Spotted Hyena Optimization Algorithm With Simulated Annealing for Feature Selection
The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In t...
Saved in:
Published in | IEEE access Vol. 7; pp. 71943 - 71962 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In this paper, two different hybrid models are designed based on spotted hyena optimization (SHO) for feature selection problem. The SHO algorithm can find the optimal or nearly optimal feature subset in the feature space to minimize the given fitness function. In the first model, the simulated annealing algorithm (SA) is embedded in the SHO algorithm (called SHOSA-1) to enhance the optimal solution found by the SHO algorithm after each iteration. In the second model, SA enhances the final solution obtained by the SHO algorithm (called SHOSA-2). The performance of these methods is evaluated in 20 datasets in the UCI repository. The experiments show that SHOSA-1 performs better than the native algorithm and SHOSA-2. And then, SHOSA-1 is compared with six state-of-the-art optimization algorithms. The experimental results confirm that SHOSA-1 improves the classification accuracy and reduces the number of selected features compared with other wrapper-based optimization algorithms. That proves the excellent performance of SHOSA-1 in spatial search and feature attribute selection. |
---|---|
AbstractList | The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of finding the most relevant subset based on some criteria. A hybrid metaheuristic is a new trend in the development of optimization algorithms. In this paper, two different hybrid models are designed based on spotted hyena optimization (SHO) for feature selection problem. The SHO algorithm can find the optimal or nearly optimal feature subset in the feature space to minimize the given fitness function. In the first model, the simulated annealing algorithm (SA) is embedded in the SHO algorithm (called SHOSA-1) to enhance the optimal solution found by the SHO algorithm after each iteration. In the second model, SA enhances the final solution obtained by the SHO algorithm (called SHOSA-2). The performance of these methods is evaluated in 20 datasets in the UCI repository. The experiments show that SHOSA-1 performs better than the native algorithm and SHOSA-2. And then, SHOSA-1 is compared with six state-of-the-art optimization algorithms. The experimental results confirm that SHOSA-1 improves the classification accuracy and reduces the number of selected features compared with other wrapper-based optimization algorithms. That proves the excellent performance of SHOSA-1 in spatial search and feature attribute selection. |
Author | Lang, Chunbo Jia, Heming Li, Yao Li, Jinduo Peng, Xiaoxu Song, Wenlong |
Author_xml | – sequence: 1 givenname: Heming orcidid: 0000-0002-8256-9166 surname: Jia fullname: Jia, Heming organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 2 givenname: Jinduo surname: Li fullname: Li, Jinduo organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 3 givenname: Wenlong surname: Song fullname: Song, Wenlong email: swl@nefu.edu.cn organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 4 givenname: Xiaoxu surname: Peng fullname: Peng, Xiaoxu organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 5 givenname: Chunbo surname: Lang fullname: Lang, Chunbo organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China – sequence: 6 givenname: Yao surname: Li fullname: Li, Yao organization: College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China |
BookMark | eNpNUctuwjAQtCoqlVK-gEuknqF-JvERIShISBzSqkfLOBtqFGLqmAP9-joNqurDerWamZ3VPKJB4xpAaELwjBAsX-aLxbIoZhQTOaOSSCnJHRpSksopEywd_Osf0Lhtjzi-PI5ENkRFcXYhQJmsr9DoZHcO9mS_dbCuSeb1wXkbPk_JR6xJYU-XWnfYedOArm1zSCrnkxXocPGQFFCD6YhP6L7SdQvj2z9C76vl22I93e5eN4v5dmo4zsOU0wxrmWmzFzmXhsqcl4JEZxyIlhoTQ_Jyb4DTUuB9mmIAyjHPSgayMlnGRmjT65ZOH9XZ25P2V-W0Vb8D5w9K-2BNDarcy3g_ZqQExgXjUnBiKGOMa17ptNN67rXO3n1doA3q6C6-ifYV5UIIybKcRRTrUca7tvVQ_W0lWHVhqD4M1YWhbmFE1qRnWQD4Y-QZTVm08APyZ4Xj |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s00521_023_09330_1 crossref_primary_10_1109_ACCESS_2022_3221194 crossref_primary_10_1007_s13369_022_06564_4 crossref_primary_10_1016_j_iotcps_2022_08_001 crossref_primary_10_1016_j_bspc_2023_105441 crossref_primary_10_1007_s00521_022_08015_5 crossref_primary_10_1080_15325008_2022_2049650 crossref_primary_10_1007_s00521_024_09565_6 crossref_primary_10_1016_j_jobe_2020_102142 crossref_primary_10_1016_j_enconman_2024_118371 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_1007_s11831_021_09624_4 crossref_primary_10_1016_j_prime_2024_100635 crossref_primary_10_1109_ACCESS_2020_3034365 crossref_primary_10_1007_s12559_022_10022_6 crossref_primary_10_24857_rgsa_v18n5_035 crossref_primary_10_1007_s11356_022_20837_3 crossref_primary_10_1109_ACCESS_2020_2999093 crossref_primary_10_1109_ACCESS_2020_2988157 crossref_primary_10_1109_ACCESS_2019_2953800 crossref_primary_10_3390_app9224738 crossref_primary_10_1109_ACCESS_2021_3049547 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_1063_5_0092379 crossref_primary_10_1007_s10462_023_10482_8 crossref_primary_10_3390_sym12111782 crossref_primary_10_1007_s00521_023_08400_8 crossref_primary_10_1109_ACCESS_2020_2996611 crossref_primary_10_1109_ACCESS_2021_3108097 crossref_primary_10_32604_csse_2021_017536 crossref_primary_10_3390_electronics8101130 crossref_primary_10_1111_itor_13165 crossref_primary_10_1142_S0219265921410280 crossref_primary_10_1007_s11277_023_10807_4 crossref_primary_10_1016_j_asoc_2020_107009 crossref_primary_10_1007_s00521_023_08383_6 crossref_primary_10_48084_etasr_4490 crossref_primary_10_1016_j_knosys_2021_106926 crossref_primary_10_1111_coin_12272 crossref_primary_10_1007_s11277_022_09961_y crossref_primary_10_1002_ett_4797 crossref_primary_10_1007_s00500_023_08414_3 crossref_primary_10_1108_IDD_11_2022_0118 crossref_primary_10_1002_cpe_7239 crossref_primary_10_3390_a16030167 crossref_primary_10_1007_s12652_022_03896_9 crossref_primary_10_1109_ACCESS_2021_3117853 crossref_primary_10_12720_jait_14_4_777_787 crossref_primary_10_1016_j_eswa_2021_115756 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_1142_S0219467823500456 crossref_primary_10_1007_s42979_021_00687_5 crossref_primary_10_3390_math9222899 crossref_primary_10_1016_j_patrec_2023_05_007 crossref_primary_10_1007_s00366_019_00897_9 crossref_primary_10_1007_s12559_023_10149_0 crossref_primary_10_1109_ACCESS_2020_2991543 |
Cites_doi | 10.1016/j.advengsoft.2017.07.002 10.1016/j.knosys.2018.05.009 10.1016/B978-0-12-809633-8.20749-8 10.1016/j.ejor.2005.07.023 10.1155/2013/125893 10.3390/designs2030028 10.1016/j.asoc.2018.11.047 10.1016/j.knosys.2015.12.022 10.1016/j.compeleceng.2013.11.024 10.1007/BF02601639 10.1016/j.eswa.2013.09.023 10.1016/j.matpr.2017.07.055 10.1142/S0219876210002209 10.1016/j.eswa.2018.08.051 10.1016/j.jksuci.2018.06.003 10.1007/978-3-642-32894-7_27 10.1023/A:1016540724870 10.1016/j.knosys.2018.06.025 10.1109/TKDE.2005.66 10.1016/j.ins.2018.11.041 10.1016/j.patcog.2015.03.020 10.1142/S0217732318502395 10.1016/j.asoc.2010.11.030 10.1016/j.asoc.2017.11.006 10.1007/s00500-014-1345-2 10.1109/ACCESS.2018.2837062 10.1126/science.220.4598.671 10.1016/j.knosys.2018.03.011 10.1016/j.swevo.2015.05.001 10.1111/ele.12447 10.1109/MLDS.2017.5 10.1016/j.amc.2015.11.001 10.2307/2685209 10.1016/j.neucom.2017.04.053 10.1109/TPAMI.2004.105 10.1016/j.eswa.2016.06.004 10.1016/j.neucom.2016.03.101 10.1016/j.ins.2014.09.020 10.1016/S1672-6529(11)60020-6 10.1016/j.knosys.2018.08.003 10.1016/S1088-467X(97)00008-5 10.1016/j.eswa.2013.09.004 10.3923/pjbs.2014.266.271 10.1016/j.advengsoft.2017.05.014 10.1109/CEC.2009.4983263 10.1002/atr.1274 10.1109/INISTA.2016.7571853 10.1007/978-3-319-02141-6_7 10.1016/j.neucom.2018.02.104 10.1016/j.patrec.2006.09.003 10.1016/j.patrec.2005.12.018 10.1016/j.patrec.2016.03.014 10.1016/j.enbuild.2014.10.039 10.1016/j.asoc.2012.03.072 10.1016/j.knosys.2016.07.026 10.4018/978-1-4666-7258-1.ch020 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2919991 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 71962 |
ExternalDocumentID | oai_doaj_org_article_db9353031de345349541c23334a4fa67 10_1109_ACCESS_2019_2919991 8726323 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31470714 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-4270a97acb5849c2984d510814e1a9a01c18dbce42d50b660ee24047d3e9fc773 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:16:06 EDT 2024 Thu Oct 10 16:38:01 EDT 2024 Fri Aug 23 00:50:55 EDT 2024 Wed Jun 26 19:28:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-4270a97acb5849c2984d510814e1a9a01c18dbce42d50b660ee24047d3e9fc773 |
ORCID | 0000-0002-8256-9166 |
OpenAccessLink | https://doaj.org/article/db9353031de345349541c23334a4fa67 |
PQID | 2455593783 |
PQPubID | 4845423 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2919991 proquest_journals_2455593783 doaj_primary_oai_doaj_org_article_db9353031de345349541c23334a4fa67 ieee_primary_8726323 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 talbi (ref9) 2012; 42 talbi (ref24) 2012; 42 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref41 ref44 ref43 ref49 ref8 ref4 ref3 ref6 ref5 ref40 blake (ref48) 1998 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 jose (ref2) 2014; 2 ref23 ref26 ref25 ref20 ref22 guyon (ref7) 2003; 3 ref21 ref28 ref27 ref29 ref60 wu (ref42) 2012 ref62 ref61 publicover (ref37) 2015; 49 |
References_xml | – ident: ref50 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref19 doi: 10.1016/j.knosys.2018.05.009 – year: 1998 ident: ref48 publication-title: UCI repository of machine learning databases contributor: fullname: blake – ident: ref45 doi: 10.1016/B978-0-12-809633-8.20749-8 – ident: ref1 doi: 10.1016/j.ejor.2005.07.023 – ident: ref32 doi: 10.1155/2013/125893 – ident: ref29 doi: 10.3390/designs2030028 – ident: ref21 doi: 10.1016/j.asoc.2018.11.047 – ident: ref55 doi: 10.1016/j.knosys.2015.12.022 – ident: ref3 doi: 10.1016/j.compeleceng.2013.11.024 – volume: 3 start-page: 1157 year: 2003 ident: ref7 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res contributor: fullname: guyon – ident: ref34 doi: 10.1007/BF02601639 – ident: ref15 doi: 10.1016/j.eswa.2013.09.023 – ident: ref56 doi: 10.1016/j.matpr.2017.07.055 – ident: ref36 doi: 10.1142/S0219876210002209 – volume: 2 start-page: 44 year: 2014 ident: ref2 article-title: A survey on feature selection techniques publication-title: Int J Eng Res Gen Sci contributor: fullname: jose – ident: ref14 doi: 10.1016/j.eswa.2018.08.051 – ident: ref61 doi: 10.1016/j.jksuci.2018.06.003 – ident: ref51 doi: 10.1007/978-3-642-32894-7_27 – ident: ref25 doi: 10.1023/A:1016540724870 – ident: ref57 doi: 10.1016/j.knosys.2018.06.025 – ident: ref5 doi: 10.1109/TKDE.2005.66 – ident: ref40 doi: 10.1016/j.ins.2018.11.041 – ident: ref17 doi: 10.1016/j.patcog.2015.03.020 – ident: ref30 doi: 10.1142/S0217732318502395 – ident: ref62 doi: 10.1016/j.asoc.2010.11.030 – ident: ref20 doi: 10.1016/j.asoc.2017.11.006 – ident: ref54 doi: 10.1007/s00500-014-1345-2 – ident: ref52 doi: 10.1109/ACCESS.2018.2837062 – ident: ref31 doi: 10.1126/science.220.4598.671 – ident: ref27 doi: 10.1016/j.knosys.2018.03.011 – ident: ref23 doi: 10.1016/j.swevo.2015.05.001 – ident: ref46 doi: 10.1111/ele.12447 – ident: ref28 doi: 10.1109/MLDS.2017.5 – ident: ref41 doi: 10.1016/j.amc.2015.11.001 – ident: ref47 doi: 10.2307/2685209 – ident: ref33 doi: 10.1016/j.neucom.2017.04.053 – ident: ref35 doi: 10.1109/TPAMI.2004.105 – volume: 42 start-page: 414 year: 2012 ident: ref9 publication-title: Metaheuristics From Design to Implementation contributor: fullname: talbi – ident: ref18 doi: 10.1016/j.eswa.2016.06.004 – ident: ref13 doi: 10.1016/j.neucom.2016.03.101 – ident: ref16 doi: 10.1016/j.ins.2014.09.020 – ident: ref59 doi: 10.1016/S1672-6529(11)60020-6 – volume: 42 start-page: 414 year: 2012 ident: ref24 article-title: Metaheuristics: From design to implementation publication-title: Art Des Rev contributor: fullname: talbi – ident: ref22 doi: 10.1016/j.knosys.2018.08.003 – ident: ref4 doi: 10.1016/S1088-467X(97)00008-5 – ident: ref11 doi: 10.1016/j.eswa.2013.09.004 – ident: ref44 doi: 10.3923/pjbs.2014.266.271 – ident: ref26 doi: 10.1016/j.advengsoft.2017.05.014 – ident: ref43 doi: 10.1109/CEC.2009.4983263 – volume: 49 start-page: 153 year: 2015 ident: ref37 article-title: Hybrid simulated annealing and genetic algorithm for optimizing arterial signal timings under oversaturated traffic conditions publication-title: J Adv Transp doi: 10.1002/atr.1274 contributor: fullname: publicover – ident: ref60 doi: 10.1109/INISTA.2016.7571853 – ident: ref58 doi: 10.1007/978-3-319-02141-6_7 – ident: ref49 doi: 10.1016/j.neucom.2018.02.104 – ident: ref10 doi: 10.1016/j.patrec.2006.09.003 – start-page: 401 year: 2012 ident: ref42 article-title: A novel hybrid genetic algorithm and Simulated Annealing for feature selection and kernel optimization in support vector regression publication-title: Proc IEEE Int Conf Inf Reuse Integr contributor: fullname: wu – ident: ref8 doi: 10.1016/j.patrec.2005.12.018 – ident: ref12 doi: 10.1016/j.patrec.2016.03.014 – ident: ref38 doi: 10.1016/j.enbuild.2014.10.039 – ident: ref53 doi: 10.1016/j.asoc.2012.03.072 – ident: ref6 doi: 10.1016/j.knosys.2016.07.026 – ident: ref39 doi: 10.4018/978-1-4666-7258-1.ch020 |
SSID | ssj0000816957 |
Score | 2.4306242 |
Snippet | The purpose of this paper is to propose a new hybrid metaheuristic to solve the problem of feature selection. Feature selection problem is the process of... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 71943 |
SubjectTerms | Algorithms Biological system modeling classification Classification algorithms Feature extraction Feature selection Genetic algorithms Heuristic methods Hybrid optimization Iterative methods Machine learning algorithms Optimization Optimization algorithms SHO optimization Simulated annealing spotted hyena optimization algorithm |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library Online dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsFOQDx2Ybx05sH5cV1QqpcFgqerP8mIUKdrdasof21zN2vCteBy5RlDiR48_2fON4vgF4E0xHdllg5VF0lfSeVzqQsxJV472gOzFH8V986GaX8v1Ve3UAp_tYGETMm89wnE7zv_y4Dtu0VHamVVIXF4dwqIwZYrX26ykpgYRpVREW4rU5m0yn9A1p95YZNyaF2_PfjE_W6C9JVf6aibN5OX8IF7uKDbtKvo23vR-Huz80G_-35o_gQeGZbDJ0jMdwgKsncP8X9cFjmM9v1j0RTja7xZVjH2nyWJaoTDb5_mW9ue6_LtlnOrL59TKl-aKyE5qXXQphZ8R2WSKQ2w2yec6mQw8-hcvzd5-ms6rkWKiCrHVfyUbVzigXPDERExqjZaRhqrlE7oyreeA6-oCyiW3tu65GJA4gVRRoFkEp8QyOVusVPgfWoiN-qNB5ESUSaedNHYPXnEe96LAdwemu8e3NIKVhswtSGztgZRNWtmA1grcJoH3RpIOdL1DD2jKsbPRGtGSFecTUscjbkzw0Qgjp5MJ1agTHCYz9SwoOIzjZwW3LmP1hG9mSeyWUFi_-_dRLuJcqOCzAnMBRv9niK6IkvX-d--JPuMHdgQ priority: 102 providerName: IEEE |
Title | Spotted Hyena Optimization Algorithm With Simulated Annealing for Feature Selection |
URI | https://ieeexplore.ieee.org/document/8726323 https://www.proquest.com/docview/2455593783 https://doaj.org/article/db9353031de345349541c23334a4fa67 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EolQdGQuPYie2xVFQVEjAURDfLjysg0RZBGfj3nJ2AihhYWDLEdmLfxXffRb7vCDnxukK_zCFzwKtMOMcy5TFYCbJwjmNLSFn8V9fV6E5cTsrJSqmveCaspgeuBdcLTvMS7SwLEIcinhfMF5xzYcXUVnUeea5XgqlkgxWrdCkbmiFs7_UHA1xRPMulzwodk-_ZD1eUGPubEiu_7HJyNsMtstmgRNqvZ7dN1mC-QzZWuAN3yXj8slgiXKSjD5hbeoNbf9bkVNL-88MCg_7HGb3HKx0_zWKRLuzbR6tqYwI6RaxKI_x7fwU6TrVwcOAeuRte3A5GWVMhIfMiV8tMFDK3WlrvEEdoX2glAm4yxQQwq23OPFPBeRBFKHNXVTkAenAhAwc99VLyfdKaL-ZwQGgJFtGdBOt4EICQmxV58E4xFtS0grJNTr-EZV5qIgyTAohcm1q2JsrWNLJtk_Mo0O-ukcU63UDdmka35i_dtsluVMf3Q5SM7PK8TTpf6jHNjnszhSgxOOJS8cP_ePURWY_LqX-2dEhr-foOxwg_lq6bvrRuyhT8BHcZ04g |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN4p5QAceBWGQAEdONapZcmWdAwZOgGackg79KbRYwMdSNIJzgF-PSvZyfA6cPF4bNkj65O038rabwFeBdOQXRZYeBRNIb3nhQ7krERVeS_oTsxR_NOzZnIh313Wl3twtIuFQcS8-QyH6TT_y4-rsElLZcdaJXVxcQNuEq_WTRettVtRSSkkTK16aSFemuPReExfkfZvmWFlUsA9_838ZJX-Pq3KX3NxNjAn92C6rVq3r-TLcNP6Yfjxh2rj_9b9PtztmSYbdV3jAezh8iHc-UV_8ABms-tVS5STTb7j0rEPNH0s-rhMNvr6abW-aj8v2Ec6stnVIiX6orIjmpldCmJnxHdZopCbNbJZzqdDDz6Ci5M35-NJ0WdZKIIsdVvISpXOKBc8cRETKqNlpIGquUTujCt54Dr6gLKKdembpkQkFiBVFGjmQSnxGPaXqyU-AVajI4ao0HkRJRJt51UZg9ecRz1vsB7A0bbx7XUnpmGzE1Ia22FlE1a2x2oArxNAu6JJCTtfoIa1_cCy0RtRkx3mEVPXIn9P8lAJIaSTc9eoARwkMHYv6XEYwOEWbtuP2m-2kjU5WEJp8fTfT72EW5Pz6ak9fXv2_hncTpXtlmMOYb9db_A5EZTWv8j98idzuODM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spotted+Hyena+Optimization+Algorithm+With+Simulated+Annealing+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Jia%2C+Heming&rft.au=Li%2C+Jinduo&rft.au=Song%2C+Wenlong&rft.au=Peng%2C+Xiaoxu&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=71943&rft.epage=71962&rft_id=info:doi/10.1109%2FACCESS.2019.2919991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2919991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |