0290) 2010; 46
Nguyen, Shearer, Tran, Ombadi, Hayatbini, Palacios, Huynh, Braithwaite, Updegraff, Hsu, Kuligowski, Logan, Sorooshian (b0135) 2019; 6
Khan (b0095) 2011; 49
Tian, Hou, Yang, Hu, Hou (b0205) 2018; 19
Huffman, Bolvin, Nelkin, Wolff, Adler, Gu, Nelkin, Bowman, Hong, Stocker, Stocker (b0080) 2007; 8
Wu, Guo, Zheng, Zhang, Li (b0250) 2019; 660
Zhu, Yong, Ke, Wang, Ren, Chen (b0310) 2018; 11
Sorooshian, Hsu, Gao, Gupta, Imam, Braithwaite (b0170) 2000; 81
Hou, Kakar, Neeck, Azarbarzin, Kummerow, Kojima, Oki, Nakamura, Lguchi (b0070) 2014; 95
Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (b0180) 2018; 56
Xie, Xiong (b0260) 2011; 116
Maggioni, Meyers, Robinson (b0125) 2016; 17
Kucera, Ebert, Turk, Levizzani, Kirschbaum, Tapiador, Loew, Borsche (b0110) 2013; 94
Manz, Páez-Bimos, Horna, Buytaert, Ochoa-Tocachi, Lavado-Casimiro, Willems (b0130) 2017; 18
Wang, Hong, Li, Gourley, Khan, Yilmaz, Adler, Policelli, Habib, Irwn, Limaye, Korme, Limaye (b0230) 2011; 56
Kirstetter, Hong, Gourley, Schwaller, Petersen, Zhang (b0100) 2013; 14
Tian, Peters-Lidard (b0210) 2010; 37
Gehne, Hamill, Kiladis, Trenberth (b0045) 2016; 29
Tian, Peters-Lidard, Eylander, Joyce, Huffman, Adler, Hsu, Turk, Garcia, Zeng (b0215) 2009; 114
Xie, Chen, Yang, Yatagai, Hayasaka, Fukushima, Liu (b0255) 2007; 8
Guo, Chen, Bao, Behrangi, Hong, Ndayisaba, Hu, Stepanian (b0055) 2016; 176–177
Yang, Luo (b0270) 2014; 118
Tan, Petersen, Kirstetter, Tian (b0185) 2017; 18
Ren, Zhao, Zhang (b0155) 2010; 36
Chen, Yong, Gourly, Liu, Ren, Wang, Hong, Zhang (b0020) 2019; 575
Yong, Liu, Gourley, Tian, Huffman, Ren, Hong (b0285) 2015; 96
Chen, Hong, Cao, Gourley, Kirstetter, Yong, Tian, Zhang, Shen, Hu, Hardy (b0030) 2013; 118
Shen, Zhao, Pan, Yu (b0165) 2014; 119
Tang, Ma, Long, Zhong, Hong (b0195) 2016; 533
Tang, Behrangi, Long, Li, Hong (b0190) 2018; 559
Prakash, Mitra, AghaKouchak, Liu, Norouzi, Pai (b0140) 2018; 556
Yong, Chen, Gourley, Ren, Hong, Chen, Wang, Chen, Gong (b0275) 2014; 508
Zhang, Hong, Wang, Gourley, Xue, Saharia, Ni, Wang, Huang, Chen, Tang (b0300) 2015; 16
Prakash, Seshadri, Srinivasan, Pai (b0145) 2019; 20
Su, Lü, Zhu, Wang, Wei (b0175) 2018; 10
Deng, Zhang, Guo, Xu, Bing, Jia (b0040) 2018; 214
Joyce, Janowiak, Arkin, Xie (b0090) 2004; 5
Tapiador, Turk, Petersen, Hou, García-Ortega, Machado, Angelis, Salio, Kidd, Huffman, De Castro (b0200) 2012; 104
Xu, Tian, Yang, Hu, Lu, Hou (b0265) 2017; 122
Zhao, Yang, Yang, Huang, Dong, Bai, Wang (b0305) 2018; 201
Wu, Adler, Tian, Huffman, Li, Wang (b0245) 2014; 50
Guo, Bao, Ndayisaba, Liu, Kurban, De Maeyer (b0050) 2017; 122
Hong, Tang, Ma, Huang, Han, Zeng, Yang, Wang, Guo (b0065) 2019
Yong, Ren, Hong, Gourley, Tian, Huffman, Chen, Wang, Wen (b0295) 2013; 49
Huffman, G.J., 2018. The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA/GSFC. pp. 1.
Daly, Halbleib, Smith, Gibson, Doggett, Taylor, Pasteris (b0035) 2008; 28
Liu (b0115) 2016; 17
Shen, Pan, Yu, Zhao (b0160) 2013; 36
Ushio, Sasashige, Kubota, Shige, Okamoto, Aonashi, Inoue, Takahashi, Iguchi, Kachi, Oki, Morimoto, Kawasaki (b0220) 2009; 87
Chen, Lu, Zhou, Zhu, Ren, Yong (b0015) 2019; 35
Beck, Pan, Roy, Weedon, Pappenberger, van Dijk, Huffman, Adler, Wood (b0005) 2019; 23
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Tan, J., 2019. Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. NASA/GSFC. pp. 1.
Kubota, Shige, Hashizume, Aonashi, Takahashi, Seto, Hirose, Takayabu, Ushio, Nakagawa, Iwanami, Kachi, Okamoto (b0105) 2007; 45
Yong, Chen, Tian, Yu, Hong (b0280) 2016; 8
Beck, Vergopolan, Pan, Levizzani, van Dijk, Weedon, Brocca, Pappenberger, Huffman, Wood (b0010) 2017; 21
Hong, Hsu, Sorooshian, Gao (b0060) 2004; 43
Qi, Zhang, Fu, Sweetapple, Zhou (b0150) 2016; 20
Chen, Shi, Xie, Silva, Kousky, Wayne Higgins, Janowiak (b0025) 2008; 113
Wang, Zhong, Lai, Chen (b0235) 2017; 196
Wang, Tang, Han, Guo, Hong (b0225) 2018; 564
Lu, Yong (b0120) 2018; 10
Daly (10.1016/j.jhydrol.2019.124376_b0035) 2008; 28
Deng (10.1016/j.jhydrol.2019.124376_b0040) 2018; 214
Chen (10.1016/j.jhydrol.2019.124376_b0030) 2013; 118
Gehne (10.1016/j.jhydrol.2019.124376_b0045) 2016; 29
Prakash (10.1016/j.jhydrol.2019.124376_b0145) 2019; 20
Chen (10.1016/j.jhydrol.2019.124376_b0015) 2019; 35
Zhao (10.1016/j.jhydrol.2019.124376_b0305) 2018; 201
Maggioni (10.1016/j.jhydrol.2019.124376_b0125) 2016; 17
Sun (10.1016/j.jhydrol.2019.124376_b0180) 2018; 56
Wu (10.1016/j.jhydrol.2019.124376_b0250) 2019; 660
Shen (10.1016/j.jhydrol.2019.124376_b0165) 2014; 119
Yong (10.1016/j.jhydrol.2019.124376_b0275) 2014; 508
Wang (10.1016/j.jhydrol.2019.124376_b0235) 2017; 196
Huffman (10.1016/j.jhydrol.2019.124376_b0080) 2007; 8
Liu (10.1016/j.jhydrol.2019.124376_b0115) 2016; 17
Qi (10.1016/j.jhydrol.2019.124376_b0150) 2016; 20
Yong (10.1016/j.jhydrol.2019.124376_b0290) 2010; 46
Guo (10.1016/j.jhydrol.2019.124376_b0050) 2017; 122
Kucera (10.1016/j.jhydrol.2019.124376_b0110) 2013; 94
Tang (10.1016/j.jhydrol.2019.124376_b0195) 2016; 533
Hou (10.1016/j.jhydrol.2019.124376_b0070) 2014; 95
Wang (10.1016/j.jhydrol.2019.124376_b0225) 2018; 564
Ren (10.1016/j.jhydrol.2019.124376_b0155) 2010; 36
Su (10.1016/j.jhydrol.2019.124376_b0175) 2018; 10
Tang (10.1016/j.jhydrol.2019.124376_b0190) 2018; 559
Yong (10.1016/j.jhydrol.2019.124376_b0295) 2013; 49
Zhang (10.1016/j.jhydrol.2019.124376_b0300) 2015; 16
Beck (10.1016/j.jhydrol.2019.124376_b0005) 2019; 23
Hong (10.1016/j.jhydrol.2019.124376_b0065) 2019
Lu (10.1016/j.jhydrol.2019.124376_b0120) 2018; 10
Khan (10.1016/j.jhydrol.2019.124376_b0095) 2011; 49
10.1016/j.jhydrol.2019.124376_b0075
Wu (10.1016/j.jhydrol.2019.124376_b0245) 2014; 50
Tian (10.1016/j.jhydrol.2019.124376_b0205) 2018; 19
Shen (10.1016/j.jhydrol.2019.124376_b0160) 2013; 36
Yong (10.1016/j.jhydrol.2019.124376_b0280) 2016; 8
Kubota (10.1016/j.jhydrol.2019.124376_b0105) 2007; 45
Wang (10.1016/j.jhydrol.2019.124376_b0230) 2011; 56
Chen (10.1016/j.jhydrol.2019.124376_b0020) 2019; 575
Ushio (10.1016/j.jhydrol.2019.124376_b0220) 2009; 87
Tian (10.1016/j.jhydrol.2019.124376_b0215) 2009; 114
Tapiador (10.1016/j.jhydrol.2019.124376_b0200) 2012; 104
10.1016/j.jhydrol.2019.124376_b0085
Tian (10.1016/j.jhydrol.2019.124376_b0210) 2010; 37
Nguyen (10.1016/j.jhydrol.2019.124376_b0135) 2019; 6
Xie (10.1016/j.jhydrol.2019.124376_b0255) 2007; 8
Beck (10.1016/j.jhydrol.2019.124376_b0010) 2017; 21
Zhu (10.1016/j.jhydrol.2019.124376_b0310) 2018; 11
Guo (10.1016/j.jhydrol.2019.124376_b0055) 2016; 176–177
Kirstetter (10.1016/j.jhydrol.2019.124376_b0100) 2013; 14
Xu (10.1016/j.jhydrol.2019.124376_b0265) 2017; 122
Yong (10.1016/j.jhydrol.2019.124376_b0285) 2015; 96
Joyce (10.1016/j.jhydrol.2019.124376_b0090) 2004; 5
Manz (10.1016/j.jhydrol.2019.124376_b0130) 2017; 18
Chen (10.1016/j.jhydrol.2019.124376_b0025) 2008; 113
Tan (10.1016/j.jhydrol.2019.124376_b0185) 2017; 18
Hong (10.1016/j.jhydrol.2019.124376_b0060) 2004; 43
Prakash (10.1016/j.jhydrol.2019.124376_b0140) 2018; 556
Xie (10.1016/j.jhydrol.2019.124376_b0260) 2011; 116
Sorooshian (10.1016/j.jhydrol.2019.124376_b0170) 2000; 81
Yang (10.1016/j.jhydrol.2019.124376_b0270) 2014; 118
References_xml – volume: 10
  start-page: 1420
  year: 2018
  ident: b0175
  article-title: Component analysis of errors in four GPM-based precipitation estimations over Mainland China
  publication-title: Remote Sens.
– volume: 559
  start-page: 294
  year: 2018
  end-page: 306
  ident: b0190
  article-title: Accounting for spatiotemporal errors of gauges: a critical step to evaluate gridded precipitation products
  publication-title: J. Hydrol.
– volume: 575
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0020
  article-title: Impact of the crucial geographical and climatic factors on the input source errors of GPM-based global satellite precipitation estimates
  publication-title: J. Hydrol.
– volume: 87
  start-page: 137
  year: 2009
  end-page: 151
  ident: b0220
  article-title: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data
  publication-title: J. Meteorol. Soc. Jpn. Ser. II
– volume: 8
  start-page: 440
  year: 2016
  ident: b0280
  article-title: Error-component analysis of TRMM-based multi-satellite precipitation estimates over mainland China
  publication-title: Remote Sens.
– volume: 36
  start-page: 37
  year: 2013
  end-page: 46
  ident: b0160
  article-title: Quality assessment of hourly merged precipitation product over China (in Chinese)
  publication-title: Trans. Atmos. Sci.
– volume: 201
  start-page: 206
  year: 2018
  end-page: 217
  ident: b0305
  article-title: Systematical estimation of GPM-based global satellite mapping of precipitation products over China
  publication-title: Atmos. Res.
– volume: 18
  start-page: 2469
  year: 2017
  end-page: 2489
  ident: b0130
  article-title: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes
  publication-title: J. Hydrometeorol.
– volume: 5
  start-page: 487
  year: 2004
  end-page: 503
  ident: b0090
  article-title: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution
  publication-title: J. Hydrometeorol.
– volume: 196
  start-page: 151
  year: 2017
  end-page: 163
  ident: b0235
  article-title: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility
  publication-title: Atmos. Res.
– volume: 81
  start-page: 2035
  year: 2000
  end-page: 2046
  ident: b0170
  article-title: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 533
  start-page: 152
  year: 2016
  end-page: 167
  ident: b0195
  article-title: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales
  publication-title: J. Hydrol.
– volume: 43
  start-page: 1834
  year: 2004
  end-page: 1853
  ident: b0060
  article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
  publication-title: J. Appl. Meteorol.
– volume: 18
  start-page: 307
  year: 2017
  end-page: 319
  ident: b0185
  article-title: Performance of IMERG as a function of spatiotemporal scale
  publication-title: J. Hydrometeorol.
– volume: 104
  start-page: 70
  year: 2012
  end-page: 97
  ident: b0200
  article-title: Global precipitation measurement: methods, datasets and applications
  publication-title: Atmos. Res.
– volume: 119
  start-page: 3063
  year: 2014
  end-page: 3075
  ident: b0165
  article-title: A high spatiotemporal gauge-satellite merged precipitation analysis over China
  publication-title: J. Geophys. Res.-Atmos.
– volume: 29
  start-page: 7773
  year: 2016
  end-page: 7795
  ident: b0045
  article-title: Comparison of global precipitation estimates across a range of temporal and spatial scales
  publication-title: J. Clim.
– volume: 564
  start-page: 342
  year: 2018
  end-page: 356
  ident: b0225
  article-title: Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: similarity, difference and improvements
  publication-title: J. Hydrol.
– volume: 45
  start-page: 2259
  year: 2007
  end-page: 2275
  ident: b0105
  article-title: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 118
  year: 2013
  ident: b0030
  article-title: Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China
  publication-title: J. Geophys. Res.-Atmos.
– volume: 37
  year: 2010
  ident: b0210
  article-title: A global map of uncertainties in satellite-based precipitation measurements
  publication-title: Geophys. Res. Lett.
– volume: 49
  start-page: 2461
  year: 2013
  end-page: 2472
  ident: b0295
  article-title: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes
  publication-title: Water Resour. Res.
– start-page: 107
  year: 2019
  end-page: 128
  ident: b0065
  article-title: Remote sensing precipitation: sensors, retrievals, validations, and applications
  publication-title: Observ. Meas. Ecohydrol. Processes
– volume: 113
  year: 2008
  ident: b0025
  article-title: Assessing objective techniques for gauge-based analyses of global daily precipitation
  publication-title: J. Geophys. Res.-Atmos.
– volume: 556
  start-page: 865
  year: 2018
  end-page: 876
  ident: b0140
  article-title: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region
  publication-title: J. Hydrol.
– volume: 16
  start-page: 381
  year: 2015
  end-page: 395
  ident: b0300
  article-title: Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems?
  publication-title: J. Hydrometeorol.
– volume: 8
  start-page: 607
  year: 2007
  end-page: 626
  ident: b0255
  article-title: A gauge-based analysis of daily precipitation over East Asia
  publication-title: J. Hydrometeorol.
– volume: 94
  start-page: 365
  year: 2013
  end-page: 375
  ident: b0110
  article-title: Precipitation from space: advancing Earth system science
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 96
  start-page: 283
  year: 2015
  end-page: 296
  ident: b0285
  article-title: Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 20
  start-page: 821
  year: 2019
  end-page: 832
  ident: b0145
  article-title: A new parameter to assess impact of rain gauge density on uncertainty in the estimate of monthly rainfall over India
  publication-title: J. Hydrometeorol.
– volume: 122
  start-page: 10
  year: 2017
  end-page: 906
  ident: b0050
  article-title: Systematical evaluation of satellite precipitation estimates over central asia using an improved error-component procedure
  publication-title: J. Geophys. Res.-Atmos.
– volume: 23
  start-page: 207
  year: 2019
  end-page: 224
  ident: b0005
  article-title: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 95
  start-page: 701
  year: 2014
  end-page: 722
  ident: b0070
  article-title: The global precipitation measurement mission
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 6
  year: 2019
  ident: b0135
  article-title: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data
  publication-title: Sci. Data.
– volume: 46
  start-page: W07542
  year: 2010
  ident: b0290
  article-title: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: a case study in Laohahe basin, China
  publication-title: Water Resour. Res.
– volume: 56
  start-page: 79
  year: 2018
  end-page: 107
  ident: b0180
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Rev. Geophys.
– volume: 8
  start-page: 38
  year: 2007
  end-page: 55
  ident: b0080
  article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
  publication-title: J. Hydrometeorol.
– volume: 14
  start-page: 661
  year: 2013
  end-page: 669
  ident: b0100
  article-title: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE
  publication-title: J. Hydrometeorol.
– volume: 11
  start-page: 2181
  year: 2018
  end-page: 2191
  ident: b0310
  article-title: Tracing the Error Sources of Global Satellite Mapping of Precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau, China
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 114
  year: 2009
  ident: b0215
  article-title: Component analysis of errors in satellite-based precipitation estimates
  publication-title: J. Geophys. Res.-Atmos.
– volume: 21
  start-page: 6201
  year: 2017
  end-page: 6217
  ident: b0010
  article-title: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 118
  start-page: 429
  year: 2014
  end-page: 445
  ident: b0270
  article-title: Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China
  publication-title: Theor. Appl. Climatol.
– reference: Huffman, G.J., 2018. The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA/GSFC. pp. 1.
– volume: 49
  start-page: 85
  year: 2011
  end-page: 95
  ident: b0095
  article-title: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 122
  start-page: 910
  year: 2017
  end-page: 924
  ident: b0265
  article-title: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network
  publication-title: J. Geophys. Res.-Atmos.
– volume: 116
  start-page: D21106
  year: 2011
  ident: b0260
  article-title: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses
  publication-title: J. Geophys. Res.-Atmos.
– volume: 17
  start-page: 1101
  year: 2016
  end-page: 1117
  ident: b0125
  article-title: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era
  publication-title: J. Hydrometeorol.
– volume: 214
  start-page: 121
  year: 2018
  end-page: 134
  ident: b0040
  article-title: Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China
  publication-title: Atmos. Res.
– reference: Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Tan, J., 2019. Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. NASA/GSFC. pp. 1.
– volume: 36
  start-page: 123
  year: 2010
  end-page: 132
  ident: b0155
  article-title: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese)
  publication-title: Meteorol. Mon.
– volume: 660
  start-page: 1555
  year: 2019
  end-page: 1564
  ident: b0250
  article-title: Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau
  publication-title: Sci. Total Environ.
– volume: 56
  start-page: 84
  year: 2011
  end-page: 98
  ident: b0230
  article-title: The coupled routing and excess storage (CREST) distributed hydrological model
  publication-title: Hydrol. Sci. J.
– volume: 176–177
  start-page: 121
  year: 2016
  end-page: 133
  ident: b0055
  article-title: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China
  publication-title: Atmos. Res.
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  ident: b0035
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: Int. J. Climatol.
– volume: 508
  start-page: 77
  year: 2014
  end-page: 87
  ident: b0275
  article-title: Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes?
  publication-title: J. Hydrol.
– volume: 50
  start-page: 2693
  year: 2014
  end-page: 2717
  ident: b0245
  article-title: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 27
  year: 2019
  end-page: 34
  ident: b0015
  article-title: An overview of the evaluation of satellite precipitation products for global precipitation measurement (GPM) (in Chinese)
  publication-title: Water Resour. Prot.
– volume: 17
  start-page: 777
  year: 2016
  end-page: 790
  ident: b0115
  article-title: Comparison of integrated multi-satellite retrievals for GPM (IMERG) and TRMM multi-satellite precipitation analysis (TMPA) monthly precipitation products: initial results
  publication-title: J. Hydrometeorol.
– volume: 20
  start-page: 903
  year: 2016
  end-page: 920
  ident: b0150
  article-title: Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 10
  start-page: 2022
  year: 2018
  ident: b0120
  article-title: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau
  publication-title: Remote Sens.
– volume: 19
  start-page: 339
  year: 2018
  end-page: 349
  ident: b0205
  article-title: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity?
  publication-title: J. Hydrometeorol.
– volume: 50
  start-page: 2693
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124376_b0245
  article-title: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014710
– volume: 508
  start-page: 77
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124376_b0275
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.050
– volume: 29
  start-page: 7773
  issue: 21
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0045
  article-title: Comparison of global precipitation estimates across a range of temporal and spatial scales
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0618.1
– volume: 116
  start-page: D21106
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124376_b0260
  article-title: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2011JD016118
– volume: 49
  start-page: 85
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124376_b0095
  article-title: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2057513
– volume: 118
  issue: 23
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124376_b0030
  article-title: Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2013JD019964
– volume: 122
  start-page: 910
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0265
  article-title: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD025418
– volume: 16
  start-page: 381
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124376_b0300
  article-title: Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems?
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-14-0048.1
– volume: 20
  start-page: 821
  issue: 5
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0145
  article-title: A new parameter to assess impact of rain gauge density on uncertainty in the estimate of monthly rainfall over India
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-18-0161.1
– volume: 18
  start-page: 2469
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0130
  article-title: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0277.1
– volume: 104
  start-page: 70
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124376_b0200
  article-title: Global precipitation measurement: methods, datasets and applications
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2011.10.021
– volume: 6
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0135
  article-title: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data
  publication-title: Sci. Data.
  doi: 10.1038/sdata.2018.296
– volume: 96
  start-page: 283
  issue: 2
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124376_b0285
  article-title: Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-14-00017.1
– volume: 21
  start-page: 6201
  issue: 12
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0010
  article-title: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-6201-2017
– volume: 18
  start-page: 307
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0185
  article-title: Performance of IMERG as a function of spatiotemporal scale
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0174.1
– volume: 23
  start-page: 207
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0005
  article-title: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-207-2019
– start-page: 107
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0065
  article-title: Remote sensing precipitation: sensors, retrievals, validations, and applications
  publication-title: Observ. Meas. Ecohydrol. Processes
  doi: 10.1007/978-3-662-48297-1_4
– volume: 113
  issue: D4
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124376_b0025
  article-title: Assessing objective techniques for gauge-based analyses of global daily precipitation
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2007JD009132
– volume: 95
  start-page: 701
  issue: 5
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124376_b0070
  article-title: The global precipitation measurement mission
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00164.1
– ident: 10.1016/j.jhydrol.2019.124376_b0075
– volume: 37
  issue: 24
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124376_b0210
  article-title: A global map of uncertainties in satellite-based precipitation measurements
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL046008
– volume: 660
  start-page: 1555
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0250
  article-title: Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.119
– volume: 8
  start-page: 607
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124376_b0255
  article-title: A gauge-based analysis of daily precipitation over East Asia
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM583.1
– volume: 118
  start-page: 429
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124376_b0270
  article-title: Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-013-1072-0
– volume: 8
  start-page: 440
  issue: 5
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0280
  article-title: Error-component analysis of TRMM-based multi-satellite precipitation estimates over mainland China
  publication-title: Remote Sens.
  doi: 10.3390/rs8050440
– volume: 19
  start-page: 339
  issue: 2
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0205
  article-title: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity?
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-17-0161.1
– volume: 43
  start-page: 1834
  year: 2004
  ident: 10.1016/j.jhydrol.2019.124376_b0060
  article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/JAM2173.1
– volume: 196
  start-page: 151
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0235
  article-title: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.06.020
– volume: 46
  start-page: W07542
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124376_b0290
  article-title: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: a case study in Laohahe basin, China
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008965
– volume: 8
  start-page: 38
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124376_b0080
  article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM560.1
– volume: 20
  start-page: 903
  issue: 2
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0150
  article-title: Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-903-2016
– volume: 56
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0180
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Rev. Geophys.
  doi: 10.1002/2017RG000574
– volume: 10
  start-page: 1420
  issue: 9
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0175
  article-title: Component analysis of errors in four GPM-based precipitation estimations over Mainland China
  publication-title: Remote Sens.
  doi: 10.3390/rs10091420
– volume: 36
  start-page: 37
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124376_b0160
  article-title: Quality assessment of hourly merged precipitation product over China (in Chinese)
  publication-title: Trans. Atmos. Sci.
– volume: 56
  start-page: 84
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124376_b0230
  article-title: The coupled routing and excess storage (CREST) distributed hydrological model
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2010.543087
– volume: 17
  start-page: 1101
  issue: 4
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0125
  article-title: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0190.1
– volume: 556
  start-page: 865
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0140
  article-title: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.029
– volume: 35
  start-page: 27
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0015
  article-title: An overview of the evaluation of satellite precipitation products for global precipitation measurement (GPM) (in Chinese)
  publication-title: Water Resour. Prot.
– volume: 17
  start-page: 777
  issue: 3
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0115
  article-title: Comparison of integrated multi-satellite retrievals for GPM (IMERG) and TRMM multi-satellite precipitation analysis (TMPA) monthly precipitation products: initial results
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0068.1
– volume: 575
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124376_b0020
  article-title: Impact of the crucial geographical and climatic factors on the input source errors of GPM-based global satellite precipitation estimates
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.020
– volume: 5
  start-page: 487
  issue: 3
  year: 2004
  ident: 10.1016/j.jhydrol.2019.124376_b0090
  article-title: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution
  publication-title: J. Hydrometeorol.
  doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
– volume: 214
  start-page: 121
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0040
  article-title: Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.07.022
– volume: 94
  start-page: 365
  issue: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124376_b0110
  article-title: Precipitation from space: advancing Earth system science
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00171.1
– volume: 49
  start-page: 2461
  issue: 5
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124376_b0295
  article-title: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20246
– volume: 122
  start-page: 10
  issue: 20
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124376_b0050
  article-title: Systematical evaluation of satellite precipitation estimates over central asia using an improved error-component procedure
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2017JD026877
– ident: 10.1016/j.jhydrol.2019.124376_b0085
– volume: 36
  start-page: 123
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124376_b0155
  article-title: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese)
  publication-title: Meteorol. Mon.
– volume: 559
  start-page: 294
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0190
  article-title: Accounting for spatiotemporal errors of gauges: a critical step to evaluate gridded precipitation products
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.057
– volume: 564
  start-page: 342
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0225
  article-title: Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: similarity, difference and improvements
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.064
– volume: 14
  start-page: 661
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124376_b0100
  article-title: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-030.1
– volume: 10
  start-page: 2022
  issue: 12
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0120
  article-title: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau
  publication-title: Remote Sens.
  doi: 10.3390/rs10122022
– volume: 201
  start-page: 206
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0305
  article-title: Systematical estimation of GPM-based global satellite mapping of precipitation products over China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.11.005
– volume: 114
  issue: D24
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124376_b0215
  article-title: Component analysis of errors in satellite-based precipitation estimates
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2009JD011949
– volume: 87
  start-page: 137
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124376_b0220
  article-title: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data
  publication-title: J. Meteorol. Soc. Jpn. Ser. II
  doi: 10.2151/jmsj.87A.137
– volume: 11
  start-page: 2181
  issue: 8
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124376_b0310
  article-title: Tracing the Error Sources of Global Satellite Mapping of Precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau, China
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2825336
– volume: 45
  start-page: 2259
  issue: 7
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124376_b0105
  article-title: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.895337
– volume: 533
  start-page: 152
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0195
  article-title: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.008
– volume: 176–177
  start-page: 121
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124376_b0055
  article-title: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.02.020
– volume: 81
  start-page: 2035
  issue: 9
  year: 2000
  ident: 10.1016/j.jhydrol.2019.124376_b0170
  article-title: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
– volume: 28
  start-page: 2031
  issue: 15
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124376_b0035
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1688
– volume: 119
  start-page: 3063
  issue: 6
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124376_b0165
  article-title: A high spatiotemporal gauge-satellite merged precipitation analysis over China
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2013JD020686
SSID ssj0000334
Score 2.6051142
Snippet •Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late...
We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124376
SubjectTerms algorithms
China
cold season
Error source
floods
humid zones
Light rainfall
Mainland China
rain
remote sensing
RMSE
Satellite-only precipitation products
satellites
Title Comparison analysis of six purely satellite-derived global precipitation estimates
URI https://dx.doi.org/10.1016/j.jhydrol.2019.124376
https://www.proquest.com/docview/2400467526
Volume 581
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dSxwxEMCD6EP7Itoq1eqRQl_3bpNMcptHOTyulvpQFHwLmy-8o94td6f0Xvzb3dnNKhWK4Ouys4TJZGaWzPyGkO9lqYN2kWVaBpUBszEryjxkSoMXpRsy13S9_7pUk2u4uJE3W2TU9cJgWWXy_a1Pb7x1ejJI2hxU0yn2-HLOsA9TCzz3yAQFGKKV9x9fyjxyIaAjhuPbL108g1l_drvxywXeQDDdZ8jmU_-LT688dRN-xntkN-WN9Kxd2j7ZCvNP5EMaYX67-Ux-j54nCtIykUboItLV9C-tkJq8oauywW-uQ-Zru3sInrY4EFoh4qJKtG6K3I07TEEPyPX4_Go0ydLAhMxBXqwz4F4zaUFK62QRWbSON8g1HVWhFUQPghcW2-rA-3zoLVN54VmdBUKI3IpDsj1fzMMXQrkPeeG4AAsBLC-t89ELyYRSkAsZjgh0ajIurQ-HWvwxXdnYzCTtGtSuabV7RPrPYlWL03hLoOj2wPxjF6Z2-W-Jfuv2zNRnBi9CynlY3K8M1s3WAUJydfz-z38lHzn-ezcV3Cdke728D6d1grK2vcYCe2Tn7MfPyeUTBizm2g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI5KOZQLKi9RoBAkOM7uJHHSyYEDaqm29HFArdRbmLzUXZXdUXcL7KV_ij9IPJNpBRKqhNRrJEfRZ8d2FPszIe_qWgftIiu0DKoAZmNR1WUolAYvarfFXNv1fnikRifw-VSerpBffS8MllVm39_59NZb55VhRnPYjMfY48s5wz5MLfDeQ66s3A_LH-ndNv-wt5OU_J7z3U_H26MijxYoHJTVogDuNZMWpLROVpFF63hLTqajqrSC6EHwymIDGnhfbnnLVFl5lvIlCJFbkfa9R-5Dchc4NmFwdVNXUgoBPUU5Hu-mbWg4GUzOlv5ihl8eTA8YkgGqfwXEv0JDG-9218nDnKjSjx0Wj8hKmD4ma3lm-tnyCfmyfT3CkNaZ2oTOIp2Pf9IGaZqXdF63fJ-LUPhk6N-Dpx3_CG2QU6PJ9OAUiT6-Yc77lJzcCYzPyOp0Ng3PCeU-lJXjAiwEsLy2zkcvJBNKQSlk2CDQw2RcPh9O0Tg3fZ3axGR0DaJrOnQ3yOBarOn4O24TqHodmD8M0aQYc5vo215nJl1S_Hmpp2F2OTdYqJsikuTqxf9v_4asjY4PD8zB3tH-S_KA48O_LR9_RVYXF5dhM2VHC_u6tUZKvt61-f8GJ_Ug9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+analysis+of+six+purely+satellite-derived+global+precipitation+estimates&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chen%2C+Hanqing&rft.au=Yong%2C+Bin&rft.au=Shen%2C+Yan&rft.au=Liu%2C+Jiufu&rft.date=2020-02-01&rft.issn=0022-1694&rft.volume=581&rft.spage=124376&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2019_124376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon