Predicting Students' Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine
It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their und...
Saved in:
Published in | IEEE access Vol. 8; pp. 86745 - 86752 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their understanding on the subjects. Particularly it is desired students to manage well in fundamental knowledge in order to build a strong foundation for post-secondary studies and career. In this paper, improved conditional generative adversarial network based deep support vector machine (ICGAN-DSVM) algorithm has been proposed to predict students' performance under supportive learning via school and family tutoring. Owning to the nature of the students' academic dataset is generally low sample size. ICGAN-DSVM offers dual benefits for the nature of low sample size in students' academic dataset in which ICGAN increases the data volume whereas DSVM enhances the prediction accuracy with deep learning architecture. Results with 10-fold cross-validation show that the proposed ICGAN-DSVM yields specificity, sensitivity and area under the receiver operating characteristic curve (AUC) of 0.968, 0.971 and 0.954 respectively. Results also suggest that incorporating both school and family tutoring into the prediction model could further improve the performance compared with only school tutoring and only family tutoring. To show the necessity of ICGAN and DSVM, comparison has been made between ICGAN and traditional conditional generative adversarial network (CGAN). Also, the proposed kernel design via heuristic based multiple kernel learning (MKL) is compared with typical kernels including linear, radial basis function (RBF), polynomial and sigmoid. The prediction of student's performance with and without GAN is presented which is followed by comparison with DSVM and with traditional SVM. The proposed ICGAN-DSVM outperforms related works by 8-29% in terms of performance indicators specificity, sensitivity and AUC. |
---|---|
AbstractList | It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their understanding on the subjects. Particularly it is desired students to manage well in fundamental knowledge in order to build a strong foundation for post-secondary studies and career. In this paper, improved conditional generative adversarial network based deep support vector machine (ICGAN-DSVM) algorithm has been proposed to predict students' performance under supportive learning via school and family tutoring. Owning to the nature of the students' academic dataset is generally low sample size. ICGAN-DSVM offers dual benefits for the nature of low sample size in students' academic dataset in which ICGAN increases the data volume whereas DSVM enhances the prediction accuracy with deep learning architecture. Results with 10-fold cross-validation show that the proposed ICGAN-DSVM yields specificity, sensitivity and area under the receiver operating characteristic curve (AUC) of 0.968, 0.971 and 0.954 respectively. Results also suggest that incorporating both school and family tutoring into the prediction model could further improve the performance compared with only school tutoring and only family tutoring. To show the necessity of ICGAN and DSVM, comparison has been made between ICGAN and traditional conditional generative adversarial network (CGAN). Also, the proposed kernel design via heuristic based multiple kernel learning (MKL) is compared with typical kernels including linear, radial basis function (RBF), polynomial and sigmoid. The prediction of student's performance with and without GAN is presented which is followed by comparison with DSVM and with traditional SVM. The proposed ICGAN-DSVM outperforms related works by 8-29% in terms of performance indicators specificity, sensitivity and AUC. |
Author | De Pablos, Patricia Ordonez Zhao, Mingbo Liu, Ryan Wen Chui, Kwok Tai |
Author_xml | – sequence: 1 givenname: Kwok Tai orcidid: 0000-0001-7992-9901 surname: Chui fullname: Chui, Kwok Tai email: jktchui@ouhk.edu.hk organization: School of Science and Technology, The Open University of Hong Kong, Hong Kong – sequence: 2 givenname: Ryan Wen orcidid: 0000-0002-1591-5583 surname: Liu fullname: Liu, Ryan Wen email: wenliu@whut.edu.cn organization: Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Mingbo surname: Zhao fullname: Zhao, Mingbo organization: School of Information Science and Technology, Donghua University, Shanghai, China – sequence: 4 givenname: Patricia Ordonez surname: De Pablos fullname: De Pablos, Patricia Ordonez organization: Department of Business Administration and Accountability, Faculty of Economics, The University of Oviedo, Oviedo, Spain |
BookMark | eNqFkc1u1DAUhSNUJErpE3RjiQWrmdpOHDvLYWhLpQKV0sLS8s9Nx0PGTm2nqE_Q1yZDqgqxwYtr6-p-51j3vC0OfPBQFCcELwnBzelqvT5r2yXFFC9p01BRN6-KQ0rqZlGysj746_2mOE5pi6cjphbjh8XTdQTrTHb-DrV5tOBz-oCuIXYh7pQ3gH64vEGt2YTQI-UtOlc71z-imzGHuKdu075egIeosnsAtLIPEJOKTvXoK-RfIf5cfFQJLPoEMKB2HIYQM_oOZlJAX5TZOA_vited6hMcP99Hxe352c368-Lq28XlenW1MBUWeVHhSnPGNesE44Y33Na81qSyijIOpuqU4UR3WnBasU5zapWoFC2xAKYbUZZHxeWsa4PayiG6nYqPMign_zRCvJMqZmd6kKLRlIma1l3JK7BcEAraakKg7mzJ1KT1ftYaYrgfIWW5DWP00_fl5F4RTDirp6lynjIxpBShe3ElWO4DlHOAch-gfA5wopp_KOPytN_gc1Su_w97MrMOAF7cGiy44KT8DcIArCc |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3203406 crossref_primary_10_1109_ACCESS_2021_3082311 crossref_primary_10_1016_j_caeai_2023_100141 crossref_primary_10_3390_diagnostics12071531 crossref_primary_10_1109_ACCESS_2022_3196660 crossref_primary_10_1109_TCE_2023_3274651 crossref_primary_10_1002_eng2_12482 crossref_primary_10_3390_app112110007 crossref_primary_10_1109_ACCESS_2022_3198682 crossref_primary_10_2478_acss_2021_0015 crossref_primary_10_1109_ACCESS_2022_3183758 crossref_primary_10_1007_s11042_021_11442_6 crossref_primary_10_1016_j_bdr_2022_100360 crossref_primary_10_1002_cpe_6244 crossref_primary_10_3390_app12083881 crossref_primary_10_1109_ACCESS_2020_3031572 crossref_primary_10_1109_TITS_2022_3200140 crossref_primary_10_1016_j_compedu_2023_104846 crossref_primary_10_1007_s42452_024_06274_6 crossref_primary_10_1016_j_jik_2022_100225 crossref_primary_10_3390_bioengineering9110683 crossref_primary_10_1080_01969722_2023_2166259 crossref_primary_10_3389_feduc_2024_1433021 crossref_primary_10_3390_s20226450 crossref_primary_10_1109_ACCESS_2020_3025302 crossref_primary_10_1002_eng2_12652 crossref_primary_10_1007_s12528_024_09426_0 crossref_primary_10_1016_j_rse_2022_113357 crossref_primary_10_1016_j_jik_2022_100273 crossref_primary_10_1109_ACCESS_2020_3036572 crossref_primary_10_1186_s41239_022_00348_4 crossref_primary_10_1111_nyas_15113 crossref_primary_10_1109_ACCESS_2020_3042775 crossref_primary_10_1109_ACCESS_2022_3194147 crossref_primary_10_1109_ACCESS_2022_3156073 crossref_primary_10_1371_journal_pone_0309141 crossref_primary_10_1016_j_compeleceng_2021_107274 crossref_primary_10_1080_19479832_2024_2349999 crossref_primary_10_1007_s42979_024_03550_5 crossref_primary_10_1016_j_jksuci_2023_101728 crossref_primary_10_1109_ACCESS_2021_3097751 crossref_primary_10_1080_01431161_2021_1939910 crossref_primary_10_1145_3604240 crossref_primary_10_1007_s00521_022_06987_y crossref_primary_10_1109_TITS_2022_3147826 crossref_primary_10_3389_frai_2023_1151391 crossref_primary_10_1007_s00521_023_09213_5 crossref_primary_10_3233_JIFS_213457 crossref_primary_10_1016_j_techfore_2022_122269 crossref_primary_10_1016_j_jik_2022_100209 crossref_primary_10_1109_ACCESS_2020_3021523 crossref_primary_10_1109_ACCESS_2022_3212751 crossref_primary_10_1016_j_compeleceng_2021_107085 crossref_primary_10_1007_s11042_023_17891_5 crossref_primary_10_3390_electronics11203410 crossref_primary_10_1109_ACCESS_2021_3096039 crossref_primary_10_1007_s00521_023_08296_4 crossref_primary_10_1109_ACCESS_2022_3172438 crossref_primary_10_1007_s44163_023_00053_9 crossref_primary_10_1109_ACCESS_2023_3246122 crossref_primary_10_3390_ijms23073701 |
Cites_doi | 10.1016/j.ijer.2017.04.001 10.1080/0309877X.2011.644780 10.1016/j.compedu.2019.103676 10.1109/TNNLS.2018.2876865 10.1080/00220272.2019.1568583 10.1016/j.nicl.2019.102011 10.1016/j.patcog.2019.107050 10.1016/j.neucom.2018.11.067 10.1111/bjet.12592 10.1080/01621459.2019.1672556 10.1016/j.inffus.2019.06.016 10.1080/01425692.2017.1377600 10.1016/j.chb.2019.04.015 10.1016/j.procs.2018.08.178 10.1109/ACCESS.2018.2851790 10.1080/03075079.2017.1298088 10.1016/j.chb.2019.01.034 10.1016/j.nedt.2017.09.006 10.1109/TLT.2019.2913358 10.1016/j.chb.2019.106189 10.1109/ACCESS.2019.2905015 10.1007/s10212-017-0365-6 10.1109/TE.2019.2899545 10.1002/rev3.3134 10.1016/j.jbusres.2018.02.012 10.1007/s11423-018-9581-2 10.1016/j.inffus.2017.10.006 10.1016/j.knosys.2018.07.042 10.1109/TCBB.2008.139 10.1016/j.neucom.2018.01.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.2992869 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education |
EISSN | 2169-3536 |
EndPage | 86752 |
ExternalDocumentID | oai_doaj_org_article_89b258626f374ed7812ebdb11e6fd35a 10_1109_ACCESS_2020_2992869 9087871 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-404b757b5f857c797d676b14da257ec4fac71bfb87245fb72da84a2308e5b9833 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:22 EDT 2025 Sun Jun 29 15:21:46 EDT 2025 Tue Jul 01 01:22:33 EDT 2025 Thu Apr 24 22:57:39 EDT 2025 Wed Aug 27 02:41:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-404b757b5f857c797d676b14da257ec4fac71bfb87245fb72da84a2308e5b9833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1591-5583 0000-0001-7992-9901 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9087871 |
PQID | 2454101756 |
PQPubID | 4845423 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2020_2992869 doaj_primary_oai_doaj_org_article_89b258626f374ed7812ebdb11e6fd35a proquest_journals_2454101756 ieee_primary_9087871 crossref_citationtrail_10_1109_ACCESS_2020_2992869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 lópez-pastor (ref8) 2013; 37 qiu (ref30) 2009; 6 gönen (ref26) 2011; 12 cortez (ref21) 2008 mirza (ref23) 2014 chen (ref24) 2016 odena (ref25) 2017 ref20 ref22 herbrich (ref29) 2002 ref28 ref27 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1016/j.ijer.2017.04.001 – volume: 37 start-page: 163 year: 2013 ident: ref8 article-title: Formative assessment strategies and their effect on student performance and on student and tutor workload: The results of research projects undertaken in preparation for greater convergence of universities in Spain within the European higher education area (EHEA) publication-title: Journal of Further and Higher Education doi: 10.1080/0309877X.2011.644780 – ident: ref19 doi: 10.1016/j.compedu.2019.103676 – start-page: 5 year: 2008 ident: ref21 article-title: Using data mining to predict secondary school student performance publication-title: Proceedings of FUBUTEC2009 – ident: ref35 doi: 10.1109/TNNLS.2018.2876865 – ident: ref12 doi: 10.1080/00220272.2019.1568583 – ident: ref33 doi: 10.1016/j.nicl.2019.102011 – ident: ref28 doi: 10.1016/j.patcog.2019.107050 – ident: ref27 doi: 10.1016/j.neucom.2018.11.067 – ident: ref2 doi: 10.1111/bjet.12592 – start-page: 2642 year: 2017 ident: ref25 article-title: Conditional image synthesis with auxiliary classifier GANs publication-title: Proc ICML – ident: ref32 doi: 10.1080/01621459.2019.1672556 – ident: ref36 doi: 10.1016/j.inffus.2019.06.016 – ident: ref13 doi: 10.1080/01425692.2017.1377600 – ident: ref17 doi: 10.1016/j.chb.2019.04.015 – ident: ref20 doi: 10.1016/j.procs.2018.08.178 – ident: ref1 doi: 10.1109/ACCESS.2018.2851790 – ident: ref10 doi: 10.1080/03075079.2017.1298088 – ident: ref4 doi: 10.1016/j.chb.2019.01.034 – ident: ref5 doi: 10.1016/j.nedt.2017.09.006 – ident: ref16 doi: 10.1109/TLT.2019.2913358 – ident: ref18 doi: 10.1016/j.chb.2019.106189 – year: 2002 ident: ref29 publication-title: Learning Kernel Classifiers Theory and Algorithms – ident: ref22 doi: 10.1109/ACCESS.2019.2905015 – ident: ref9 doi: 10.1007/s10212-017-0365-6 – volume: 12 start-page: 2211 year: 2011 ident: ref26 article-title: Multiple kernel learning algorithms publication-title: J Mach Learn Res – ident: ref3 doi: 10.1109/TE.2019.2899545 – start-page: 2172 year: 2016 ident: ref24 article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Proc NIPS – ident: ref7 doi: 10.1002/rev3.3134 – ident: ref15 doi: 10.1016/j.jbusres.2018.02.012 – ident: ref11 doi: 10.1007/s11423-018-9581-2 – ident: ref34 doi: 10.1016/j.inffus.2017.10.006 – ident: ref14 doi: 10.1016/j.knosys.2018.07.042 – volume: 6 start-page: 190 year: 2009 ident: ref30 article-title: A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2008.139 – ident: ref31 doi: 10.1016/j.neucom.2018.01.005 – year: 2014 ident: ref23 article-title: Conditional generative adversarial nets publication-title: arXiv 1411 1784 |
SSID | ssj0000816957 |
Score | 2.4115033 |
Snippet | It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 86745 |
SubjectTerms | Algorithms Datasets Deep learning deep support vector machine Education Gallium nitride Generative adversarial network Generative adversarial networks Kernel Kernel functions Knowledge management Learning Machine learning Performance enhancement Performance prediction Polynomials Positive feedback Prediction models Predictive models Radial basis function Sensitivity Students students’ academic performance Support vector machines supportive learning Tutoring |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXyUHwYrVpkyY56uoigiL42ltoHkVB1mV3_Q3-bWeSui4IevFakrTJTOaRTL-PkIOG-dzaQmTaMZ6BhjjYUl5nNXKJaA8e22OieH1TXT7wq4EYzFF9YU1YggdOC3eiNIyEYXdTSh68BIcUrLeMharxpYihEfi8uWQq2mDFKi1kCzPEcn1y2uvBjCAhLPJjMMGFwhLnOVcUEftbipUfdjk6m_4qWWmjRHqavm6NLIThOlmeww7cIB-3Y7xjwaplepcAKieH9Pb7PwD69DJ9pgllk9ZDTxPHBb1H1ALsFasFaMKdRqNHIznzpEaVpDepPDw7Ay_n6XkII4oEoBCs08d40E-vYxlm2CQP_Yv73mXWsipkjudqCgkjt1JIKxolpJNa-kpWlnFfw-4Njje1k8w2VsmCi8bKwteK15CpqCCsVmW5RRaHb8OwTWgVIEKDgM3VtuLaa6tcGZgruS5dCblOhxRfC2xcCzmOzBevJqYeuTZJKgalYlqpdMjRrNMoIW783vwMJTdrinDZ8QEokWmVyPylRB2ygXKfDaJzBYaMdUj3Sw9Mu7UnBlaFox0T1c5_vHqXLOF00qlOlyxOx-9hD-Kcqd2PKv0JWn332w priority: 102 providerName: Directory of Open Access Journals |
Title | Predicting Students' Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine |
URI | https://ieeexplore.ieee.org/document/9087871 https://www.proquest.com/docview/2454101756 https://doaj.org/article/89b258626f374ed7812ebdb11e6fd35a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3oor1bdQpEPSL2QJQ87to-wBaFKi5AKLTfLr6hVqwWx2Qt_gL_NjO1NUalQb1EUR05mPJ7PHn8fIftd5Utra14oV7ECPMTBkPKqMKglojzM2B6B4vS8PbtiX6759Qo5GM7ChBBi8VkY42Xcy_c3boFLZYeqlOBfgHVeAXBLZ7WG9RQUkFBcZGKhqlSHR5MJfANAwLocQ9CtJRY1P5l8Ikd_FlV5Fonj9HK6TqbLjqWqkl_jRW_H7v4vzsb_7fkGeZPzTHqUHGOTrITZFko053KOLfL6CRPhNnm4uMMdG6yBpl8T3eX8E734c6qAfv_Z_6CJs5OamadJMYNeIgcCtoq1BzSxWGMIpVHqeW7Qwel5KjYvjmHO9PRzCLcU5UQh9aff4rYBncaizvCWXJ2eXE7OiqzRUDhWyh7gJ7OCC8s7yYUTSvhWtLZi3kAsCI51xonKdlaKmvHOitobyQzgHhm4VbJp3pHV2c0svCe0DZDvQfrnjG2Z8spK14TKNUw1rgHkNCL10njaZQJz1NH4rSOQKZVOFtdocZ0tPiIHQ6PbxN_x8uPH6BXDo0i-HW-ANXUey1oqcG5Egl0jWPACcqRgva2q0Ha-4WZEttEDhpdk44_I7tLHdA4Ucw1_hWFU5O2Hf7faIWvYwbTqs0tW-7tF-Ah5UG_34vrBXhwGj8BmBgI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbhMxFLWqsgAWPFoQgQJegNgw6Tzssb1g0aZUKW2iSqTQnRk_RlRFadUkQvAD_AS_wr9xr-0MFSB2ldhF0TiK7hxf32sfn0PIs7ZwuTElz5QtWAYIsTClnMoa9BJRDlZsh43iaFwPj9ibY368Qr53d2G894F85vv4MZzluzO7wK2yTZVLwFeRKJT7_stnaNBmr_Z24G0-L8vd15PBMEseAplluZxDe8SM4MLwVnJhhRKuFrUpmGsAq96ytrGiMK2RomS8NaJ0jWQN1OXSc6MkbndCgr8GdQYv4-2wbgcHLSsUF0nKqMjV5tZgAFGDprPM-5DmS4k06kvLXXAFSDYuf-T-sKDt3iY_lqGIPJbT_mJu-vbrbyqR_2us7pBbqZKmWxH6d8mKn66hCXUirKyRm5e0FtfJt8MLPJNCljd9GwU9Zy_o4a97E_T9yfwjjaqktJk6Gj1B6ARVHnBUYFfQqNONiwQNZtazBqcwHUc6fbYNVYGjO96fUzRMheaGvgsHI3QUaKv-Hjm6kqjcJ6vTs6l_QGjtoaKFAtc2pmbKKSNt5QtbMVXZCnrDHimXYNE2SbSjU8gnHVq1XOmIMI0I0wlhPfKyG3QeFUr-_fg2orB7FOXFwxeAHp2ylZYKpi_2um0lmHcCqkBvnCkKX7eu4k2PrCPiuh9JYOuRjSWmdUqFMw1RYZj3ef3w76OekuvDyehAH-yN9x-RG_hn4x7XBlmdXyz8Y6j65uZJmHyUfLhqBP8EsRhh6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%E2%80%99+Performance+With+School+and+Family+Tutoring+Using+Generative+Adversarial+Network-Based+Deep+Support+Vector+Machine&rft.jtitle=IEEE+access&rft.au=Chui%2C+Kwok+Tai&rft.au=Liu%2C+Ryan+Wen&rft.au=Zhao%2C+Mingbo&rft.au=De+Pablos%2C+Patricia+Ordonez&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=86745&rft.epage=86752&rft_id=info:doi/10.1109%2FACCESS.2020.2992869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2992869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |