Predicting Students' Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine

It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their und...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 86745 - 86752
Main Authors Chui, Kwok Tai, Liu, Ryan Wen, Zhao, Mingbo, De Pablos, Patricia Ordonez
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their understanding on the subjects. Particularly it is desired students to manage well in fundamental knowledge in order to build a strong foundation for post-secondary studies and career. In this paper, improved conditional generative adversarial network based deep support vector machine (ICGAN-DSVM) algorithm has been proposed to predict students' performance under supportive learning via school and family tutoring. Owning to the nature of the students' academic dataset is generally low sample size. ICGAN-DSVM offers dual benefits for the nature of low sample size in students' academic dataset in which ICGAN increases the data volume whereas DSVM enhances the prediction accuracy with deep learning architecture. Results with 10-fold cross-validation show that the proposed ICGAN-DSVM yields specificity, sensitivity and area under the receiver operating characteristic curve (AUC) of 0.968, 0.971 and 0.954 respectively. Results also suggest that incorporating both school and family tutoring into the prediction model could further improve the performance compared with only school tutoring and only family tutoring. To show the necessity of ICGAN and DSVM, comparison has been made between ICGAN and traditional conditional generative adversarial network (CGAN). Also, the proposed kernel design via heuristic based multiple kernel learning (MKL) is compared with typical kernels including linear, radial basis function (RBF), polynomial and sigmoid. The prediction of student's performance with and without GAN is presented which is followed by comparison with DSVM and with traditional SVM. The proposed ICGAN-DSVM outperforms related works by 8-29% in terms of performance indicators specificity, sensitivity and AUC.
AbstractList It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their understanding on the subjects. Particularly it is desired students to manage well in fundamental knowledge in order to build a strong foundation for post-secondary studies and career. In this paper, improved conditional generative adversarial network based deep support vector machine (ICGAN-DSVM) algorithm has been proposed to predict students' performance under supportive learning via school and family tutoring. Owning to the nature of the students' academic dataset is generally low sample size. ICGAN-DSVM offers dual benefits for the nature of low sample size in students' academic dataset in which ICGAN increases the data volume whereas DSVM enhances the prediction accuracy with deep learning architecture. Results with 10-fold cross-validation show that the proposed ICGAN-DSVM yields specificity, sensitivity and area under the receiver operating characteristic curve (AUC) of 0.968, 0.971 and 0.954 respectively. Results also suggest that incorporating both school and family tutoring into the prediction model could further improve the performance compared with only school tutoring and only family tutoring. To show the necessity of ICGAN and DSVM, comparison has been made between ICGAN and traditional conditional generative adversarial network (CGAN). Also, the proposed kernel design via heuristic based multiple kernel learning (MKL) is compared with typical kernels including linear, radial basis function (RBF), polynomial and sigmoid. The prediction of student's performance with and without GAN is presented which is followed by comparison with DSVM and with traditional SVM. The proposed ICGAN-DSVM outperforms related works by 8-29% in terms of performance indicators specificity, sensitivity and AUC.
Author De Pablos, Patricia Ordonez
Zhao, Mingbo
Liu, Ryan Wen
Chui, Kwok Tai
Author_xml – sequence: 1
  givenname: Kwok Tai
  orcidid: 0000-0001-7992-9901
  surname: Chui
  fullname: Chui, Kwok Tai
  email: jktchui@ouhk.edu.hk
  organization: School of Science and Technology, The Open University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Ryan Wen
  orcidid: 0000-0002-1591-5583
  surname: Liu
  fullname: Liu, Ryan Wen
  email: wenliu@whut.edu.cn
  organization: Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Mingbo
  surname: Zhao
  fullname: Zhao, Mingbo
  organization: School of Information Science and Technology, Donghua University, Shanghai, China
– sequence: 4
  givenname: Patricia Ordonez
  surname: De Pablos
  fullname: De Pablos, Patricia Ordonez
  organization: Department of Business Administration and Accountability, Faculty of Economics, The University of Oviedo, Oviedo, Spain
BookMark eNqFkc1u1DAUhSNUJErpE3RjiQWrmdpOHDvLYWhLpQKV0sLS8s9Nx0PGTm2nqE_Q1yZDqgqxwYtr6-p-51j3vC0OfPBQFCcELwnBzelqvT5r2yXFFC9p01BRN6-KQ0rqZlGysj746_2mOE5pi6cjphbjh8XTdQTrTHb-DrV5tOBz-oCuIXYh7pQ3gH64vEGt2YTQI-UtOlc71z-imzGHuKdu075egIeosnsAtLIPEJOKTvXoK-RfIf5cfFQJLPoEMKB2HIYQM_oOZlJAX5TZOA_vited6hMcP99Hxe352c368-Lq28XlenW1MBUWeVHhSnPGNesE44Y33Na81qSyijIOpuqU4UR3WnBasU5zapWoFC2xAKYbUZZHxeWsa4PayiG6nYqPMign_zRCvJMqZmd6kKLRlIma1l3JK7BcEAraakKg7mzJ1KT1ftYaYrgfIWW5DWP00_fl5F4RTDirp6lynjIxpBShe3ElWO4DlHOAch-gfA5wopp_KOPytN_gc1Su_w97MrMOAF7cGiy44KT8DcIArCc
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3203406
crossref_primary_10_1109_ACCESS_2021_3082311
crossref_primary_10_1016_j_caeai_2023_100141
crossref_primary_10_3390_diagnostics12071531
crossref_primary_10_1109_ACCESS_2022_3196660
crossref_primary_10_1109_TCE_2023_3274651
crossref_primary_10_1002_eng2_12482
crossref_primary_10_3390_app112110007
crossref_primary_10_1109_ACCESS_2022_3198682
crossref_primary_10_2478_acss_2021_0015
crossref_primary_10_1109_ACCESS_2022_3183758
crossref_primary_10_1007_s11042_021_11442_6
crossref_primary_10_1016_j_bdr_2022_100360
crossref_primary_10_1002_cpe_6244
crossref_primary_10_3390_app12083881
crossref_primary_10_1109_ACCESS_2020_3031572
crossref_primary_10_1109_TITS_2022_3200140
crossref_primary_10_1016_j_compedu_2023_104846
crossref_primary_10_1007_s42452_024_06274_6
crossref_primary_10_1016_j_jik_2022_100225
crossref_primary_10_3390_bioengineering9110683
crossref_primary_10_1080_01969722_2023_2166259
crossref_primary_10_3389_feduc_2024_1433021
crossref_primary_10_3390_s20226450
crossref_primary_10_1109_ACCESS_2020_3025302
crossref_primary_10_1002_eng2_12652
crossref_primary_10_1007_s12528_024_09426_0
crossref_primary_10_1016_j_rse_2022_113357
crossref_primary_10_1016_j_jik_2022_100273
crossref_primary_10_1109_ACCESS_2020_3036572
crossref_primary_10_1186_s41239_022_00348_4
crossref_primary_10_1111_nyas_15113
crossref_primary_10_1109_ACCESS_2020_3042775
crossref_primary_10_1109_ACCESS_2022_3194147
crossref_primary_10_1109_ACCESS_2022_3156073
crossref_primary_10_1371_journal_pone_0309141
crossref_primary_10_1016_j_compeleceng_2021_107274
crossref_primary_10_1080_19479832_2024_2349999
crossref_primary_10_1007_s42979_024_03550_5
crossref_primary_10_1016_j_jksuci_2023_101728
crossref_primary_10_1109_ACCESS_2021_3097751
crossref_primary_10_1080_01431161_2021_1939910
crossref_primary_10_1145_3604240
crossref_primary_10_1007_s00521_022_06987_y
crossref_primary_10_1109_TITS_2022_3147826
crossref_primary_10_3389_frai_2023_1151391
crossref_primary_10_1007_s00521_023_09213_5
crossref_primary_10_3233_JIFS_213457
crossref_primary_10_1016_j_techfore_2022_122269
crossref_primary_10_1016_j_jik_2022_100209
crossref_primary_10_1109_ACCESS_2020_3021523
crossref_primary_10_1109_ACCESS_2022_3212751
crossref_primary_10_1016_j_compeleceng_2021_107085
crossref_primary_10_1007_s11042_023_17891_5
crossref_primary_10_3390_electronics11203410
crossref_primary_10_1109_ACCESS_2021_3096039
crossref_primary_10_1007_s00521_023_08296_4
crossref_primary_10_1109_ACCESS_2022_3172438
crossref_primary_10_1007_s44163_023_00053_9
crossref_primary_10_1109_ACCESS_2023_3246122
crossref_primary_10_3390_ijms23073701
Cites_doi 10.1016/j.ijer.2017.04.001
10.1080/0309877X.2011.644780
10.1016/j.compedu.2019.103676
10.1109/TNNLS.2018.2876865
10.1080/00220272.2019.1568583
10.1016/j.nicl.2019.102011
10.1016/j.patcog.2019.107050
10.1016/j.neucom.2018.11.067
10.1111/bjet.12592
10.1080/01621459.2019.1672556
10.1016/j.inffus.2019.06.016
10.1080/01425692.2017.1377600
10.1016/j.chb.2019.04.015
10.1016/j.procs.2018.08.178
10.1109/ACCESS.2018.2851790
10.1080/03075079.2017.1298088
10.1016/j.chb.2019.01.034
10.1016/j.nedt.2017.09.006
10.1109/TLT.2019.2913358
10.1016/j.chb.2019.106189
10.1109/ACCESS.2019.2905015
10.1007/s10212-017-0365-6
10.1109/TE.2019.2899545
10.1002/rev3.3134
10.1016/j.jbusres.2018.02.012
10.1007/s11423-018-9581-2
10.1016/j.inffus.2017.10.006
10.1016/j.knosys.2018.07.042
10.1109/TCBB.2008.139
10.1016/j.neucom.2018.01.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2992869
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 2169-3536
EndPage 86752
ExternalDocumentID oai_doaj_org_article_89b258626f374ed7812ebdb11e6fd35a
10_1109_ACCESS_2020_2992869
9087871
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-404b757b5f857c797d676b14da257ec4fac71bfb87245fb72da84a2308e5b9833
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:22 EDT 2025
Sun Jun 29 15:21:46 EDT 2025
Tue Jul 01 01:22:33 EDT 2025
Thu Apr 24 22:57:39 EDT 2025
Wed Aug 27 02:41:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-404b757b5f857c797d676b14da257ec4fac71bfb87245fb72da84a2308e5b9833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1591-5583
0000-0001-7992-9901
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9087871
PQID 2454101756
PQPubID 4845423
PageCount 8
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_2992869
doaj_primary_oai_doaj_org_article_89b258626f374ed7812ebdb11e6fd35a
proquest_journals_2454101756
ieee_primary_9087871
crossref_citationtrail_10_1109_ACCESS_2020_2992869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
lópez-pastor (ref8) 2013; 37
qiu (ref30) 2009; 6
gönen (ref26) 2011; 12
cortez (ref21) 2008
mirza (ref23) 2014
chen (ref24) 2016
odena (ref25) 2017
ref20
ref22
herbrich (ref29) 2002
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1016/j.ijer.2017.04.001
– volume: 37
  start-page: 163
  year: 2013
  ident: ref8
  article-title: Formative assessment strategies and their effect on student performance and on student and tutor workload: The results of research projects undertaken in preparation for greater convergence of universities in Spain within the European higher education area (EHEA)
  publication-title: Journal of Further and Higher Education
  doi: 10.1080/0309877X.2011.644780
– ident: ref19
  doi: 10.1016/j.compedu.2019.103676
– start-page: 5
  year: 2008
  ident: ref21
  article-title: Using data mining to predict secondary school student performance
  publication-title: Proceedings of FUBUTEC2009
– ident: ref35
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref12
  doi: 10.1080/00220272.2019.1568583
– ident: ref33
  doi: 10.1016/j.nicl.2019.102011
– ident: ref28
  doi: 10.1016/j.patcog.2019.107050
– ident: ref27
  doi: 10.1016/j.neucom.2018.11.067
– ident: ref2
  doi: 10.1111/bjet.12592
– start-page: 2642
  year: 2017
  ident: ref25
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: Proc ICML
– ident: ref32
  doi: 10.1080/01621459.2019.1672556
– ident: ref36
  doi: 10.1016/j.inffus.2019.06.016
– ident: ref13
  doi: 10.1080/01425692.2017.1377600
– ident: ref17
  doi: 10.1016/j.chb.2019.04.015
– ident: ref20
  doi: 10.1016/j.procs.2018.08.178
– ident: ref1
  doi: 10.1109/ACCESS.2018.2851790
– ident: ref10
  doi: 10.1080/03075079.2017.1298088
– ident: ref4
  doi: 10.1016/j.chb.2019.01.034
– ident: ref5
  doi: 10.1016/j.nedt.2017.09.006
– ident: ref16
  doi: 10.1109/TLT.2019.2913358
– ident: ref18
  doi: 10.1016/j.chb.2019.106189
– year: 2002
  ident: ref29
  publication-title: Learning Kernel Classifiers Theory and Algorithms
– ident: ref22
  doi: 10.1109/ACCESS.2019.2905015
– ident: ref9
  doi: 10.1007/s10212-017-0365-6
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref26
  article-title: Multiple kernel learning algorithms
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/TE.2019.2899545
– start-page: 2172
  year: 2016
  ident: ref24
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc NIPS
– ident: ref7
  doi: 10.1002/rev3.3134
– ident: ref15
  doi: 10.1016/j.jbusres.2018.02.012
– ident: ref11
  doi: 10.1007/s11423-018-9581-2
– ident: ref34
  doi: 10.1016/j.inffus.2017.10.006
– ident: ref14
  doi: 10.1016/j.knosys.2018.07.042
– volume: 6
  start-page: 190
  year: 2009
  ident: ref30
  article-title: A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2008.139
– ident: ref31
  doi: 10.1016/j.neucom.2018.01.005
– year: 2014
  ident: ref23
  article-title: Conditional generative adversarial nets
  publication-title: arXiv 1411 1784
SSID ssj0000816957
Score 2.4115033
Snippet It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86745
SubjectTerms Algorithms
Datasets
Deep learning
deep support vector machine
Education
Gallium nitride
Generative adversarial network
Generative adversarial networks
Kernel
Kernel functions
Knowledge management
Learning
Machine learning
Performance enhancement
Performance prediction
Polynomials
Positive feedback
Prediction models
Predictive models
Radial basis function
Sensitivity
Students
students’ academic performance
Support vector machines
supportive learning
Tutoring
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXyUHwYrVpkyY56uoigiL42ltoHkVB1mV3_Q3-bWeSui4IevFakrTJTOaRTL-PkIOG-dzaQmTaMZ6BhjjYUl5nNXKJaA8e22OieH1TXT7wq4EYzFF9YU1YggdOC3eiNIyEYXdTSh68BIcUrLeMharxpYihEfi8uWQq2mDFKi1kCzPEcn1y2uvBjCAhLPJjMMGFwhLnOVcUEftbipUfdjk6m_4qWWmjRHqavm6NLIThOlmeww7cIB-3Y7xjwaplepcAKieH9Pb7PwD69DJ9pgllk9ZDTxPHBb1H1ALsFasFaMKdRqNHIznzpEaVpDepPDw7Ay_n6XkII4oEoBCs08d40E-vYxlm2CQP_Yv73mXWsipkjudqCgkjt1JIKxolpJNa-kpWlnFfw-4Njje1k8w2VsmCi8bKwteK15CpqCCsVmW5RRaHb8OwTWgVIEKDgM3VtuLaa6tcGZgruS5dCblOhxRfC2xcCzmOzBevJqYeuTZJKgalYlqpdMjRrNMoIW783vwMJTdrinDZ8QEokWmVyPylRB2ygXKfDaJzBYaMdUj3Sw9Mu7UnBlaFox0T1c5_vHqXLOF00qlOlyxOx-9hD-Kcqd2PKv0JWn332w
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Students' Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine
URI https://ieeexplore.ieee.org/document/9087871
https://www.proquest.com/docview/2454101756
https://doaj.org/article/89b258626f374ed7812ebdb11e6fd35a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3oor1bdQpEPSL2QJQ87to-wBaFKi5AKLTfLr6hVqwWx2Qt_gL_NjO1NUalQb1EUR05mPJ7PHn8fIftd5Utra14oV7ECPMTBkPKqMKglojzM2B6B4vS8PbtiX6759Qo5GM7ChBBi8VkY42Xcy_c3boFLZYeqlOBfgHVeAXBLZ7WG9RQUkFBcZGKhqlSHR5MJfANAwLocQ9CtJRY1P5l8Ikd_FlV5Fonj9HK6TqbLjqWqkl_jRW_H7v4vzsb_7fkGeZPzTHqUHGOTrITZFko053KOLfL6CRPhNnm4uMMdG6yBpl8T3eX8E734c6qAfv_Z_6CJs5OamadJMYNeIgcCtoq1BzSxWGMIpVHqeW7Qwel5KjYvjmHO9PRzCLcU5UQh9aff4rYBncaizvCWXJ2eXE7OiqzRUDhWyh7gJ7OCC8s7yYUTSvhWtLZi3kAsCI51xonKdlaKmvHOitobyQzgHhm4VbJp3pHV2c0svCe0DZDvQfrnjG2Z8spK14TKNUw1rgHkNCL10njaZQJz1NH4rSOQKZVOFtdocZ0tPiIHQ6PbxN_x8uPH6BXDo0i-HW-ANXUey1oqcG5Egl0jWPACcqRgva2q0Ha-4WZEttEDhpdk44_I7tLHdA4Ucw1_hWFU5O2Hf7faIWvYwbTqs0tW-7tF-Ah5UG_34vrBXhwGj8BmBgI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbhMxFLWqsgAWPFoQgQJegNgw6Tzssb1g0aZUKW2iSqTQnRk_RlRFadUkQvAD_AS_wr9xr-0MFSB2ldhF0TiK7hxf32sfn0PIs7ZwuTElz5QtWAYIsTClnMoa9BJRDlZsh43iaFwPj9ibY368Qr53d2G894F85vv4MZzluzO7wK2yTZVLwFeRKJT7_stnaNBmr_Z24G0-L8vd15PBMEseAplluZxDe8SM4MLwVnJhhRKuFrUpmGsAq96ytrGiMK2RomS8NaJ0jWQN1OXSc6MkbndCgr8GdQYv4-2wbgcHLSsUF0nKqMjV5tZgAFGDprPM-5DmS4k06kvLXXAFSDYuf-T-sKDt3iY_lqGIPJbT_mJu-vbrbyqR_2us7pBbqZKmWxH6d8mKn66hCXUirKyRm5e0FtfJt8MLPJNCljd9GwU9Zy_o4a97E_T9yfwjjaqktJk6Gj1B6ARVHnBUYFfQqNONiwQNZtazBqcwHUc6fbYNVYGjO96fUzRMheaGvgsHI3QUaKv-Hjm6kqjcJ6vTs6l_QGjtoaKFAtc2pmbKKSNt5QtbMVXZCnrDHimXYNE2SbSjU8gnHVq1XOmIMI0I0wlhPfKyG3QeFUr-_fg2orB7FOXFwxeAHp2ylZYKpi_2um0lmHcCqkBvnCkKX7eu4k2PrCPiuh9JYOuRjSWmdUqFMw1RYZj3ef3w76OekuvDyehAH-yN9x-RG_hn4x7XBlmdXyz8Y6j65uZJmHyUfLhqBP8EsRhh6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%E2%80%99+Performance+With+School+and+Family+Tutoring+Using+Generative+Adversarial+Network-Based+Deep+Support+Vector+Machine&rft.jtitle=IEEE+access&rft.au=Chui%2C+Kwok+Tai&rft.au=Liu%2C+Ryan+Wen&rft.au=Zhao%2C+Mingbo&rft.au=De+Pablos%2C+Patricia+Ordonez&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=86745&rft.epage=86752&rft_id=info:doi/10.1109%2FACCESS.2020.2992869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2992869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon