How to accurately assess the spatial distribution of energy CO2 emissions? Based on POI and NPP-VIIRS comparison

Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spa...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 402; p. 136656
Main Authors Zhang, Xueyuan, Xie, Yaowen, Jiao, Jizong, Zhu, Wanyang, Guo, Zecheng, Cao, Xiaoyan, Liu, Jiamin, Xi, Guilin, Wei, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spatial distribution of different types of CO2 emissions (commercial CO2 emissions, residential CO2 emissions, light industry CO2 emissions, heavy industry CO2 emissions, and agricultural CO2 emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO2 emissions and residential CO2 emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization. [Display omitted]
AbstractList Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spatial distribution of different types of CO2 emissions (commercial CO2 emissions, residential CO2 emissions, light industry CO2 emissions, heavy industry CO2 emissions, and agricultural CO2 emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO2 emissions and residential CO2 emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization. [Display omitted]
Timely and accurately estimating the spatial distribution of CO₂ emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO₂ emissions, it cannot estimate the spatial distribution of different types of CO₂ emissions (commercial CO₂ emissions, residential CO₂ emissions, light industry CO₂ emissions, heavy industry CO₂ emissions, and agricultural CO₂ emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO₂ emissions and residential CO₂ emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization.
ArticleNumber 136656
Author Guo, Zecheng
Zhang, Xueyuan
Cao, Xiaoyan
Xie, Yaowen
Jiao, Jizong
Wei, Wei
Zhu, Wanyang
Liu, Jiamin
Xi, Guilin
Author_xml – sequence: 1
  givenname: Xueyuan
  surname: Zhang
  fullname: Zhang, Xueyuan
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 2
  givenname: Yaowen
  orcidid: 0000-0002-6625-0294
  surname: Xie
  fullname: Xie, Yaowen
  email: xieyw@lzu.edu.cn
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 3
  givenname: Jizong
  surname: Jiao
  fullname: Jiao, Jizong
  email: zhangxueyuan21@lzu.edu.cn
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 4
  givenname: Wanyang
  surname: Zhu
  fullname: Zhu, Wanyang
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 5
  givenname: Zecheng
  surname: Guo
  fullname: Guo, Zecheng
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 6
  givenname: Xiaoyan
  surname: Cao
  fullname: Cao, Xiaoyan
  organization: Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
– sequence: 7
  givenname: Jiamin
  surname: Liu
  fullname: Liu, Jiamin
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 8
  givenname: Guilin
  surname: Xi
  fullname: Xi, Guilin
  organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
– sequence: 9
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  organization: College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
BookMark eNqFkE1rGzEQhkVJII7TnxDQsZd1pNXH7tJDaE3SGEJtkiZXIUuzrcx6tdXILf73WWOfcslphuF9hpnnkpz1sQdCrjmbccb1zWa2cR0MKc5KVooZF1or_YlMeF01Ba9qfUYmrFFNoVWpL8gl4oYxXrFKTsjwEP_THKl1bpdshm5PLSIg0vwHKA42B9tRHzCnsN7lEHsaWwo9pN97Ol-WFLYBcRzjLf1uETwdE6vlgtre05-rVfG6WDw9Uxe3g00BY39FzlvbIXw-1Sl5ub_7NX8oHpc_FvNvj4WTrM6FaGuvtOSgKl-5WnrJa7FuQTZOcA-OKcvqUspSyNZWAhrhBYxtrZRbizUTU_LluHf08ncHmM14qIOusz3EHRrBlai0Yrwco1-PUZciYoLWuJDt4decbOgMZ-bg2WzMybM5eDZHzyOt3tFDClub9h9yt0cORgv_AiSDLkDvwIcELhsfwwcb3gB0Hpzn
CitedBy_id crossref_primary_10_3390_land13071018
crossref_primary_10_3390_land14040682
crossref_primary_10_1016_j_jclepro_2024_143650
crossref_primary_10_1016_j_envpol_2024_124589
crossref_primary_10_1016_j_jag_2024_104004
crossref_primary_10_1080_17538947_2024_2405541
crossref_primary_10_1016_j_jenvman_2024_122418
crossref_primary_10_1016_j_scs_2024_105391
crossref_primary_10_3390_s25072002
crossref_primary_10_1061_JUPDDM_UPENG_5151
crossref_primary_10_1080_10095020_2024_2387918
crossref_primary_10_3390_rs16234481
crossref_primary_10_1016_j_trd_2024_104489
crossref_primary_10_1177_23998083241312948
crossref_primary_10_1080_10095020_2024_2356757
crossref_primary_10_1016_j_envpol_2024_124879
crossref_primary_10_1016_j_compag_2023_108254
crossref_primary_10_1016_j_jclepro_2024_140815
crossref_primary_10_1016_j_jclepro_2024_140958
crossref_primary_10_1016_j_scs_2024_105853
crossref_primary_10_1016_j_ecolind_2024_112349
crossref_primary_10_3390_rs16061018
Cites_doi 10.1016/j.cities.2019.05.022
10.1016/j.apenergy.2017.11.042
10.1016/j.scitotenv.2018.07.033
10.1016/j.scitotenv.2019.05.138
10.1016/j.apenergy.2018.10.050
10.1016/j.ecoinf.2022.101759
10.1016/j.apenergy.2014.06.036
10.1080/00045608.2015.1018773
10.1016/j.rse.2021.112830
10.1016/j.rser.2014.11.066
10.1016/j.scitotenv.2019.134394
10.1016/j.jclepro.2019.118226
10.1016/j.jclepro.2020.120245
10.1038/s41597-020-0510-y
10.1016/j.jclepro.2020.121575
10.1016/j.jclepro.2018.01.131
10.1016/j.scs.2020.102068
10.5194/acp-11-543-2011
10.5194/essd-13-889-2021
10.1016/j.jclepro.2021.128933
10.1016/j.apenergy.2018.09.180
10.1080/13658810903270569
10.1016/j.jclepro.2022.134272
10.1016/j.landurbplan.2017.09.002
10.1016/j.jenvman.2020.111221
10.3390/rs6021705
10.1016/j.ecolind.2021.108132
10.1016/j.jclepro.2018.07.160
10.1016/j.apenergy.2015.11.055
10.1016/j.apenergy.2018.09.200
10.1016/j.jclepro.2017.12.197
10.1016/j.apenergy.2019.02.062
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2023.136656
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2023_136656
S0959652623008144
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c408t-3f8d5641e57d7c84d4183bfe49c31dec05a08244234fa73e93d3e4fa855cb3b03
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Mon Jul 21 11:58:11 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 04:42:30 EDT 2025
Fri Feb 23 02:37:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NPP-VIIRS
Spatial distribution
POI
CO2 emission
China
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3f8d5641e57d7c84d4183bfe49c31dec05a08244234fa73e93d3e4fa855cb3b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6625-0294
PQID 3153765012
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153765012
crossref_citationtrail_10_1016_j_jclepro_2023_136656
crossref_primary_10_1016_j_jclepro_2023_136656
elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_136656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-20
PublicationDateYYYYMMDD 2023-05-20
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Yang, Sun (bib34) 2020; 275
Chen, Yu, Yang, Zhou, Yao, Qian, Wang, Wu, Wu (bib4) 2021
Lu, Tao, Li, Qi, Li (bib19) 2022; 270
Zhao, Ji, Yue, Lai, Chen, Yang, Yang, Wang (bib40) 2019; 235
Chuai, Feng (bib6) 2019; 686
Liu, Liu, Gao, Gong, Shi (bib17) 2015; 105
Liu, Lei, Sherman, Gao, Wu (bib12) 2010; 24
Chen, Zhang, Wu, Cai (bib2) 2020; 268
Elvidge, Baugh, Zhizhin, Hsu, Ghosh (bib7) 2017
Liu, Wang, Chen (bib14) 2018; 169
Wei, Zhang, Zhou, Xie, Zhou, Li (bib36) 2021; 321
Shi, Chen, Yu, Xu, Chen, Liu, Li, Wu (bib29) 2016; 168
Wang, Wei, Zhang, Liu, Du, Liu, Pan (bib32) 2022; 376
Shi, Yu, Zhou, Chen, Yang, Chen, Wu (bib31) 2019; 233–234
Lv, Liu, Wang, Liu, Shang (bib20) 2020; 703
Liu, Ou, Wang, Li, Yuchao (bib16) 2018
Oda, Maksyutov (bib23) 2011; 11
Ma, Zhou, Pei, Haynie, Fan (bib21) 2014
Wang, Cai, Liu, Zhang, Bai, Zhang (bib33) 2022; 70
Chuai, Feng (bib5) 2019; 686
Shi, Chen, Li, Huang (bib28) 2018; 211
Pan, Lai (bib24) 2019; 94
Hu, Huang (bib8) 2019; 240
Liu, Yang, Hao (bib13) 2019
Rong, Zhang, Qin, Liu, Liu (bib26) 2020; 271
Shi, Chang, Chen, Wu, Yu (bib27) 2020; 255
Xiao, Ma, Mi, Kelsey, Zheng, Yin, Yan (bib37) 2018; 231
Chen, Yu, Hu, Huang, Shi, Wu (bib3) 2017; 8
Jiang, Wang, Li (bib10) 2018; 199
Wei, Zhang, Cao, Zhou, Xie, Zhou, Li (bib35) 2021; 131
Zhang, Wu, Zhao, Hao, Liu, Yang, Lu (bib38) 2018; 645
Shi, Yu, Huang, Hu, Yin, Chen, Chen, Wu (bib30) 2014
Liu, Ou, Wang, Li, Yan, Jiao, Liu (bib15) 2018; 177
Huo, Li, Cai, Zuo, Wei (bib9) 2020; 56
Zhao, Chen, Ji, Wang (bib39) 2018; 180
Zheng, Du, Zhang, Bai, Wang (bib41) 2022; vol. 212
Li, Zhou, Zhao, Zhao (bib11) 2020; 7
Lu, Liu (bib18) 2014; 131
Nejat, Jomehzadeh, Taheri, Gohari, Abd Majid (bib22) 2015; 43
Shi (10.1016/j.jclepro.2023.136656_bib30) 2014
Zhao (10.1016/j.jclepro.2023.136656_bib40) 2019; 235
Wang (10.1016/j.jclepro.2023.136656_bib32) 2022; 376
Wang (10.1016/j.jclepro.2023.136656_bib34) 2020; 275
Li (10.1016/j.jclepro.2023.136656_bib11) 2020; 7
Liu (10.1016/j.jclepro.2023.136656_bib14) 2018; 169
Shi (10.1016/j.jclepro.2023.136656_bib28) 2018; 211
Lv (10.1016/j.jclepro.2023.136656_bib20) 2020; 703
Xiao (10.1016/j.jclepro.2023.136656_bib37) 2018; 231
Zhao (10.1016/j.jclepro.2023.136656_bib39) 2018; 180
Liu (10.1016/j.jclepro.2023.136656_bib13) 2019
Liu (10.1016/j.jclepro.2023.136656_bib15) 2018; 177
Liu (10.1016/j.jclepro.2023.136656_bib17) 2015; 105
Zheng (10.1016/j.jclepro.2023.136656_bib41) 2022; vol. 212
Jiang (10.1016/j.jclepro.2023.136656_bib10) 2018; 199
Lu (10.1016/j.jclepro.2023.136656_bib19) 2022; 270
Hu (10.1016/j.jclepro.2023.136656_bib8) 2019; 240
Liu (10.1016/j.jclepro.2023.136656_bib12) 2010; 24
Liu (10.1016/j.jclepro.2023.136656_bib16) 2018
Zhang (10.1016/j.jclepro.2023.136656_bib38) 2018; 645
Shi (10.1016/j.jclepro.2023.136656_bib29) 2016; 168
Elvidge (10.1016/j.jclepro.2023.136656_bib7) 2017
Huo (10.1016/j.jclepro.2023.136656_bib9) 2020; 56
Lu (10.1016/j.jclepro.2023.136656_bib18) 2014; 131
Oda (10.1016/j.jclepro.2023.136656_bib23) 2011; 11
Chuai (10.1016/j.jclepro.2023.136656_bib6) 2019; 686
Wei (10.1016/j.jclepro.2023.136656_bib35) 2021; 131
Chen (10.1016/j.jclepro.2023.136656_bib2) 2020; 268
Wang (10.1016/j.jclepro.2023.136656_bib33) 2022; 70
Ma (10.1016/j.jclepro.2023.136656_bib21) 2014
Chen (10.1016/j.jclepro.2023.136656_bib3) 2017; 8
Shi (10.1016/j.jclepro.2023.136656_bib31) 2019; 233–234
Shi (10.1016/j.jclepro.2023.136656_bib27) 2020; 255
Nejat (10.1016/j.jclepro.2023.136656_bib22) 2015; 43
Wei (10.1016/j.jclepro.2023.136656_bib36) 2021; 321
Rong (10.1016/j.jclepro.2023.136656_bib26) 2020; 271
Chen (10.1016/j.jclepro.2023.136656_bib4) 2021
Chuai (10.1016/j.jclepro.2023.136656_bib5) 2019; 686
Pan (10.1016/j.jclepro.2023.136656_bib24) 2019; 94
References_xml – year: 2014
  ident: bib21
  article-title: Responses of Suomi- NPP VIIRS- Derived Nighttime Lights to Socioeconomic Activity in China's Cities
– volume: 645
  start-page: 1630
  year: 2018
  end-page: 1642
  ident: bib38
  article-title: Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib3
  article-title: Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 177
  start-page: 101
  year: 2018
  end-page: 114
  ident: bib15
  article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data
  publication-title: J. Clean. Prod.
– volume: 211
  start-page: 218
  year: 2018
  end-page: 229
  ident: bib28
  article-title: Spatiotemporal variations of urban CO2 emissions in China: a multiscale perspective
  publication-title: Appl. Energy
– start-page: 1
  year: 2017
  end-page: 20
  ident: bib7
  article-title: VIIRS night-time lights
  publication-title: Int. J. Rem. Sens.
– year: 2014
  ident: bib30
  article-title: Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data
  publication-title: Rem. Sens.
– volume: 169
  start-page: 241
  year: 2018
  end-page: 249
  ident: bib14
  article-title: The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing
  publication-title: Landsc. Urban Plann.
– year: 2021
  ident: bib4
  article-title: An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration
  publication-title: Earth Syst. Sci. Data
– volume: 11
  start-page: 16307
  year: 2011
  end-page: 16344
  ident: bib23
  article-title: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights
  publication-title: Atmos. Chem. Phys.
– volume: 321
  year: 2021
  ident: bib36
  article-title: How does spatiotemporal variations and impact factors in CO2 emissions differ across cities in China? Investigation on grid scale and geographic detection method
  publication-title: J. Clean. Prod.
– volume: 105
  start-page: 1
  year: 2015
  end-page: 19
  ident: bib17
  article-title: Social sensing: a new approach to understanding our socioeconomic environments
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 268
  year: 2020
  ident: bib2
  article-title: Revisiting the environmental Kuznets curve for city-level CO2 emissions: based on corrected NPP-VIIRS nighttime light data in China
  publication-title: J. Clean. Prod.
– volume: 376
  year: 2022
  ident: bib32
  article-title: High-resolution temporal and spatial evolution of carbon emissions from building operations in Beijing
  publication-title: J. Clean. Prod.
– volume: 255
  year: 2020
  ident: bib27
  article-title: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China
  publication-title: J. Clean. Prod.
– volume: vol. 212
  year: 2022
  ident: bib41
  publication-title: Estimating Carbon Emissions in Urban Functional Zones Using Multi-Source Data: A Case Study in Beijing
– volume: 686
  start-page: 828
  year: 2019
  end-page: 837
  ident: bib5
  article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China
  publication-title: Sci. Total Environ.
– volume: 235
  start-page: 612
  year: 2019
  end-page: 624
  ident: bib40
  article-title: Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets
  publication-title: Appl. Energy
– volume: 231
  start-page: 1070
  year: 2018
  end-page: 1078
  ident: bib37
  article-title: Spatio-temporal estimation of energy consumption in China's provinces based on satellite night-time light data
  publication-title: Appl. Energy
– volume: 271
  year: 2020
  ident: bib26
  article-title: Spatial patterns and driving factors of urban residential embedded carbon emissions: an empirical study in Kaifeng, China
  publication-title: J. Environ. Manag.
– volume: 24
  start-page: 1015
  year: 2010
  end-page: 1041
  ident: bib12
  article-title: An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 56
  year: 2020
  ident: bib9
  article-title: Exploring the impact of urbanization on urban building carbon emissions in China: evidence from a provincial panel data model
  publication-title: Sustain. Cities Soc.
– volume: 70
  year: 2022
  ident: bib33
  article-title: Carbon emission accounting and spatial distribution of industrial entities in Beijing—combining nighttime light data and urban functional areas
  publication-title: Ecol. Inf.
– volume: 199
  start-page: 85
  year: 2018
  end-page: 92
  ident: bib10
  article-title: Investigating factors affecting carbon emission in China and the USA: a perspective of stratified heterogeneity
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib13
  article-title: Effects of urbanization on freight transport carbon emissions in China: common characteristics and regional disparity
  publication-title: J. Clean. Prod.
– volume: 270
  year: 2022
  ident: bib19
  article-title: A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data
  publication-title: Remote Sens. Environ.
– volume: 168
  start-page: 523
  year: 2016
  end-page: 533
  ident: bib29
  article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis
  publication-title: Appl. Energy
– volume: 94
  start-page: 55
  year: 2019
  end-page: 69
  ident: bib24
  article-title: Spatial pattern of population mobility among cities in China: case study of the National Day plus Mid-Autumn Festival based on Tencent migration data
  publication-title: Cities
– volume: 233–234
  start-page: 170
  year: 2019
  end-page: 181
  ident: bib31
  article-title: Spatiotemporal variations of CO2 emissions and their impact factors in China: a comparative analysis between the provincial and prefectural levels
  publication-title: Appl. Energy
– volume: 686
  start-page: 828
  year: 2019
  end-page: 837
  ident: bib6
  article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China
  publication-title: Sci. Total Environ.
– volume: 240
  start-page: 778
  year: 2019
  end-page: 792
  ident: bib8
  article-title: A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data
  publication-title: Appl. Energy
– volume: 131
  start-page: 297
  year: 2014
  end-page: 306
  ident: bib18
  article-title: Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting
  publication-title: Appl. Energy
– volume: 43
  start-page: 843
  year: 2015
  end-page: 862
  ident: bib22
  article-title: A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 180
  start-page: 198
  year: 2018
  end-page: 209
  ident: bib39
  article-title: Residential carbon dioxide emissions at the urban scale for county-level cities in China: a comparative study of nighttime light data
  publication-title: J. Clean. Prod.
– year: 2018
  ident: bib16
  article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data
  publication-title: J. Clean. Prod.
– volume: 131
  year: 2021
  ident: bib35
  article-title: Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data
  publication-title: Ecol. Indicat.
– volume: 7
  start-page: 168
  year: 2020
  ident: bib11
  article-title: A harmonized global nighttime light dataset 1992-2018
  publication-title: Sci. Data
– volume: 703
  year: 2020
  ident: bib20
  article-title: Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets
  publication-title: Sci. Total Environ.
– volume: 275
  year: 2020
  ident: bib34
  article-title: Effectiveness of China's provincial industrial carbon emission reduction and optimization of carbon emission reduction paths in "lagging regions": efficiency-cost analysis - ScienceDirect
  publication-title: J. Environ. Manag.
– volume: 94
  start-page: 55
  issue: Nov
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib24
  article-title: Spatial pattern of population mobility among cities in China: case study of the National Day plus Mid-Autumn Festival based on Tencent migration data
  publication-title: Cities
  doi: 10.1016/j.cities.2019.05.022
– volume: 211
  start-page: 218
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib28
  article-title: Spatiotemporal variations of urban CO2 emissions in China: a multiscale perspective
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.042
– volume: 645
  start-page: 1630
  issue: DEC.15
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib38
  article-title: Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.033
– volume: 686
  start-page: 828
  issue: OCT.10
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib5
  article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.138
– volume: 233–234
  start-page: 170
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib31
  article-title: Spatiotemporal variations of CO2 emissions and their impact factors in China: a comparative analysis between the provincial and prefectural levels
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.050
– volume: 70
  year: 2022
  ident: 10.1016/j.jclepro.2023.136656_bib33
  article-title: Carbon emission accounting and spatial distribution of industrial entities in Beijing—combining nighttime light data and urban functional areas
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2022.101759
– volume: 131
  start-page: 297
  year: 2014
  ident: 10.1016/j.jclepro.2023.136656_bib18
  article-title: Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.036
– volume: 105
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.jclepro.2023.136656_bib17
  article-title: Social sensing: a new approach to understanding our socioeconomic environments
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1080/00045608.2015.1018773
– volume: 270
  year: 2022
  ident: 10.1016/j.jclepro.2023.136656_bib19
  article-title: A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112830
– volume: 43
  start-page: 843
  year: 2015
  ident: 10.1016/j.jclepro.2023.136656_bib22
  article-title: A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.066
– volume: 703
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib20
  article-title: Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134394
– year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib13
  article-title: Effects of urbanization on freight transport carbon emissions in China: common characteristics and regional disparity
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118226
– volume: 255
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib27
  article-title: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120245
– volume: 7
  start-page: 168
  issue: 1
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib11
  article-title: A harmonized global nighttime light dataset 1992-2018
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0510-y
– volume: 268
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib2
  article-title: Revisiting the environmental Kuznets curve for city-level CO2 emissions: based on corrected NPP-VIIRS nighttime light data in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121575
– volume: 180
  start-page: 198
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib39
  article-title: Residential carbon dioxide emissions at the urban scale for county-level cities in China: a comparative study of nighttime light data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.131
– volume: 56
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib9
  article-title: Exploring the impact of urbanization on urban building carbon emissions in China: evidence from a provincial panel data model
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102068
– volume: 11
  start-page: 16307
  issue: 2
  year: 2011
  ident: 10.1016/j.jclepro.2023.136656_bib23
  article-title: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-543-2011
– issue: 3
  year: 2021
  ident: 10.1016/j.jclepro.2023.136656_bib4
  article-title: An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-889-2021
– volume: 321
  year: 2021
  ident: 10.1016/j.jclepro.2023.136656_bib36
  article-title: How does spatiotemporal variations and impact factors in CO2 emissions differ across cities in China? Investigation on grid scale and geographic detection method
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128933
– volume: 235
  start-page: 612
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib40
  article-title: Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.180
– volume: 8
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.jclepro.2023.136656_bib3
  article-title: Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– year: 2014
  ident: 10.1016/j.jclepro.2023.136656_bib21
– volume: 24
  start-page: 1015
  issue: 7–8
  year: 2010
  ident: 10.1016/j.jclepro.2023.136656_bib12
  article-title: An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810903270569
– volume: 376
  year: 2022
  ident: 10.1016/j.jclepro.2023.136656_bib32
  article-title: High-resolution temporal and spatial evolution of carbon emissions from building operations in Beijing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134272
– volume: vol. 212
  year: 2022
  ident: 10.1016/j.jclepro.2023.136656_bib41
– volume: 169
  start-page: 241
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib14
  article-title: The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2017.09.002
– volume: 275
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib34
  article-title: Effectiveness of China's provincial industrial carbon emission reduction and optimization of carbon emission reduction paths in "lagging regions": efficiency-cost analysis - ScienceDirect
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111221
– year: 2014
  ident: 10.1016/j.jclepro.2023.136656_bib30
  article-title: Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data
  publication-title: Rem. Sens.
  doi: 10.3390/rs6021705
– volume: 686
  start-page: 828
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib6
  article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.138
– volume: 131
  year: 2021
  ident: 10.1016/j.jclepro.2023.136656_bib35
  article-title: Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2021.108132
– start-page: 1
  year: 2017
  ident: 10.1016/j.jclepro.2023.136656_bib7
  article-title: VIIRS night-time lights
  publication-title: Int. J. Rem. Sens.
– volume: 199
  start-page: 85
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib10
  article-title: Investigating factors affecting carbon emission in China and the USA: a perspective of stratified heterogeneity
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.160
– volume: 168
  start-page: 523
  year: 2016
  ident: 10.1016/j.jclepro.2023.136656_bib29
  article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.055
– volume: 231
  start-page: 1070
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib37
  article-title: Spatio-temporal estimation of energy consumption in China's provinces based on satellite night-time light data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.200
– volume: 177
  start-page: 101
  year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib15
  article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.12.197
– volume: 271
  issue: 19
  year: 2020
  ident: 10.1016/j.jclepro.2023.136656_bib26
  article-title: Spatial patterns and driving factors of urban residential embedded carbon emissions: an empirical study in Kaifeng, China
  publication-title: J. Environ. Manag.
– year: 2018
  ident: 10.1016/j.jclepro.2023.136656_bib16
  article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data
  publication-title: J. Clean. Prod.
– volume: 240
  start-page: 778
  year: 2019
  ident: 10.1016/j.jclepro.2023.136656_bib8
  article-title: A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.062
SSID ssj0017074
Score 2.5084941
Snippet Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies....
Timely and accurately estimating the spatial distribution of CO₂ emissions is crucial for formulating energy conservation and emission reduction policies....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136656
SubjectTerms carbon
carbon dioxide
China
CO2 emission
energy
energy conservation
industry
mountains
NPP-VIIRS
POI
Spatial distribution
urban areas
Title How to accurately assess the spatial distribution of energy CO2 emissions? Based on POI and NPP-VIIRS comparison
URI https://dx.doi.org/10.1016/j.jclepro.2023.136656
https://www.proquest.com/docview/3153765012
Volume 402
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhubSH0qYJzaNBgV69a1sjP04lXRJ2E7pZ8iI3oZchS7CX7C6ll_z2zvixeRAI9GYbSTYjeb6RNPo-xn7EIjeQaRdEkbYBSC2D3DoX5EYnSWzBmFps4vc4GV7D6a28XWOD7iwMpVW2vr_x6bW3bp_0W2v2Z3d3_UtawUpkjPhNuAbECQqQ0ijvPa7SPKI0bJiYabmLSj-d4ulPe1NsDB1VjzTEKeErIR3rt_Hplaeu4efkM_vUxo38qPm0L2zNl5vs4zM2wa9sNqz-8EXFtbVLIoC4_8t1vaXLMcjjc0qdxhYcMeW2Ile8KrivD__xwXnMSfqNFs_mP_kvBDfHscTkfMR16fh4MgluRqOLS25XyoVb7Prk-GowDFpBhcBCmC0CUWROJhB5mbrUZuAAf2hTeMitiJy3odQYEQBGWFDoVPhcOOHxMpPSGmFCsc3Wy6r03xjPnYsBJyPYxQ6EBh2nceGMw_dgRCn9DoPOjMq2bOMkenGvurSyqWqtr8j6qrH-Duutqs0auo33KmRdH6kX40YhJLxX9bDrU4X2pY0SXfpqOVciIpIbidi9-__N77EPdEeZBnG4z9YXD0v_HQOYhTmoR-gB2zganQ3H_wAJ0vAy
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoBD1UIraCl1Ja7ZTeJxHqeqrIp2W1hWvMTN8isSK5Ssuruqeulv70weW4qQkHqLEtuJxvZ8E3v8fYwdxSI3kGkXRJG2AUgtg9w6F-RGJ0lswZhabOJsnAyv4dutvF1jg-4sDKVVtr6_8em1t27v9Ftr9md3d_1LWsFKZIz4TbgGsM5eAE5fkjHo_V7leURp2FAx03oXFf97jKc_7U2xNfRUPRIRp4yvhISsnwaoR666xp-TV-xlGzjyL823vWZrvtxh2w_oBHfZbFj95IuKa2uXxABx_4vrek-XY5TH55Q7jS04osptVa54VXBfn_7jg_OYk_YbrZ7NP_NjRDfHscTkfMR16fh4MgluRqOLS25X0oVv2PXJ16vBMGgVFQILYbYIRJE5mUDkZepSm4EDnNGm8JBbETlvQ6kxJAAMsaDQqfC5cMLjZSalNcKE4i3bKKvS7zGeOxcD_o1gHzsQGnScxoUzDt-DIaX0-ww6Myrb0o2T6sW96vLKpqq1viLrq8b6-6y3qjZr-Daeq5B1faT-GTgKMeG5qp-6PlVoX9op0aWvlnMlImK5kQje7_6_-Y9sc3h1dqpOR-Pv79kWPaG0gzg8YBuLH0v_AaOZhTmsR-sfi_jxwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+accurately+assess+the+spatial+distribution+of+energy+CO2+emissions%3F+Based+on+POI+and+NPP-VIIRS+comparison&rft.jtitle=Journal+of+cleaner+production&rft.au=Zhang%2C+Xueyuan&rft.au=Xie%2C+Yaowen&rft.au=Jiao%2C+Jizong&rft.au=Zhu%2C+Wanyang&rft.date=2023-05-20&rft.issn=0959-6526&rft.volume=402&rft.spage=136656&rft_id=info:doi/10.1016%2Fj.jclepro.2023.136656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2023_136656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon