Spotted Hyena Optimization Algorithm With Simulated Annealing for Feature Selection

The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In t...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 71943 - 71962
Main Authors Jia, Heming, Li, Jinduo, Song, Wenlong, Peng, Xiaoxu, Lang, Chunbo, Li, Yao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In this paper, two different hybrid models are designed based on spotted hyena optimization (SHO) for feature selection problem. The SHO algorithm can find the optimal or nearly optimal feature subset in the feature space to minimize the given fitness function. In the first model, the simulated annealing algorithm (SA) is embedded in the SHO algorithm (called SHOSA-1) to enhance the optimal solution found by the SHO algorithm after each iteration. In the second model, SA enhances the final solution obtained by the SHO algorithm (called SHOSA-2). The performance of these methods is evaluated in 20 datasets in the UCI repository. The experiments show that SHOSA-1 performs better than the native algorithm and SHOSA-2. And then, SHOSA-1 is compared with six state-of-the-art optimization algorithms. The experimental results confirm that SHOSA-1 improves the classification accuracy and reduces the number of selected features compared with other wrapper-based optimization algorithms. That proves the excellent performance of SHOSA-1 in spatial search and feature attribute selection.
AbstractList The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In this paper, two different hybrid models are designed based on spotted hyena optimization (SHO) for feature selection problem. The SHO algorithm can find the optimal or nearly optimal feature subset in the feature space to minimize the given fitness function. In the first model, the simulated annealing algorithm (SA) is embedded in the SHO algorithm (called SHOSA-1) to enhance the optimal solution found by the SHO algorithm after each iteration. In the second model, SA enhances the final solution obtained by the SHO algorithm (called SHOSA-2). The performance of these methods is evaluated in 20 datasets in the UCI repository. The experiments show that SHOSA-1 performs better than the native algorithm and SHOSA-2. And then, SHOSA-1 is compared with six state-of-the-art optimization algorithms. The experimental results confirm that SHOSA-1 improves the classification accuracy and reduces the number of selected features compared with other wrapper-based optimization algorithms. That proves the excellent performance of SHOSA-1 in spatial search and feature attribute selection.
Author Lang, Chunbo
Jia, Heming
Li, Yao
Li, Jinduo
Peng, Xiaoxu
Song, Wenlong
Author_xml – sequence: 1
  givenname: Heming
  orcidid: 0000-0002-8256-9166
  surname: Jia
  fullname: Jia, Heming
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 2
  givenname: Jinduo
  surname: Li
  fullname: Li, Jinduo
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 3
  givenname: Wenlong
  surname: Song
  fullname: Song, Wenlong
  email: swl@nefu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 4
  givenname: Xiaoxu
  surname: Peng
  fullname: Peng, Xiaoxu
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 5
  givenname: Chunbo
  surname: Lang
  fullname: Lang, Chunbo
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
– sequence: 6
  givenname: Yao
  surname: Li
  fullname: Li, Yao
  organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
BookMark eNpNUctuwjAQtCoqlVK-gEuknqF-JvERIShISBzSqkfLOBtqFGLqmAP9-joNqurDerWamZ3VPKJB4xpAaELwjBAsX-aLxbIoZhQTOaOSSCnJHRpSksopEywd_Osf0Lhtjzi-PI5ENkRFcXYhQJmsr9DoZHcO9mS_dbCuSeb1wXkbPk_JR6xJYU-XWnfYedOArm1zSCrnkxXocPGQFFCD6YhP6L7SdQvj2z9C76vl22I93e5eN4v5dmo4zsOU0wxrmWmzFzmXhsqcl4JEZxyIlhoTQ_Jyb4DTUuB9mmIAyjHPSgayMlnGRmjT65ZOH9XZ25P2V-W0Vb8D5w9K-2BNDarcy3g_ZqQExgXjUnBiKGOMa17ptNN67rXO3n1doA3q6C6-ifYV5UIIybKcRRTrUca7tvVQ_W0lWHVhqD4M1YWhbmFE1qRnWQD4Y-QZTVm08APyZ4Xj
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00521_023_09330_1
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1007_s13369_022_06564_4
crossref_primary_10_1016_j_iotcps_2022_08_001
crossref_primary_10_1016_j_bspc_2023_105441
crossref_primary_10_1007_s00521_022_08015_5
crossref_primary_10_1080_15325008_2022_2049650
crossref_primary_10_1007_s00521_024_09565_6
crossref_primary_10_1016_j_jobe_2020_102142
crossref_primary_10_1016_j_enconman_2024_118371
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1007_s11831_021_09624_4
crossref_primary_10_1016_j_prime_2024_100635
crossref_primary_10_1109_ACCESS_2020_3034365
crossref_primary_10_1007_s12559_022_10022_6
crossref_primary_10_24857_rgsa_v18n5_035
crossref_primary_10_1007_s11356_022_20837_3
crossref_primary_10_1109_ACCESS_2020_2999093
crossref_primary_10_1109_ACCESS_2020_2988157
crossref_primary_10_1109_ACCESS_2019_2953800
crossref_primary_10_3390_app9224738
crossref_primary_10_1109_ACCESS_2021_3049547
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1063_5_0092379
crossref_primary_10_1007_s10462_023_10482_8
crossref_primary_10_3390_sym12111782
crossref_primary_10_1007_s00521_023_08400_8
crossref_primary_10_1109_ACCESS_2020_2996611
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_32604_csse_2021_017536
crossref_primary_10_3390_electronics8101130
crossref_primary_10_1111_itor_13165
crossref_primary_10_1142_S0219265921410280
crossref_primary_10_1007_s11277_023_10807_4
crossref_primary_10_1016_j_asoc_2020_107009
crossref_primary_10_1007_s00521_023_08383_6
crossref_primary_10_48084_etasr_4490
crossref_primary_10_1016_j_knosys_2021_106926
crossref_primary_10_1111_coin_12272
crossref_primary_10_1007_s11277_022_09961_y
crossref_primary_10_1002_ett_4797
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_1108_IDD_11_2022_0118
crossref_primary_10_1002_cpe_7239
crossref_primary_10_3390_a16030167
crossref_primary_10_1007_s12652_022_03896_9
crossref_primary_10_1109_ACCESS_2021_3117853
crossref_primary_10_12720_jait_14_4_777_787
crossref_primary_10_1016_j_eswa_2021_115756
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_1142_S0219467823500456
crossref_primary_10_1007_s42979_021_00687_5
crossref_primary_10_3390_math9222899
crossref_primary_10_1016_j_patrec_2023_05_007
crossref_primary_10_1007_s00366_019_00897_9
crossref_primary_10_1007_s12559_023_10149_0
crossref_primary_10_1109_ACCESS_2020_2991543
Cites_doi 10.1016/j.advengsoft.2017.07.002
10.1016/j.knosys.2018.05.009
10.1016/B978-0-12-809633-8.20749-8
10.1016/j.ejor.2005.07.023
10.1155/2013/125893
10.3390/designs2030028
10.1016/j.asoc.2018.11.047
10.1016/j.knosys.2015.12.022
10.1016/j.compeleceng.2013.11.024
10.1007/BF02601639
10.1016/j.eswa.2013.09.023
10.1016/j.matpr.2017.07.055
10.1142/S0219876210002209
10.1016/j.eswa.2018.08.051
10.1016/j.jksuci.2018.06.003
10.1007/978-3-642-32894-7_27
10.1023/A:1016540724870
10.1016/j.knosys.2018.06.025
10.1109/TKDE.2005.66
10.1016/j.ins.2018.11.041
10.1016/j.patcog.2015.03.020
10.1142/S0217732318502395
10.1016/j.asoc.2010.11.030
10.1016/j.asoc.2017.11.006
10.1007/s00500-014-1345-2
10.1109/ACCESS.2018.2837062
10.1126/science.220.4598.671
10.1016/j.knosys.2018.03.011
10.1016/j.swevo.2015.05.001
10.1111/ele.12447
10.1109/MLDS.2017.5
10.1016/j.amc.2015.11.001
10.2307/2685209
10.1016/j.neucom.2017.04.053
10.1109/TPAMI.2004.105
10.1016/j.eswa.2016.06.004
10.1016/j.neucom.2016.03.101
10.1016/j.ins.2014.09.020
10.1016/S1672-6529(11)60020-6
10.1016/j.knosys.2018.08.003
10.1016/S1088-467X(97)00008-5
10.1016/j.eswa.2013.09.004
10.3923/pjbs.2014.266.271
10.1016/j.advengsoft.2017.05.014
10.1109/CEC.2009.4983263
10.1002/atr.1274
10.1109/INISTA.2016.7571853
10.1007/978-3-319-02141-6_7
10.1016/j.neucom.2018.02.104
10.1016/j.patrec.2006.09.003
10.1016/j.patrec.2005.12.018
10.1016/j.patrec.2016.03.014
10.1016/j.enbuild.2014.10.039
10.1016/j.asoc.2012.03.072
10.1016/j.knosys.2016.07.026
10.4018/978-1-4666-7258-1.ch020
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2919991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 71962
ExternalDocumentID oai_doaj_org_article_db9353031de345349541c23334a4fa67
10_1109_ACCESS_2019_2919991
8726323
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31470714
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4270a97acb5849c2984d510814e1a9a01c18dbce42d50b660ee24047d3e9fc773
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:16:06 EDT 2024
Thu Oct 10 16:38:01 EDT 2024
Fri Aug 23 00:50:55 EDT 2024
Wed Jun 26 19:28:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4270a97acb5849c2984d510814e1a9a01c18dbce42d50b660ee24047d3e9fc773
ORCID 0000-0002-8256-9166
OpenAccessLink https://doaj.org/article/db9353031de345349541c23334a4fa67
PQID 2455593783
PQPubID 4845423
PageCount 20
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2919991
proquest_journals_2455593783
doaj_primary_oai_doaj_org_article_db9353031de345349541c23334a4fa67
ieee_primary_8726323
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
talbi (ref9) 2012; 42
talbi (ref24) 2012; 42
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref41
ref44
ref43
ref49
ref8
ref4
ref3
ref6
ref5
ref40
blake (ref48) 1998
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
jose (ref2) 2014; 2
ref23
ref26
ref25
ref20
ref22
guyon (ref7) 2003; 3
ref21
ref28
ref27
ref29
ref60
wu (ref42) 2012
ref62
ref61
publicover (ref37) 2015; 49
References_xml – ident: ref50
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref19
  doi: 10.1016/j.knosys.2018.05.009
– year: 1998
  ident: ref48
  publication-title: UCI repository of machine learning databases
  contributor:
    fullname: blake
– ident: ref45
  doi: 10.1016/B978-0-12-809633-8.20749-8
– ident: ref1
  doi: 10.1016/j.ejor.2005.07.023
– ident: ref32
  doi: 10.1155/2013/125893
– ident: ref29
  doi: 10.3390/designs2030028
– ident: ref21
  doi: 10.1016/j.asoc.2018.11.047
– ident: ref55
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref3
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref7
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
  contributor:
    fullname: guyon
– ident: ref34
  doi: 10.1007/BF02601639
– ident: ref15
  doi: 10.1016/j.eswa.2013.09.023
– ident: ref56
  doi: 10.1016/j.matpr.2017.07.055
– ident: ref36
  doi: 10.1142/S0219876210002209
– volume: 2
  start-page: 44
  year: 2014
  ident: ref2
  article-title: A survey on feature selection techniques
  publication-title: Int J Eng Res Gen Sci
  contributor:
    fullname: jose
– ident: ref14
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref61
  doi: 10.1016/j.jksuci.2018.06.003
– ident: ref51
  doi: 10.1007/978-3-642-32894-7_27
– ident: ref25
  doi: 10.1023/A:1016540724870
– ident: ref57
  doi: 10.1016/j.knosys.2018.06.025
– ident: ref5
  doi: 10.1109/TKDE.2005.66
– ident: ref40
  doi: 10.1016/j.ins.2018.11.041
– ident: ref17
  doi: 10.1016/j.patcog.2015.03.020
– ident: ref30
  doi: 10.1142/S0217732318502395
– ident: ref62
  doi: 10.1016/j.asoc.2010.11.030
– ident: ref20
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref54
  doi: 10.1007/s00500-014-1345-2
– ident: ref52
  doi: 10.1109/ACCESS.2018.2837062
– ident: ref31
  doi: 10.1126/science.220.4598.671
– ident: ref27
  doi: 10.1016/j.knosys.2018.03.011
– ident: ref23
  doi: 10.1016/j.swevo.2015.05.001
– ident: ref46
  doi: 10.1111/ele.12447
– ident: ref28
  doi: 10.1109/MLDS.2017.5
– ident: ref41
  doi: 10.1016/j.amc.2015.11.001
– ident: ref47
  doi: 10.2307/2685209
– ident: ref33
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref35
  doi: 10.1109/TPAMI.2004.105
– volume: 42
  start-page: 414
  year: 2012
  ident: ref9
  publication-title: Metaheuristics From Design to Implementation
  contributor:
    fullname: talbi
– ident: ref18
  doi: 10.1016/j.eswa.2016.06.004
– ident: ref13
  doi: 10.1016/j.neucom.2016.03.101
– ident: ref16
  doi: 10.1016/j.ins.2014.09.020
– ident: ref59
  doi: 10.1016/S1672-6529(11)60020-6
– volume: 42
  start-page: 414
  year: 2012
  ident: ref24
  article-title: Metaheuristics: From design to implementation
  publication-title: Art Des Rev
  contributor:
    fullname: talbi
– ident: ref22
  doi: 10.1016/j.knosys.2018.08.003
– ident: ref4
  doi: 10.1016/S1088-467X(97)00008-5
– ident: ref11
  doi: 10.1016/j.eswa.2013.09.004
– ident: ref44
  doi: 10.3923/pjbs.2014.266.271
– ident: ref26
  doi: 10.1016/j.advengsoft.2017.05.014
– ident: ref43
  doi: 10.1109/CEC.2009.4983263
– volume: 49
  start-page: 153
  year: 2015
  ident: ref37
  article-title: Hybrid simulated annealing and genetic algorithm for optimizing arterial signal timings under oversaturated traffic conditions
  publication-title: J Adv Transp
  doi: 10.1002/atr.1274
  contributor:
    fullname: publicover
– ident: ref60
  doi: 10.1109/INISTA.2016.7571853
– ident: ref58
  doi: 10.1007/978-3-319-02141-6_7
– ident: ref49
  doi: 10.1016/j.neucom.2018.02.104
– ident: ref10
  doi: 10.1016/j.patrec.2006.09.003
– start-page: 401
  year: 2012
  ident: ref42
  article-title: A novel hybrid genetic algorithm and Simulated Annealing for feature selection and kernel optimization in support vector regression
  publication-title: Proc IEEE Int Conf Inf Reuse Integr
  contributor:
    fullname: wu
– ident: ref8
  doi: 10.1016/j.patrec.2005.12.018
– ident: ref12
  doi: 10.1016/j.patrec.2016.03.014
– ident: ref38
  doi: 10.1016/j.enbuild.2014.10.039
– ident: ref53
  doi: 10.1016/j.asoc.2012.03.072
– ident: ref6
  doi: 10.1016/j.knosys.2016.07.026
– ident: ref39
  doi: 10.4018/978-1-4666-7258-1.ch020
SSID ssj0000816957
Score 2.4306242
Snippet The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 71943
SubjectTerms Algorithms
Biological system modeling
classification
Classification algorithms
Feature extraction
Feature selection
Genetic algorithms
Heuristic methods
Hybrid optimization
Iterative methods
Machine learning algorithms
Optimization
Optimization algorithms
SHO optimization
Simulated annealing
spotted hyena optimization algorithm
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsFOQDx2Ybx05sH5cV1QqpcFgqerP8mIUKdrdasof21zN2vCteBy5RlDiR48_2fON4vgF4E0xHdllg5VF0lfSeVzqQsxJV472gOzFH8V986GaX8v1Ve3UAp_tYGETMm89wnE7zv_y4Dtu0VHamVVIXF4dwqIwZYrX26ykpgYRpVREW4rU5m0yn9A1p95YZNyaF2_PfjE_W6C9JVf6aibN5OX8IF7uKDbtKvo23vR-Huz80G_-35o_gQeGZbDJ0jMdwgKsncP8X9cFjmM9v1j0RTja7xZVjH2nyWJaoTDb5_mW9ue6_LtlnOrL59TKl-aKyE5qXXQphZ8R2WSKQ2w2yec6mQw8-hcvzd5-ms6rkWKiCrHVfyUbVzigXPDERExqjZaRhqrlE7oyreeA6-oCyiW3tu65GJA4gVRRoFkEp8QyOVusVPgfWoiN-qNB5ESUSaedNHYPXnEe96LAdwemu8e3NIKVhswtSGztgZRNWtmA1grcJoH3RpIOdL1DD2jKsbPRGtGSFecTUscjbkzw0Qgjp5MJ1agTHCYz9SwoOIzjZwW3LmP1hG9mSeyWUFi_-_dRLuJcqOCzAnMBRv9niK6IkvX-d--JPuMHdgQ
  priority: 102
  providerName: IEEE
Title Spotted Hyena Optimization Algorithm With Simulated Annealing for Feature Selection
URI https://ieeexplore.ieee.org/document/8726323
https://www.proquest.com/docview/2455593783
https://doaj.org/article/db9353031de345349541c23334a4fa67
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EolQdGQuPYie2xVFQVEjAURDfLjysg0RZBGfj3nJ2AihhYWDLEdmLfxXffRb7vCDnxukK_zCFzwKtMOMcy5TFYCbJwjmNLSFn8V9fV6E5cTsrJSqmveCaspgeuBdcLTvMS7SwLEIcinhfMF5xzYcXUVnUeea5XgqlkgxWrdCkbmiFs7_UHA1xRPMulzwodk-_ZD1eUGPubEiu_7HJyNsMtstmgRNqvZ7dN1mC-QzZWuAN3yXj8slgiXKSjD5hbeoNbf9bkVNL-88MCg_7HGb3HKx0_zWKRLuzbR6tqYwI6RaxKI_x7fwU6TrVwcOAeuRte3A5GWVMhIfMiV8tMFDK3WlrvEEdoX2glAm4yxQQwq23OPFPBeRBFKHNXVTkAenAhAwc99VLyfdKaL-ZwQGgJFtGdBOt4EICQmxV58E4xFtS0grJNTr-EZV5qIgyTAohcm1q2JsrWNLJtk_Mo0O-ukcU63UDdmka35i_dtsluVMf3Q5SM7PK8TTpf6jHNjnszhSgxOOJS8cP_ePURWY_LqX-2dEhr-foOxwg_lq6bvrRuyhT8BHcZ04g
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN4p5QAceBWGQAEdONapZcmWdAwZOgGackg79KbRYwMdSNIJzgF-PSvZyfA6cPF4bNkj65O038rabwFeBdOQXRZYeBRNIb3nhQ7krERVeS_oTsxR_NOzZnIh313Wl3twtIuFQcS8-QyH6TT_y4-rsElLZcdaJXVxcQNuEq_WTRettVtRSSkkTK16aSFemuPReExfkfZvmWFlUsA9_838ZJX-Pq3KX3NxNjAn92C6rVq3r-TLcNP6Yfjxh2rj_9b9PtztmSYbdV3jAezh8iHc-UV_8ABms-tVS5STTb7j0rEPNH0s-rhMNvr6abW-aj8v2Ec6stnVIiX6orIjmpldCmJnxHdZopCbNbJZzqdDDz6Ci5M35-NJ0WdZKIIsdVvISpXOKBc8cRETKqNlpIGquUTujCt54Dr6gLKKdembpkQkFiBVFGjmQSnxGPaXqyU-AVajI4ao0HkRJRJt51UZg9ecRz1vsB7A0bbx7XUnpmGzE1Ia22FlE1a2x2oArxNAu6JJCTtfoIa1_cCy0RtRkx3mEVPXIn9P8lAJIaSTc9eoARwkMHYv6XEYwOEWbtuP2m-2kjU5WEJp8fTfT72EW5Pz6ak9fXv2_hncTpXtlmMOYb9db_A5EZTWv8j98idzuODM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spotted+Hyena+Optimization+Algorithm+With+Simulated+Annealing+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Jia%2C+Heming&rft.au=Li%2C+Jinduo&rft.au=Song%2C+Wenlong&rft.au=Peng%2C+Xiaoxu&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=71943&rft.epage=71962&rft_id=info:doi/10.1109%2FACCESS.2019.2919991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2919991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon