Comparison analysis of six purely satellite-derived global precipitation estimates
•Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in l...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 581; p. 124376 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in light rainfall still exhibit large errors.
We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world. |
---|---|
AbstractList | We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world. •Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late is the best one of six evaluated SPPs.•A power function is observed between RMSE and logarithm of precipitation intensity.•GPM-based SPPs in light rainfall still exhibit large errors. We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world. |
ArticleNumber | 124376 |
Author | Liu, Jiufu Shen, Yan Hong, Yang Chen, Hanqing Yong, Bin Zhang, Jianyun |
Author_xml | – sequence: 1 givenname: Hanqing surname: Chen fullname: Chen, Hanqing organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China – sequence: 2 givenname: Bin orcidid: 0000-0003-1466-2091 surname: Yong fullname: Yong, Bin email: yongbin@hhu.edu.cn organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China – sequence: 3 givenname: Yan surname: Shen fullname: Shen, Yan organization: National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China – sequence: 4 givenname: Jiufu surname: Liu fullname: Liu, Jiufu organization: Nanjing Hydraulic Research Institute, Nanjing 210029, China – sequence: 5 givenname: Yang surname: Hong fullname: Hong, Yang organization: School of Civil Engineering and Environment Sciences, University of Oklahoma, Norman, OK 73019, USA – sequence: 6 givenname: Jianyun surname: Zhang fullname: Zhang, Jianyun organization: Nanjing Hydraulic Research Institute, Nanjing 210029, China |
BookMark | eNqFkE1LwzAYx4NMcJt-BKFHL61JmrYJHkSGbzAQRM8hTVJNyZqaZMN-ezO2k5c9l-fy_z0vvwWYDW7QAFwjWCCI6tu-6L8n5Z0tMESsQJiUTX0G5og2LMcNbGZgDiHGOaoZuQCLEHqYqizJHLyv3GYU3gQ3ZGIQdgomZK7LgvnNxq3XdsqCiNpaE3WutDc7rbIv61phs9FraUYTRTSJ1iGaTYqGS3DeCRv01bEvwefT48fqJV-_Pb-uHta5JJDGnGDFUNWSqmplRTvUtRKjqkKUdTVlNekUKTFtEWOUKAUb1aIaUoVQyYjucFsuwc1h7ujdzzat5xsTZDpVDNptA8cEQlI3Fa5T9O4Qld6F4HXH5fHs6IWxHEG-N8l7fjTJ9yb5wWSiq3_06NOrfjrJ3R84nSzsjPY8SKMHqZVJ5iJXzpyY8AcJr5P6 |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2021_105570 crossref_primary_10_3390_rs15041115 crossref_primary_10_1016_j_atmosres_2024_107517 crossref_primary_10_1002_joc_8817 crossref_primary_10_1016_j_atmosres_2024_107637 crossref_primary_10_3390_atmos13111936 crossref_primary_10_3390_w13223200 crossref_primary_10_1029_2023WR035643 crossref_primary_10_1016_j_atmosres_2020_104952 crossref_primary_10_3390_rs15133381 crossref_primary_10_1029_2020GL091950 crossref_primary_10_3390_rs15215230 crossref_primary_10_5194_hess_25_3087_2021 crossref_primary_10_47190_nric_v4i3_254 crossref_primary_10_1109_TGRS_2021_3131238 crossref_primary_10_1109_TGRS_2021_3127943 crossref_primary_10_3390_rs16020275 crossref_primary_10_1029_2023GL105120 crossref_primary_10_3390_rs13132574 crossref_primary_10_1016_j_atmosres_2024_107520 crossref_primary_10_3390_rs15174154 crossref_primary_10_3390_w12092626 crossref_primary_10_1016_j_ejrh_2023_101405 crossref_primary_10_1109_JSTARS_2024_3392601 crossref_primary_10_1007_s11069_021_05117_6 crossref_primary_10_1016_j_jhydrol_2024_131024 crossref_primary_10_3390_rs12182886 crossref_primary_10_3390_rs15071819 crossref_primary_10_1029_2022WR032117 crossref_primary_10_1039_D2EA00073C crossref_primary_10_3390_atmos11111223 crossref_primary_10_1109_JSTARS_2021_3105562 crossref_primary_10_1016_j_atmosres_2023_106606 crossref_primary_10_3390_rs14194748 crossref_primary_10_1016_j_atmosres_2025_108075 crossref_primary_10_1007_s40808_025_02299_x crossref_primary_10_3390_rs15071823 crossref_primary_10_1016_j_jhydrol_2024_130947 crossref_primary_10_1016_j_jhydrol_2023_129234 crossref_primary_10_1016_j_atmosres_2022_106403 crossref_primary_10_1175_JHM_D_21_0019_1 crossref_primary_10_1016_j_jhydrol_2024_131757 crossref_primary_10_1016_j_atmosres_2021_105510 crossref_primary_10_1109_TGRS_2022_3168928 crossref_primary_10_1016_j_jhydrol_2020_124789 crossref_primary_10_5194_hess_27_4529_2023 crossref_primary_10_1016_j_atmosres_2025_108061 crossref_primary_10_3390_w13233381 crossref_primary_10_1016_j_ejrh_2022_101070 crossref_primary_10_3390_rs14071605 crossref_primary_10_1016_j_atmosres_2025_107929 crossref_primary_10_1007_s12145_024_01612_z crossref_primary_10_20965_jdr_2021_p0786 crossref_primary_10_1016_j_ejrh_2024_102019 crossref_primary_10_1016_j_jhydrol_2022_127985 crossref_primary_10_3390_atmos14111653 crossref_primary_10_1016_j_jhydrol_2023_129500 crossref_primary_10_1016_j_atmosres_2022_106017 crossref_primary_10_1016_j_jhydrol_2023_129384 crossref_primary_10_3390_rs13020202 crossref_primary_10_1029_2021WR029682 crossref_primary_10_3390_e23091194 crossref_primary_10_1109_JSTARS_2024_3418429 crossref_primary_10_1016_j_jhydrol_2022_128076 crossref_primary_10_1016_j_atmosres_2023_106875 crossref_primary_10_1109_ACCESS_2023_3318739 crossref_primary_10_3390_rs13224552 crossref_primary_10_3390_rs16142671 crossref_primary_10_1007_s40899_024_01171_7 crossref_primary_10_1016_j_atmosres_2021_105813 crossref_primary_10_3390_rs13163061 crossref_primary_10_3390_rs13050906 crossref_primary_10_3390_w16111553 crossref_primary_10_1175_JHM_D_20_0103_1 crossref_primary_10_1109_JSTARS_2024_3358829 crossref_primary_10_1007_s40710_022_00613_8 |
Cites_doi | 10.1002/2013WR014710 10.1016/j.jhydrol.2013.10.050 10.1175/JCLI-D-15-0618.1 10.1029/2011JD016118 10.1109/TGRS.2010.2057513 10.1002/2013JD019964 10.1002/2016JD025418 10.1175/JHM-D-14-0048.1 10.1175/JHM-D-18-0161.1 10.1175/JHM-D-16-0277.1 10.1016/j.atmosres.2011.10.021 10.1038/sdata.2018.296 10.1175/BAMS-D-14-00017.1 10.5194/hess-21-6201-2017 10.1175/JHM-D-16-0174.1 10.5194/hess-23-207-2019 10.1007/978-3-662-48297-1_4 10.1029/2007JD009132 10.1175/BAMS-D-13-00164.1 10.1029/2010GL046008 10.1016/j.scitotenv.2019.01.119 10.1175/JHM583.1 10.1007/s00704-013-1072-0 10.3390/rs8050440 10.1175/JHM-D-17-0161.1 10.1175/JAM2173.1 10.1016/j.atmosres.2017.06.020 10.1029/2009WR008965 10.1175/JHM560.1 10.5194/hess-20-903-2016 10.1002/2017RG000574 10.3390/rs10091420 10.1080/02626667.2010.543087 10.1175/JHM-D-15-0190.1 10.1016/j.jhydrol.2016.01.029 10.1175/JHM-D-15-0068.1 10.1016/j.jhydrol.2019.05.020 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 10.1016/j.atmosres.2018.07.022 10.1175/BAMS-D-11-00171.1 10.1002/wrcr.20246 10.1002/2017JD026877 10.1016/j.jhydrol.2018.02.057 10.1016/j.jhydrol.2018.06.064 10.1175/JHM-D-12-030.1 10.3390/rs10122022 10.1016/j.atmosres.2017.11.005 10.1029/2009JD011949 10.2151/jmsj.87A.137 10.1109/JSTARS.2018.2825336 10.1109/TGRS.2007.895337 10.1016/j.jhydrol.2015.12.008 10.1016/j.atmosres.2016.02.020 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 10.1002/joc.1688 10.1002/2013JD020686 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2019.124376 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2019_124376 S0022169419311114 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-42d915b455bc58f1fbc2155189f68964fd4328b19984dd07db1608d11394ef2b3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 16:33:39 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 01:53:17 EDT 2025 Fri Feb 23 02:49:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mainland China Satellite-only precipitation products Light rainfall RMSE Error source |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-42d915b455bc58f1fbc2155189f68964fd4328b19984dd07db1608d11394ef2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1466-2091 |
PQID | 2400467526 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400467526 crossref_citationtrail_10_1016_j_jhydrol_2019_124376 crossref_primary_10_1016_j_jhydrol_2019_124376 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yong, Ren, Hong, Wang, Gourley, Jiang, Chen, Wang (b0290) 2010; 46 Nguyen, Shearer, Tran, Ombadi, Hayatbini, Palacios, Huynh, Braithwaite, Updegraff, Hsu, Kuligowski, Logan, Sorooshian (b0135) 2019; 6 Khan (b0095) 2011; 49 Tian, Hou, Yang, Hu, Hou (b0205) 2018; 19 Huffman, Bolvin, Nelkin, Wolff, Adler, Gu, Nelkin, Bowman, Hong, Stocker, Stocker (b0080) 2007; 8 Wu, Guo, Zheng, Zhang, Li (b0250) 2019; 660 Zhu, Yong, Ke, Wang, Ren, Chen (b0310) 2018; 11 Sorooshian, Hsu, Gao, Gupta, Imam, Braithwaite (b0170) 2000; 81 Hou, Kakar, Neeck, Azarbarzin, Kummerow, Kojima, Oki, Nakamura, Lguchi (b0070) 2014; 95 Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (b0180) 2018; 56 Xie, Xiong (b0260) 2011; 116 Maggioni, Meyers, Robinson (b0125) 2016; 17 Kucera, Ebert, Turk, Levizzani, Kirschbaum, Tapiador, Loew, Borsche (b0110) 2013; 94 Manz, Páez-Bimos, Horna, Buytaert, Ochoa-Tocachi, Lavado-Casimiro, Willems (b0130) 2017; 18 Wang, Hong, Li, Gourley, Khan, Yilmaz, Adler, Policelli, Habib, Irwn, Limaye, Korme, Limaye (b0230) 2011; 56 Kirstetter, Hong, Gourley, Schwaller, Petersen, Zhang (b0100) 2013; 14 Tian, Peters-Lidard (b0210) 2010; 37 Gehne, Hamill, Kiladis, Trenberth (b0045) 2016; 29 Tian, Peters-Lidard, Eylander, Joyce, Huffman, Adler, Hsu, Turk, Garcia, Zeng (b0215) 2009; 114 Xie, Chen, Yang, Yatagai, Hayasaka, Fukushima, Liu (b0255) 2007; 8 Guo, Chen, Bao, Behrangi, Hong, Ndayisaba, Hu, Stepanian (b0055) 2016; 176–177 Yang, Luo (b0270) 2014; 118 Tan, Petersen, Kirstetter, Tian (b0185) 2017; 18 Ren, Zhao, Zhang (b0155) 2010; 36 Chen, Yong, Gourly, Liu, Ren, Wang, Hong, Zhang (b0020) 2019; 575 Yong, Liu, Gourley, Tian, Huffman, Ren, Hong (b0285) 2015; 96 Chen, Hong, Cao, Gourley, Kirstetter, Yong, Tian, Zhang, Shen, Hu, Hardy (b0030) 2013; 118 Shen, Zhao, Pan, Yu (b0165) 2014; 119 Tang, Ma, Long, Zhong, Hong (b0195) 2016; 533 Tang, Behrangi, Long, Li, Hong (b0190) 2018; 559 Prakash, Mitra, AghaKouchak, Liu, Norouzi, Pai (b0140) 2018; 556 Yong, Chen, Gourley, Ren, Hong, Chen, Wang, Chen, Gong (b0275) 2014; 508 Zhang, Hong, Wang, Gourley, Xue, Saharia, Ni, Wang, Huang, Chen, Tang (b0300) 2015; 16 Prakash, Seshadri, Srinivasan, Pai (b0145) 2019; 20 Su, Lü, Zhu, Wang, Wei (b0175) 2018; 10 Deng, Zhang, Guo, Xu, Bing, Jia (b0040) 2018; 214 Joyce, Janowiak, Arkin, Xie (b0090) 2004; 5 Tapiador, Turk, Petersen, Hou, García-Ortega, Machado, Angelis, Salio, Kidd, Huffman, De Castro (b0200) 2012; 104 Xu, Tian, Yang, Hu, Lu, Hou (b0265) 2017; 122 Zhao, Yang, Yang, Huang, Dong, Bai, Wang (b0305) 2018; 201 Wu, Adler, Tian, Huffman, Li, Wang (b0245) 2014; 50 Guo, Bao, Ndayisaba, Liu, Kurban, De Maeyer (b0050) 2017; 122 Hong, Tang, Ma, Huang, Han, Zeng, Yang, Wang, Guo (b0065) 2019 Yong, Ren, Hong, Gourley, Tian, Huffman, Chen, Wang, Wen (b0295) 2013; 49 Huffman, G.J., 2018. The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA/GSFC. pp. 1. Daly, Halbleib, Smith, Gibson, Doggett, Taylor, Pasteris (b0035) 2008; 28 Liu (b0115) 2016; 17 Shen, Pan, Yu, Zhao (b0160) 2013; 36 Ushio, Sasashige, Kubota, Shige, Okamoto, Aonashi, Inoue, Takahashi, Iguchi, Kachi, Oki, Morimoto, Kawasaki (b0220) 2009; 87 Chen, Lu, Zhou, Zhu, Ren, Yong (b0015) 2019; 35 Beck, Pan, Roy, Weedon, Pappenberger, van Dijk, Huffman, Adler, Wood (b0005) 2019; 23 Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Tan, J., 2019. Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. NASA/GSFC. pp. 1. Kubota, Shige, Hashizume, Aonashi, Takahashi, Seto, Hirose, Takayabu, Ushio, Nakagawa, Iwanami, Kachi, Okamoto (b0105) 2007; 45 Yong, Chen, Tian, Yu, Hong (b0280) 2016; 8 Beck, Vergopolan, Pan, Levizzani, van Dijk, Weedon, Brocca, Pappenberger, Huffman, Wood (b0010) 2017; 21 Hong, Hsu, Sorooshian, Gao (b0060) 2004; 43 Qi, Zhang, Fu, Sweetapple, Zhou (b0150) 2016; 20 Chen, Shi, Xie, Silva, Kousky, Wayne Higgins, Janowiak (b0025) 2008; 113 Wang, Zhong, Lai, Chen (b0235) 2017; 196 Wang, Tang, Han, Guo, Hong (b0225) 2018; 564 Lu, Yong (b0120) 2018; 10 Daly (10.1016/j.jhydrol.2019.124376_b0035) 2008; 28 Deng (10.1016/j.jhydrol.2019.124376_b0040) 2018; 214 Chen (10.1016/j.jhydrol.2019.124376_b0030) 2013; 118 Gehne (10.1016/j.jhydrol.2019.124376_b0045) 2016; 29 Prakash (10.1016/j.jhydrol.2019.124376_b0145) 2019; 20 Chen (10.1016/j.jhydrol.2019.124376_b0015) 2019; 35 Zhao (10.1016/j.jhydrol.2019.124376_b0305) 2018; 201 Maggioni (10.1016/j.jhydrol.2019.124376_b0125) 2016; 17 Sun (10.1016/j.jhydrol.2019.124376_b0180) 2018; 56 Wu (10.1016/j.jhydrol.2019.124376_b0250) 2019; 660 Shen (10.1016/j.jhydrol.2019.124376_b0165) 2014; 119 Yong (10.1016/j.jhydrol.2019.124376_b0275) 2014; 508 Wang (10.1016/j.jhydrol.2019.124376_b0235) 2017; 196 Huffman (10.1016/j.jhydrol.2019.124376_b0080) 2007; 8 Liu (10.1016/j.jhydrol.2019.124376_b0115) 2016; 17 Qi (10.1016/j.jhydrol.2019.124376_b0150) 2016; 20 Yong (10.1016/j.jhydrol.2019.124376_b0290) 2010; 46 Guo (10.1016/j.jhydrol.2019.124376_b0050) 2017; 122 Kucera (10.1016/j.jhydrol.2019.124376_b0110) 2013; 94 Tang (10.1016/j.jhydrol.2019.124376_b0195) 2016; 533 Hou (10.1016/j.jhydrol.2019.124376_b0070) 2014; 95 Wang (10.1016/j.jhydrol.2019.124376_b0225) 2018; 564 Ren (10.1016/j.jhydrol.2019.124376_b0155) 2010; 36 Su (10.1016/j.jhydrol.2019.124376_b0175) 2018; 10 Tang (10.1016/j.jhydrol.2019.124376_b0190) 2018; 559 Yong (10.1016/j.jhydrol.2019.124376_b0295) 2013; 49 Zhang (10.1016/j.jhydrol.2019.124376_b0300) 2015; 16 Beck (10.1016/j.jhydrol.2019.124376_b0005) 2019; 23 Hong (10.1016/j.jhydrol.2019.124376_b0065) 2019 Lu (10.1016/j.jhydrol.2019.124376_b0120) 2018; 10 Khan (10.1016/j.jhydrol.2019.124376_b0095) 2011; 49 10.1016/j.jhydrol.2019.124376_b0075 Wu (10.1016/j.jhydrol.2019.124376_b0245) 2014; 50 Tian (10.1016/j.jhydrol.2019.124376_b0205) 2018; 19 Shen (10.1016/j.jhydrol.2019.124376_b0160) 2013; 36 Yong (10.1016/j.jhydrol.2019.124376_b0280) 2016; 8 Kubota (10.1016/j.jhydrol.2019.124376_b0105) 2007; 45 Wang (10.1016/j.jhydrol.2019.124376_b0230) 2011; 56 Chen (10.1016/j.jhydrol.2019.124376_b0020) 2019; 575 Ushio (10.1016/j.jhydrol.2019.124376_b0220) 2009; 87 Tian (10.1016/j.jhydrol.2019.124376_b0215) 2009; 114 Tapiador (10.1016/j.jhydrol.2019.124376_b0200) 2012; 104 10.1016/j.jhydrol.2019.124376_b0085 Tian (10.1016/j.jhydrol.2019.124376_b0210) 2010; 37 Nguyen (10.1016/j.jhydrol.2019.124376_b0135) 2019; 6 Xie (10.1016/j.jhydrol.2019.124376_b0255) 2007; 8 Beck (10.1016/j.jhydrol.2019.124376_b0010) 2017; 21 Zhu (10.1016/j.jhydrol.2019.124376_b0310) 2018; 11 Guo (10.1016/j.jhydrol.2019.124376_b0055) 2016; 176–177 Kirstetter (10.1016/j.jhydrol.2019.124376_b0100) 2013; 14 Xu (10.1016/j.jhydrol.2019.124376_b0265) 2017; 122 Yong (10.1016/j.jhydrol.2019.124376_b0285) 2015; 96 Joyce (10.1016/j.jhydrol.2019.124376_b0090) 2004; 5 Manz (10.1016/j.jhydrol.2019.124376_b0130) 2017; 18 Chen (10.1016/j.jhydrol.2019.124376_b0025) 2008; 113 Tan (10.1016/j.jhydrol.2019.124376_b0185) 2017; 18 Hong (10.1016/j.jhydrol.2019.124376_b0060) 2004; 43 Prakash (10.1016/j.jhydrol.2019.124376_b0140) 2018; 556 Xie (10.1016/j.jhydrol.2019.124376_b0260) 2011; 116 Sorooshian (10.1016/j.jhydrol.2019.124376_b0170) 2000; 81 Yang (10.1016/j.jhydrol.2019.124376_b0270) 2014; 118 |
References_xml | – volume: 10 start-page: 1420 year: 2018 ident: b0175 article-title: Component analysis of errors in four GPM-based precipitation estimations over Mainland China publication-title: Remote Sens. – volume: 559 start-page: 294 year: 2018 end-page: 306 ident: b0190 article-title: Accounting for spatiotemporal errors of gauges: a critical step to evaluate gridded precipitation products publication-title: J. Hydrol. – volume: 575 start-page: 1 year: 2019 end-page: 16 ident: b0020 article-title: Impact of the crucial geographical and climatic factors on the input source errors of GPM-based global satellite precipitation estimates publication-title: J. Hydrol. – volume: 87 start-page: 137 year: 2009 end-page: 151 ident: b0220 article-title: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data publication-title: J. Meteorol. Soc. Jpn. Ser. II – volume: 8 start-page: 440 year: 2016 ident: b0280 article-title: Error-component analysis of TRMM-based multi-satellite precipitation estimates over mainland China publication-title: Remote Sens. – volume: 36 start-page: 37 year: 2013 end-page: 46 ident: b0160 article-title: Quality assessment of hourly merged precipitation product over China (in Chinese) publication-title: Trans. Atmos. Sci. – volume: 201 start-page: 206 year: 2018 end-page: 217 ident: b0305 article-title: Systematical estimation of GPM-based global satellite mapping of precipitation products over China publication-title: Atmos. Res. – volume: 18 start-page: 2469 year: 2017 end-page: 2489 ident: b0130 article-title: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes publication-title: J. Hydrometeorol. – volume: 5 start-page: 487 year: 2004 end-page: 503 ident: b0090 article-title: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution publication-title: J. Hydrometeorol. – volume: 196 start-page: 151 year: 2017 end-page: 163 ident: b0235 article-title: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility publication-title: Atmos. Res. – volume: 81 start-page: 2035 year: 2000 end-page: 2046 ident: b0170 article-title: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall publication-title: Bull. Am. Meteorol. Soc. – volume: 533 start-page: 152 year: 2016 end-page: 167 ident: b0195 article-title: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales publication-title: J. Hydrol. – volume: 43 start-page: 1834 year: 2004 end-page: 1853 ident: b0060 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J. Appl. Meteorol. – volume: 18 start-page: 307 year: 2017 end-page: 319 ident: b0185 article-title: Performance of IMERG as a function of spatiotemporal scale publication-title: J. Hydrometeorol. – volume: 104 start-page: 70 year: 2012 end-page: 97 ident: b0200 article-title: Global precipitation measurement: methods, datasets and applications publication-title: Atmos. Res. – volume: 119 start-page: 3063 year: 2014 end-page: 3075 ident: b0165 article-title: A high spatiotemporal gauge-satellite merged precipitation analysis over China publication-title: J. Geophys. Res.-Atmos. – volume: 29 start-page: 7773 year: 2016 end-page: 7795 ident: b0045 article-title: Comparison of global precipitation estimates across a range of temporal and spatial scales publication-title: J. Clim. – volume: 564 start-page: 342 year: 2018 end-page: 356 ident: b0225 article-title: Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: similarity, difference and improvements publication-title: J. Hydrol. – volume: 45 start-page: 2259 year: 2007 end-page: 2275 ident: b0105 article-title: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 118 year: 2013 ident: b0030 article-title: Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China publication-title: J. Geophys. Res.-Atmos. – volume: 37 year: 2010 ident: b0210 article-title: A global map of uncertainties in satellite-based precipitation measurements publication-title: Geophys. Res. Lett. – volume: 49 start-page: 2461 year: 2013 end-page: 2472 ident: b0295 article-title: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes publication-title: Water Resour. Res. – start-page: 107 year: 2019 end-page: 128 ident: b0065 article-title: Remote sensing precipitation: sensors, retrievals, validations, and applications publication-title: Observ. Meas. Ecohydrol. Processes – volume: 113 year: 2008 ident: b0025 article-title: Assessing objective techniques for gauge-based analyses of global daily precipitation publication-title: J. Geophys. Res.-Atmos. – volume: 556 start-page: 865 year: 2018 end-page: 876 ident: b0140 article-title: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region publication-title: J. Hydrol. – volume: 16 start-page: 381 year: 2015 end-page: 395 ident: b0300 article-title: Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems? publication-title: J. Hydrometeorol. – volume: 8 start-page: 607 year: 2007 end-page: 626 ident: b0255 article-title: A gauge-based analysis of daily precipitation over East Asia publication-title: J. Hydrometeorol. – volume: 94 start-page: 365 year: 2013 end-page: 375 ident: b0110 article-title: Precipitation from space: advancing Earth system science publication-title: Bull. Am. Meteorol. Soc. – volume: 96 start-page: 283 year: 2015 end-page: 296 ident: b0285 article-title: Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission publication-title: Bull. Am. Meteorol. Soc. – volume: 20 start-page: 821 year: 2019 end-page: 832 ident: b0145 article-title: A new parameter to assess impact of rain gauge density on uncertainty in the estimate of monthly rainfall over India publication-title: J. Hydrometeorol. – volume: 122 start-page: 10 year: 2017 end-page: 906 ident: b0050 article-title: Systematical evaluation of satellite precipitation estimates over central asia using an improved error-component procedure publication-title: J. Geophys. Res.-Atmos. – volume: 23 start-page: 207 year: 2019 end-page: 224 ident: b0005 article-title: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS publication-title: Hydrol. Earth Syst. Sci. – volume: 95 start-page: 701 year: 2014 end-page: 722 ident: b0070 article-title: The global precipitation measurement mission publication-title: Bull. Am. Meteorol. Soc. – volume: 6 year: 2019 ident: b0135 article-title: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data publication-title: Sci. Data. – volume: 46 start-page: W07542 year: 2010 ident: b0290 article-title: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: a case study in Laohahe basin, China publication-title: Water Resour. Res. – volume: 56 start-page: 79 year: 2018 end-page: 107 ident: b0180 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Rev. Geophys. – volume: 8 start-page: 38 year: 2007 end-page: 55 ident: b0080 article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales publication-title: J. Hydrometeorol. – volume: 14 start-page: 661 year: 2013 end-page: 669 ident: b0100 article-title: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE publication-title: J. Hydrometeorol. – volume: 11 start-page: 2181 year: 2018 end-page: 2191 ident: b0310 article-title: Tracing the Error Sources of Global Satellite Mapping of Precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau, China publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 114 year: 2009 ident: b0215 article-title: Component analysis of errors in satellite-based precipitation estimates publication-title: J. Geophys. Res.-Atmos. – volume: 21 start-page: 6201 year: 2017 end-page: 6217 ident: b0010 article-title: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling publication-title: Hydrol. Earth Syst. Sci. – volume: 118 start-page: 429 year: 2014 end-page: 445 ident: b0270 article-title: Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China publication-title: Theor. Appl. Climatol. – reference: Huffman, G.J., 2018. The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA/GSFC. pp. 1. – volume: 49 start-page: 85 year: 2011 end-page: 95 ident: b0095 article-title: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 122 start-page: 910 year: 2017 end-page: 924 ident: b0265 article-title: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network publication-title: J. Geophys. Res.-Atmos. – volume: 116 start-page: D21106 year: 2011 ident: b0260 article-title: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses publication-title: J. Geophys. Res.-Atmos. – volume: 17 start-page: 1101 year: 2016 end-page: 1117 ident: b0125 article-title: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era publication-title: J. Hydrometeorol. – volume: 214 start-page: 121 year: 2018 end-page: 134 ident: b0040 article-title: Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China publication-title: Atmos. Res. – reference: Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Tan, J., 2019. Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. NASA/GSFC. pp. 1. – volume: 36 start-page: 123 year: 2010 end-page: 132 ident: b0155 article-title: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese) publication-title: Meteorol. Mon. – volume: 660 start-page: 1555 year: 2019 end-page: 1564 ident: b0250 article-title: Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau publication-title: Sci. Total Environ. – volume: 56 start-page: 84 year: 2011 end-page: 98 ident: b0230 article-title: The coupled routing and excess storage (CREST) distributed hydrological model publication-title: Hydrol. Sci. J. – volume: 176–177 start-page: 121 year: 2016 end-page: 133 ident: b0055 article-title: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China publication-title: Atmos. Res. – volume: 28 start-page: 2031 year: 2008 end-page: 2064 ident: b0035 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: Int. J. Climatol. – volume: 508 start-page: 77 year: 2014 end-page: 87 ident: b0275 article-title: Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? publication-title: J. Hydrol. – volume: 50 start-page: 2693 year: 2014 end-page: 2717 ident: b0245 article-title: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model publication-title: Water Resour. Res. – volume: 35 start-page: 27 year: 2019 end-page: 34 ident: b0015 article-title: An overview of the evaluation of satellite precipitation products for global precipitation measurement (GPM) (in Chinese) publication-title: Water Resour. Prot. – volume: 17 start-page: 777 year: 2016 end-page: 790 ident: b0115 article-title: Comparison of integrated multi-satellite retrievals for GPM (IMERG) and TRMM multi-satellite precipitation analysis (TMPA) monthly precipitation products: initial results publication-title: J. Hydrometeorol. – volume: 20 start-page: 903 year: 2016 end-page: 920 ident: b0150 article-title: Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations publication-title: Hydrol. Earth Syst. Sci. – volume: 10 start-page: 2022 year: 2018 ident: b0120 article-title: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau publication-title: Remote Sens. – volume: 19 start-page: 339 year: 2018 end-page: 349 ident: b0205 article-title: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity? publication-title: J. Hydrometeorol. – volume: 50 start-page: 2693 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2019.124376_b0245 article-title: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model publication-title: Water Resour. Res. doi: 10.1002/2013WR014710 – volume: 508 start-page: 77 year: 2014 ident: 10.1016/j.jhydrol.2019.124376_b0275 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.050 – volume: 29 start-page: 7773 issue: 21 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0045 article-title: Comparison of global precipitation estimates across a range of temporal and spatial scales publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0618.1 – volume: 116 start-page: D21106 year: 2011 ident: 10.1016/j.jhydrol.2019.124376_b0260 article-title: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2011JD016118 – volume: 49 start-page: 85 year: 2011 ident: 10.1016/j.jhydrol.2019.124376_b0095 article-title: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2057513 – volume: 118 issue: 23 year: 2013 ident: 10.1016/j.jhydrol.2019.124376_b0030 article-title: Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2013JD019964 – volume: 122 start-page: 910 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0265 article-title: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD025418 – volume: 16 start-page: 381 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2019.124376_b0300 article-title: Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems? publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0048.1 – volume: 20 start-page: 821 issue: 5 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0145 article-title: A new parameter to assess impact of rain gauge density on uncertainty in the estimate of monthly rainfall over India publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-18-0161.1 – volume: 18 start-page: 2469 issue: 9 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0130 article-title: Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0277.1 – volume: 104 start-page: 70 year: 2012 ident: 10.1016/j.jhydrol.2019.124376_b0200 article-title: Global precipitation measurement: methods, datasets and applications publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2011.10.021 – volume: 6 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0135 article-title: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data publication-title: Sci. Data. doi: 10.1038/sdata.2018.296 – volume: 96 start-page: 283 issue: 2 year: 2015 ident: 10.1016/j.jhydrol.2019.124376_b0285 article-title: Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-14-00017.1 – volume: 21 start-page: 6201 issue: 12 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0010 article-title: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-6201-2017 – volume: 18 start-page: 307 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0185 article-title: Performance of IMERG as a function of spatiotemporal scale publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0174.1 – volume: 23 start-page: 207 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0005 article-title: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-207-2019 – start-page: 107 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0065 article-title: Remote sensing precipitation: sensors, retrievals, validations, and applications publication-title: Observ. Meas. Ecohydrol. Processes doi: 10.1007/978-3-662-48297-1_4 – volume: 113 issue: D4 year: 2008 ident: 10.1016/j.jhydrol.2019.124376_b0025 article-title: Assessing objective techniques for gauge-based analyses of global daily precipitation publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2007JD009132 – volume: 95 start-page: 701 issue: 5 year: 2014 ident: 10.1016/j.jhydrol.2019.124376_b0070 article-title: The global precipitation measurement mission publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00164.1 – ident: 10.1016/j.jhydrol.2019.124376_b0075 – volume: 37 issue: 24 year: 2010 ident: 10.1016/j.jhydrol.2019.124376_b0210 article-title: A global map of uncertainties in satellite-based precipitation measurements publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL046008 – volume: 660 start-page: 1555 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0250 article-title: Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.119 – volume: 8 start-page: 607 issue: 3 year: 2007 ident: 10.1016/j.jhydrol.2019.124376_b0255 article-title: A gauge-based analysis of daily precipitation over East Asia publication-title: J. Hydrometeorol. doi: 10.1175/JHM583.1 – volume: 118 start-page: 429 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2019.124376_b0270 article-title: Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-1072-0 – volume: 8 start-page: 440 issue: 5 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0280 article-title: Error-component analysis of TRMM-based multi-satellite precipitation estimates over mainland China publication-title: Remote Sens. doi: 10.3390/rs8050440 – volume: 19 start-page: 339 issue: 2 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0205 article-title: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity? publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0161.1 – volume: 43 start-page: 1834 year: 2004 ident: 10.1016/j.jhydrol.2019.124376_b0060 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J. Appl. Meteorol. doi: 10.1175/JAM2173.1 – volume: 196 start-page: 151 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0235 article-title: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.020 – volume: 46 start-page: W07542 year: 2010 ident: 10.1016/j.jhydrol.2019.124376_b0290 article-title: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: a case study in Laohahe basin, China publication-title: Water Resour. Res. doi: 10.1029/2009WR008965 – volume: 8 start-page: 38 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2019.124376_b0080 article-title: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales publication-title: J. Hydrometeorol. doi: 10.1175/JHM560.1 – volume: 20 start-page: 903 issue: 2 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0150 article-title: Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-903-2016 – volume: 56 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0180 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Rev. Geophys. doi: 10.1002/2017RG000574 – volume: 10 start-page: 1420 issue: 9 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0175 article-title: Component analysis of errors in four GPM-based precipitation estimations over Mainland China publication-title: Remote Sens. doi: 10.3390/rs10091420 – volume: 36 start-page: 37 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2019.124376_b0160 article-title: Quality assessment of hourly merged precipitation product over China (in Chinese) publication-title: Trans. Atmos. Sci. – volume: 56 start-page: 84 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2019.124376_b0230 article-title: The coupled routing and excess storage (CREST) distributed hydrological model publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2010.543087 – volume: 17 start-page: 1101 issue: 4 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0125 article-title: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0190.1 – volume: 556 start-page: 865 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0140 article-title: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.029 – volume: 35 start-page: 27 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0015 article-title: An overview of the evaluation of satellite precipitation products for global precipitation measurement (GPM) (in Chinese) publication-title: Water Resour. Prot. – volume: 17 start-page: 777 issue: 3 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0115 article-title: Comparison of integrated multi-satellite retrievals for GPM (IMERG) and TRMM multi-satellite precipitation analysis (TMPA) monthly precipitation products: initial results publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0068.1 – volume: 575 start-page: 1 year: 2019 ident: 10.1016/j.jhydrol.2019.124376_b0020 article-title: Impact of the crucial geographical and climatic factors on the input source errors of GPM-based global satellite precipitation estimates publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.020 – volume: 5 start-page: 487 issue: 3 year: 2004 ident: 10.1016/j.jhydrol.2019.124376_b0090 article-title: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution publication-title: J. Hydrometeorol. doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 – volume: 214 start-page: 121 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0040 article-title: Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.07.022 – volume: 94 start-page: 365 issue: 3 year: 2013 ident: 10.1016/j.jhydrol.2019.124376_b0110 article-title: Precipitation from space: advancing Earth system science publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00171.1 – volume: 49 start-page: 2461 issue: 5 year: 2013 ident: 10.1016/j.jhydrol.2019.124376_b0295 article-title: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes publication-title: Water Resour. Res. doi: 10.1002/wrcr.20246 – volume: 122 start-page: 10 issue: 20 year: 2017 ident: 10.1016/j.jhydrol.2019.124376_b0050 article-title: Systematical evaluation of satellite precipitation estimates over central asia using an improved error-component procedure publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2017JD026877 – ident: 10.1016/j.jhydrol.2019.124376_b0085 – volume: 36 start-page: 123 year: 2010 ident: 10.1016/j.jhydrol.2019.124376_b0155 article-title: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese) publication-title: Meteorol. Mon. – volume: 559 start-page: 294 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0190 article-title: Accounting for spatiotemporal errors of gauges: a critical step to evaluate gridded precipitation products publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.057 – volume: 564 start-page: 342 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0225 article-title: Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: similarity, difference and improvements publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.064 – volume: 14 start-page: 661 issue: 2 year: 2013 ident: 10.1016/j.jhydrol.2019.124376_b0100 article-title: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-030.1 – volume: 10 start-page: 2022 issue: 12 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0120 article-title: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau publication-title: Remote Sens. doi: 10.3390/rs10122022 – volume: 201 start-page: 206 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0305 article-title: Systematical estimation of GPM-based global satellite mapping of precipitation products over China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.11.005 – volume: 114 issue: D24 year: 2009 ident: 10.1016/j.jhydrol.2019.124376_b0215 article-title: Component analysis of errors in satellite-based precipitation estimates publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2009JD011949 – volume: 87 start-page: 137 year: 2009 ident: 10.1016/j.jhydrol.2019.124376_b0220 article-title: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data publication-title: J. Meteorol. Soc. Jpn. Ser. II doi: 10.2151/jmsj.87A.137 – volume: 11 start-page: 2181 issue: 8 year: 2018 ident: 10.1016/j.jhydrol.2019.124376_b0310 article-title: Tracing the Error Sources of Global Satellite Mapping of Precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau, China publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2825336 – volume: 45 start-page: 2259 issue: 7 year: 2007 ident: 10.1016/j.jhydrol.2019.124376_b0105 article-title: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.895337 – volume: 533 start-page: 152 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0195 article-title: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.008 – volume: 176–177 start-page: 121 year: 2016 ident: 10.1016/j.jhydrol.2019.124376_b0055 article-title: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.02.020 – volume: 81 start-page: 2035 issue: 9 year: 2000 ident: 10.1016/j.jhydrol.2019.124376_b0170 article-title: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 – volume: 28 start-page: 2031 issue: 15 year: 2008 ident: 10.1016/j.jhydrol.2019.124376_b0035 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: Int. J. Climatol. doi: 10.1002/joc.1688 – volume: 119 start-page: 3063 issue: 6 year: 2014 ident: 10.1016/j.jhydrol.2019.124376_b0165 article-title: A high spatiotemporal gauge-satellite merged precipitation analysis over China publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2013JD020686 |
SSID | ssj0000334 |
Score | 2.6051142 |
Snippet | •Six satellite-only precipitation products (SPPs) were evaluated over the globe.•The error sources of five SPPs over mainland China were revealed.•IMERG-Late... We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124376 |
SubjectTerms | algorithms China cold season Error source floods humid zones Light rainfall Mainland China rain remote sensing RMSE Satellite-only precipitation products satellites |
Title | Comparison analysis of six purely satellite-derived global precipitation estimates |
URI | https://dx.doi.org/10.1016/j.jhydrol.2019.124376 https://www.proquest.com/docview/2400467526 |
Volume | 581 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dSxwxEMCD6EP7Itoq1eqRQl_3bpNMcptHOTyulvpQFHwLmy-8o94td6f0Xvzb3dnNKhWK4Ouys4TJZGaWzPyGkO9lqYN2kWVaBpUBszEryjxkSoMXpRsy13S9_7pUk2u4uJE3W2TU9cJgWWXy_a1Pb7x1ejJI2hxU0yn2-HLOsA9TCzz3yAQFGKKV9x9fyjxyIaAjhuPbL108g1l_drvxywXeQDDdZ8jmU_-LT688dRN-xntkN-WN9Kxd2j7ZCvNP5EMaYX67-Ux-j54nCtIykUboItLV9C-tkJq8oauywW-uQ-Zru3sInrY4EFoh4qJKtG6K3I07TEEPyPX4_Go0ydLAhMxBXqwz4F4zaUFK62QRWbSON8g1HVWhFUQPghcW2-rA-3zoLVN54VmdBUKI3IpDsj1fzMMXQrkPeeG4AAsBLC-t89ELyYRSkAsZjgh0ajIurQ-HWvwxXdnYzCTtGtSuabV7RPrPYlWL03hLoOj2wPxjF6Z2-W-Jfuv2zNRnBi9CynlY3K8M1s3WAUJydfz-z38lHzn-ezcV3Cdke728D6d1grK2vcYCe2Tn7MfPyeUTBizm2g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI5KOZQLKi9RoBAkOM7uJHHSyYEDaqm29HFArdRbmLzUXZXdUXcL7KV_ij9IPJNpBRKqhNRrJEfRZ8d2FPszIe_qWgftIiu0DKoAZmNR1WUolAYvarfFXNv1fnikRifw-VSerpBffS8MllVm39_59NZb55VhRnPYjMfY48s5wz5MLfDeQ66s3A_LH-ndNv-wt5OU_J7z3U_H26MijxYoHJTVogDuNZMWpLROVpFF63hLTqajqrSC6EHwymIDGnhfbnnLVFl5lvIlCJFbkfa9R-5Dchc4NmFwdVNXUgoBPUU5Hu-mbWg4GUzOlv5ihl8eTA8YkgGqfwXEv0JDG-9218nDnKjSjx0Wj8hKmD4ma3lm-tnyCfmyfT3CkNaZ2oTOIp2Pf9IGaZqXdF63fJ-LUPhk6N-Dpx3_CG2QU6PJ9OAUiT6-Yc77lJzcCYzPyOp0Ng3PCeU-lJXjAiwEsLy2zkcvJBNKQSlk2CDQw2RcPh9O0Tg3fZ3axGR0DaJrOnQ3yOBarOn4O24TqHodmD8M0aQYc5vo215nJl1S_Hmpp2F2OTdYqJsikuTqxf9v_4asjY4PD8zB3tH-S_KA48O_LR9_RVYXF5dhM2VHC_u6tUZKvt61-f8GJ_Ug9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+analysis+of+six+purely+satellite-derived+global+precipitation+estimates&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chen%2C+Hanqing&rft.au=Yong%2C+Bin&rft.au=Shen%2C+Yan&rft.au=Liu%2C+Jiufu&rft.date=2020-02-01&rft.issn=0022-1694&rft.volume=581&rft.spage=124376&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2019_124376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |