How to accurately assess the spatial distribution of energy CO2 emissions? Based on POI and NPP-VIIRS comparison
Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spa...
Saved in:
Published in | Journal of cleaner production Vol. 402; p. 136656 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spatial distribution of different types of CO2 emissions (commercial CO2 emissions, residential CO2 emissions, light industry CO2 emissions, heavy industry CO2 emissions, and agricultural CO2 emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO2 emissions and residential CO2 emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization.
[Display omitted] |
---|---|
AbstractList | Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO2 emissions, it cannot estimate the spatial distribution of different types of CO2 emissions (commercial CO2 emissions, residential CO2 emissions, light industry CO2 emissions, heavy industry CO2 emissions, and agricultural CO2 emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO2 emissions and residential CO2 emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization.
[Display omitted] Timely and accurately estimating the spatial distribution of CO₂ emissions is crucial for formulating energy conservation and emission reduction policies. Although nighttime light data has been proved to be effective in estimating the spatial distribution of CO₂ emissions, it cannot estimate the spatial distribution of different types of CO₂ emissions (commercial CO₂ emissions, residential CO₂ emissions, light industry CO₂ emissions, heavy industry CO₂ emissions, and agricultural CO₂ emissions). Based on the local adaptive method, this study compares the potential of POI data and NPP-VIIRS data for modeling different types of carbon emissions in China to analyze the spatial structure of carbon emissions within cities. The results showed that: (1) POI data is much more powerful and reliable than NPP-VIIRS data regarding monitoring ability at the suburbs and mountainous areas. (2) From the point of view of the estimation ability of different types of carbon emissions, in the commercial CO₂ emissions and residential CO₂ emissions, although the correlation coefficient between the estimation results of POI data and statistical data is not significantly improved compared with that of NPP-VIIRS data, the accuracy of the estimation results is significantly improved in terms of the spatial distribution; POI data has a significantly stronger ability to estimate industrial carbon emissions than nighttime light data. (3) From the spatial distribution structure of urban carbon emission, urban carbon emission presents a “V”-shaped distribution, with two high-value areas located in the central urban area and the industrial zone in the suburbs. This study confirms that POI data is a potential and promising data source for accurately modeling different types of carbon emissions and will help support low-carbon city management and energy allocation optimization. |
ArticleNumber | 136656 |
Author | Guo, Zecheng Zhang, Xueyuan Cao, Xiaoyan Xie, Yaowen Jiao, Jizong Wei, Wei Zhu, Wanyang Liu, Jiamin Xi, Guilin |
Author_xml | – sequence: 1 givenname: Xueyuan surname: Zhang fullname: Zhang, Xueyuan organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 2 givenname: Yaowen orcidid: 0000-0002-6625-0294 surname: Xie fullname: Xie, Yaowen email: xieyw@lzu.edu.cn organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 3 givenname: Jizong surname: Jiao fullname: Jiao, Jizong email: zhangxueyuan21@lzu.edu.cn organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 4 givenname: Wanyang surname: Zhu fullname: Zhu, Wanyang organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 5 givenname: Zecheng surname: Guo fullname: Guo, Zecheng organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 6 givenname: Xiaoyan surname: Cao fullname: Cao, Xiaoyan organization: Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China – sequence: 7 givenname: Jiamin surname: Liu fullname: Liu, Jiamin organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 8 givenname: Guilin surname: Xi fullname: Xi, Guilin organization: College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China – sequence: 9 givenname: Wei surname: Wei fullname: Wei, Wei organization: College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China |
BookMark | eNqFkE1rGzEQhkVJII7TnxDQsZd1pNXH7tJDaE3SGEJtkiZXIUuzrcx6tdXILf73WWOfcslphuF9hpnnkpz1sQdCrjmbccb1zWa2cR0MKc5KVooZF1or_YlMeF01Ba9qfUYmrFFNoVWpL8gl4oYxXrFKTsjwEP_THKl1bpdshm5PLSIg0vwHKA42B9tRHzCnsN7lEHsaWwo9pN97Ol-WFLYBcRzjLf1uETwdE6vlgtre05-rVfG6WDw9Uxe3g00BY39FzlvbIXw-1Sl5ub_7NX8oHpc_FvNvj4WTrM6FaGuvtOSgKl-5WnrJa7FuQTZOcA-OKcvqUspSyNZWAhrhBYxtrZRbizUTU_LluHf08ncHmM14qIOusz3EHRrBlai0Yrwco1-PUZciYoLWuJDt4decbOgMZ-bg2WzMybM5eDZHzyOt3tFDClub9h9yt0cORgv_AiSDLkDvwIcELhsfwwcb3gB0Hpzn |
CitedBy_id | crossref_primary_10_3390_land13071018 crossref_primary_10_3390_land14040682 crossref_primary_10_1016_j_jclepro_2024_143650 crossref_primary_10_1016_j_envpol_2024_124589 crossref_primary_10_1016_j_jag_2024_104004 crossref_primary_10_1080_17538947_2024_2405541 crossref_primary_10_1016_j_jenvman_2024_122418 crossref_primary_10_1016_j_scs_2024_105391 crossref_primary_10_3390_s25072002 crossref_primary_10_1061_JUPDDM_UPENG_5151 crossref_primary_10_1080_10095020_2024_2387918 crossref_primary_10_3390_rs16234481 crossref_primary_10_1016_j_trd_2024_104489 crossref_primary_10_1177_23998083241312948 crossref_primary_10_1080_10095020_2024_2356757 crossref_primary_10_1016_j_envpol_2024_124879 crossref_primary_10_1016_j_compag_2023_108254 crossref_primary_10_1016_j_jclepro_2024_140815 crossref_primary_10_1016_j_jclepro_2024_140958 crossref_primary_10_1016_j_scs_2024_105853 crossref_primary_10_1016_j_ecolind_2024_112349 crossref_primary_10_3390_rs16061018 |
Cites_doi | 10.1016/j.cities.2019.05.022 10.1016/j.apenergy.2017.11.042 10.1016/j.scitotenv.2018.07.033 10.1016/j.scitotenv.2019.05.138 10.1016/j.apenergy.2018.10.050 10.1016/j.ecoinf.2022.101759 10.1016/j.apenergy.2014.06.036 10.1080/00045608.2015.1018773 10.1016/j.rse.2021.112830 10.1016/j.rser.2014.11.066 10.1016/j.scitotenv.2019.134394 10.1016/j.jclepro.2019.118226 10.1016/j.jclepro.2020.120245 10.1038/s41597-020-0510-y 10.1016/j.jclepro.2020.121575 10.1016/j.jclepro.2018.01.131 10.1016/j.scs.2020.102068 10.5194/acp-11-543-2011 10.5194/essd-13-889-2021 10.1016/j.jclepro.2021.128933 10.1016/j.apenergy.2018.09.180 10.1080/13658810903270569 10.1016/j.jclepro.2022.134272 10.1016/j.landurbplan.2017.09.002 10.1016/j.jenvman.2020.111221 10.3390/rs6021705 10.1016/j.ecolind.2021.108132 10.1016/j.jclepro.2018.07.160 10.1016/j.apenergy.2015.11.055 10.1016/j.apenergy.2018.09.200 10.1016/j.jclepro.2017.12.197 10.1016/j.apenergy.2019.02.062 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2023.136656 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2023_136656 S0959652623008144 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c408t-3f8d5641e57d7c84d4183bfe49c31dec05a08244234fa73e93d3e4fa855cb3b03 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Mon Jul 21 11:58:11 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:42:30 EDT 2025 Fri Feb 23 02:37:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NPP-VIIRS Spatial distribution POI CO2 emission China |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-3f8d5641e57d7c84d4183bfe49c31dec05a08244234fa73e93d3e4fa855cb3b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6625-0294 |
PQID | 3153765012 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153765012 crossref_citationtrail_10_1016_j_jclepro_2023_136656 crossref_primary_10_1016_j_jclepro_2023_136656 elsevier_sciencedirect_doi_10_1016_j_jclepro_2023_136656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-20 |
PublicationDateYYYYMMDD | 2023-05-20 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Yang, Sun (bib34) 2020; 275 Chen, Yu, Yang, Zhou, Yao, Qian, Wang, Wu, Wu (bib4) 2021 Lu, Tao, Li, Qi, Li (bib19) 2022; 270 Zhao, Ji, Yue, Lai, Chen, Yang, Yang, Wang (bib40) 2019; 235 Chuai, Feng (bib6) 2019; 686 Liu, Liu, Gao, Gong, Shi (bib17) 2015; 105 Liu, Lei, Sherman, Gao, Wu (bib12) 2010; 24 Chen, Zhang, Wu, Cai (bib2) 2020; 268 Elvidge, Baugh, Zhizhin, Hsu, Ghosh (bib7) 2017 Liu, Wang, Chen (bib14) 2018; 169 Wei, Zhang, Zhou, Xie, Zhou, Li (bib36) 2021; 321 Shi, Chen, Yu, Xu, Chen, Liu, Li, Wu (bib29) 2016; 168 Wang, Wei, Zhang, Liu, Du, Liu, Pan (bib32) 2022; 376 Shi, Yu, Zhou, Chen, Yang, Chen, Wu (bib31) 2019; 233–234 Lv, Liu, Wang, Liu, Shang (bib20) 2020; 703 Liu, Ou, Wang, Li, Yuchao (bib16) 2018 Oda, Maksyutov (bib23) 2011; 11 Ma, Zhou, Pei, Haynie, Fan (bib21) 2014 Wang, Cai, Liu, Zhang, Bai, Zhang (bib33) 2022; 70 Chuai, Feng (bib5) 2019; 686 Shi, Chen, Li, Huang (bib28) 2018; 211 Pan, Lai (bib24) 2019; 94 Hu, Huang (bib8) 2019; 240 Liu, Yang, Hao (bib13) 2019 Rong, Zhang, Qin, Liu, Liu (bib26) 2020; 271 Shi, Chang, Chen, Wu, Yu (bib27) 2020; 255 Xiao, Ma, Mi, Kelsey, Zheng, Yin, Yan (bib37) 2018; 231 Chen, Yu, Hu, Huang, Shi, Wu (bib3) 2017; 8 Jiang, Wang, Li (bib10) 2018; 199 Wei, Zhang, Cao, Zhou, Xie, Zhou, Li (bib35) 2021; 131 Zhang, Wu, Zhao, Hao, Liu, Yang, Lu (bib38) 2018; 645 Shi, Yu, Huang, Hu, Yin, Chen, Chen, Wu (bib30) 2014 Liu, Ou, Wang, Li, Yan, Jiao, Liu (bib15) 2018; 177 Huo, Li, Cai, Zuo, Wei (bib9) 2020; 56 Zhao, Chen, Ji, Wang (bib39) 2018; 180 Zheng, Du, Zhang, Bai, Wang (bib41) 2022; vol. 212 Li, Zhou, Zhao, Zhao (bib11) 2020; 7 Lu, Liu (bib18) 2014; 131 Nejat, Jomehzadeh, Taheri, Gohari, Abd Majid (bib22) 2015; 43 Shi (10.1016/j.jclepro.2023.136656_bib30) 2014 Zhao (10.1016/j.jclepro.2023.136656_bib40) 2019; 235 Wang (10.1016/j.jclepro.2023.136656_bib32) 2022; 376 Wang (10.1016/j.jclepro.2023.136656_bib34) 2020; 275 Li (10.1016/j.jclepro.2023.136656_bib11) 2020; 7 Liu (10.1016/j.jclepro.2023.136656_bib14) 2018; 169 Shi (10.1016/j.jclepro.2023.136656_bib28) 2018; 211 Lv (10.1016/j.jclepro.2023.136656_bib20) 2020; 703 Xiao (10.1016/j.jclepro.2023.136656_bib37) 2018; 231 Zhao (10.1016/j.jclepro.2023.136656_bib39) 2018; 180 Liu (10.1016/j.jclepro.2023.136656_bib13) 2019 Liu (10.1016/j.jclepro.2023.136656_bib15) 2018; 177 Liu (10.1016/j.jclepro.2023.136656_bib17) 2015; 105 Zheng (10.1016/j.jclepro.2023.136656_bib41) 2022; vol. 212 Jiang (10.1016/j.jclepro.2023.136656_bib10) 2018; 199 Lu (10.1016/j.jclepro.2023.136656_bib19) 2022; 270 Hu (10.1016/j.jclepro.2023.136656_bib8) 2019; 240 Liu (10.1016/j.jclepro.2023.136656_bib12) 2010; 24 Liu (10.1016/j.jclepro.2023.136656_bib16) 2018 Zhang (10.1016/j.jclepro.2023.136656_bib38) 2018; 645 Shi (10.1016/j.jclepro.2023.136656_bib29) 2016; 168 Elvidge (10.1016/j.jclepro.2023.136656_bib7) 2017 Huo (10.1016/j.jclepro.2023.136656_bib9) 2020; 56 Lu (10.1016/j.jclepro.2023.136656_bib18) 2014; 131 Oda (10.1016/j.jclepro.2023.136656_bib23) 2011; 11 Chuai (10.1016/j.jclepro.2023.136656_bib6) 2019; 686 Wei (10.1016/j.jclepro.2023.136656_bib35) 2021; 131 Chen (10.1016/j.jclepro.2023.136656_bib2) 2020; 268 Wang (10.1016/j.jclepro.2023.136656_bib33) 2022; 70 Ma (10.1016/j.jclepro.2023.136656_bib21) 2014 Chen (10.1016/j.jclepro.2023.136656_bib3) 2017; 8 Shi (10.1016/j.jclepro.2023.136656_bib31) 2019; 233–234 Shi (10.1016/j.jclepro.2023.136656_bib27) 2020; 255 Nejat (10.1016/j.jclepro.2023.136656_bib22) 2015; 43 Wei (10.1016/j.jclepro.2023.136656_bib36) 2021; 321 Rong (10.1016/j.jclepro.2023.136656_bib26) 2020; 271 Chen (10.1016/j.jclepro.2023.136656_bib4) 2021 Chuai (10.1016/j.jclepro.2023.136656_bib5) 2019; 686 Pan (10.1016/j.jclepro.2023.136656_bib24) 2019; 94 |
References_xml | – year: 2014 ident: bib21 article-title: Responses of Suomi- NPP VIIRS- Derived Nighttime Lights to Socioeconomic Activity in China's Cities – volume: 645 start-page: 1630 year: 2018 end-page: 1642 ident: bib38 article-title: Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration publication-title: Sci. Total Environ. – volume: 8 start-page: 1 year: 2017 end-page: 10 ident: bib3 article-title: Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – volume: 177 start-page: 101 year: 2018 end-page: 114 ident: bib15 article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data publication-title: J. Clean. Prod. – volume: 211 start-page: 218 year: 2018 end-page: 229 ident: bib28 article-title: Spatiotemporal variations of urban CO2 emissions in China: a multiscale perspective publication-title: Appl. Energy – start-page: 1 year: 2017 end-page: 20 ident: bib7 article-title: VIIRS night-time lights publication-title: Int. J. Rem. Sens. – year: 2014 ident: bib30 article-title: Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data publication-title: Rem. Sens. – volume: 169 start-page: 241 year: 2018 end-page: 249 ident: bib14 article-title: The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing publication-title: Landsc. Urban Plann. – year: 2021 ident: bib4 article-title: An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration publication-title: Earth Syst. Sci. Data – volume: 11 start-page: 16307 year: 2011 end-page: 16344 ident: bib23 article-title: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights publication-title: Atmos. Chem. Phys. – volume: 321 year: 2021 ident: bib36 article-title: How does spatiotemporal variations and impact factors in CO2 emissions differ across cities in China? Investigation on grid scale and geographic detection method publication-title: J. Clean. Prod. – volume: 105 start-page: 1 year: 2015 end-page: 19 ident: bib17 article-title: Social sensing: a new approach to understanding our socioeconomic environments publication-title: Ann. Assoc. Am. Geogr. – volume: 268 year: 2020 ident: bib2 article-title: Revisiting the environmental Kuznets curve for city-level CO2 emissions: based on corrected NPP-VIIRS nighttime light data in China publication-title: J. Clean. Prod. – volume: 376 year: 2022 ident: bib32 article-title: High-resolution temporal and spatial evolution of carbon emissions from building operations in Beijing publication-title: J. Clean. Prod. – volume: 255 year: 2020 ident: bib27 article-title: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China publication-title: J. Clean. Prod. – volume: vol. 212 year: 2022 ident: bib41 publication-title: Estimating Carbon Emissions in Urban Functional Zones Using Multi-Source Data: A Case Study in Beijing – volume: 686 start-page: 828 year: 2019 end-page: 837 ident: bib5 article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China publication-title: Sci. Total Environ. – volume: 235 start-page: 612 year: 2019 end-page: 624 ident: bib40 article-title: Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets publication-title: Appl. Energy – volume: 231 start-page: 1070 year: 2018 end-page: 1078 ident: bib37 article-title: Spatio-temporal estimation of energy consumption in China's provinces based on satellite night-time light data publication-title: Appl. Energy – volume: 271 year: 2020 ident: bib26 article-title: Spatial patterns and driving factors of urban residential embedded carbon emissions: an empirical study in Kaifeng, China publication-title: J. Environ. Manag. – volume: 24 start-page: 1015 year: 2010 end-page: 1041 ident: bib12 article-title: An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes publication-title: Int. J. Geogr. Inf. Sci. – volume: 56 year: 2020 ident: bib9 article-title: Exploring the impact of urbanization on urban building carbon emissions in China: evidence from a provincial panel data model publication-title: Sustain. Cities Soc. – volume: 70 year: 2022 ident: bib33 article-title: Carbon emission accounting and spatial distribution of industrial entities in Beijing—combining nighttime light data and urban functional areas publication-title: Ecol. Inf. – volume: 199 start-page: 85 year: 2018 end-page: 92 ident: bib10 article-title: Investigating factors affecting carbon emission in China and the USA: a perspective of stratified heterogeneity publication-title: J. Clean. Prod. – year: 2019 ident: bib13 article-title: Effects of urbanization on freight transport carbon emissions in China: common characteristics and regional disparity publication-title: J. Clean. Prod. – volume: 270 year: 2022 ident: bib19 article-title: A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data publication-title: Remote Sens. Environ. – volume: 168 start-page: 523 year: 2016 end-page: 533 ident: bib29 article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis publication-title: Appl. Energy – volume: 94 start-page: 55 year: 2019 end-page: 69 ident: bib24 article-title: Spatial pattern of population mobility among cities in China: case study of the National Day plus Mid-Autumn Festival based on Tencent migration data publication-title: Cities – volume: 233–234 start-page: 170 year: 2019 end-page: 181 ident: bib31 article-title: Spatiotemporal variations of CO2 emissions and their impact factors in China: a comparative analysis between the provincial and prefectural levels publication-title: Appl. Energy – volume: 686 start-page: 828 year: 2019 end-page: 837 ident: bib6 article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China publication-title: Sci. Total Environ. – volume: 240 start-page: 778 year: 2019 end-page: 792 ident: bib8 article-title: A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data publication-title: Appl. Energy – volume: 131 start-page: 297 year: 2014 end-page: 306 ident: bib18 article-title: Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting publication-title: Appl. Energy – volume: 43 start-page: 843 year: 2015 end-page: 862 ident: bib22 article-title: A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries) publication-title: Renew. Sustain. Energy Rev. – volume: 180 start-page: 198 year: 2018 end-page: 209 ident: bib39 article-title: Residential carbon dioxide emissions at the urban scale for county-level cities in China: a comparative study of nighttime light data publication-title: J. Clean. Prod. – year: 2018 ident: bib16 article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data publication-title: J. Clean. Prod. – volume: 131 year: 2021 ident: bib35 article-title: Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data publication-title: Ecol. Indicat. – volume: 7 start-page: 168 year: 2020 ident: bib11 article-title: A harmonized global nighttime light dataset 1992-2018 publication-title: Sci. Data – volume: 703 year: 2020 ident: bib20 article-title: Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets publication-title: Sci. Total Environ. – volume: 275 year: 2020 ident: bib34 article-title: Effectiveness of China's provincial industrial carbon emission reduction and optimization of carbon emission reduction paths in "lagging regions": efficiency-cost analysis - ScienceDirect publication-title: J. Environ. Manag. – volume: 94 start-page: 55 issue: Nov year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib24 article-title: Spatial pattern of population mobility among cities in China: case study of the National Day plus Mid-Autumn Festival based on Tencent migration data publication-title: Cities doi: 10.1016/j.cities.2019.05.022 – volume: 211 start-page: 218 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib28 article-title: Spatiotemporal variations of urban CO2 emissions in China: a multiscale perspective publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.042 – volume: 645 start-page: 1630 issue: DEC.15 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib38 article-title: Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.033 – volume: 686 start-page: 828 issue: OCT.10 year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib5 article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.138 – volume: 233–234 start-page: 170 year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib31 article-title: Spatiotemporal variations of CO2 emissions and their impact factors in China: a comparative analysis between the provincial and prefectural levels publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.050 – volume: 70 year: 2022 ident: 10.1016/j.jclepro.2023.136656_bib33 article-title: Carbon emission accounting and spatial distribution of industrial entities in Beijing—combining nighttime light data and urban functional areas publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2022.101759 – volume: 131 start-page: 297 year: 2014 ident: 10.1016/j.jclepro.2023.136656_bib18 article-title: Spatial effects of carbon dioxide emissions from residential energy consumption: a county-level study using enhanced nocturnal lighting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.036 – volume: 105 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.jclepro.2023.136656_bib17 article-title: Social sensing: a new approach to understanding our socioeconomic environments publication-title: Ann. Assoc. Am. Geogr. doi: 10.1080/00045608.2015.1018773 – volume: 270 year: 2022 ident: 10.1016/j.jclepro.2023.136656_bib19 article-title: A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112830 – volume: 43 start-page: 843 year: 2015 ident: 10.1016/j.jclepro.2023.136656_bib22 article-title: A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.066 – volume: 703 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib20 article-title: Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134394 – year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib13 article-title: Effects of urbanization on freight transport carbon emissions in China: common characteristics and regional disparity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118226 – volume: 255 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib27 article-title: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120245 – volume: 7 start-page: 168 issue: 1 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib11 article-title: A harmonized global nighttime light dataset 1992-2018 publication-title: Sci. Data doi: 10.1038/s41597-020-0510-y – volume: 268 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib2 article-title: Revisiting the environmental Kuznets curve for city-level CO2 emissions: based on corrected NPP-VIIRS nighttime light data in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121575 – volume: 180 start-page: 198 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib39 article-title: Residential carbon dioxide emissions at the urban scale for county-level cities in China: a comparative study of nighttime light data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.131 – volume: 56 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib9 article-title: Exploring the impact of urbanization on urban building carbon emissions in China: evidence from a provincial panel data model publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102068 – volume: 11 start-page: 16307 issue: 2 year: 2011 ident: 10.1016/j.jclepro.2023.136656_bib23 article-title: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-543-2011 – issue: 3 year: 2021 ident: 10.1016/j.jclepro.2023.136656_bib4 article-title: An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-889-2021 – volume: 321 year: 2021 ident: 10.1016/j.jclepro.2023.136656_bib36 article-title: How does spatiotemporal variations and impact factors in CO2 emissions differ across cities in China? Investigation on grid scale and geographic detection method publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128933 – volume: 235 start-page: 612 year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib40 article-title: Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.180 – volume: 8 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.jclepro.2023.136656_bib3 article-title: Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. – year: 2014 ident: 10.1016/j.jclepro.2023.136656_bib21 – volume: 24 start-page: 1015 issue: 7–8 year: 2010 ident: 10.1016/j.jclepro.2023.136656_bib12 article-title: An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810903270569 – volume: 376 year: 2022 ident: 10.1016/j.jclepro.2023.136656_bib32 article-title: High-resolution temporal and spatial evolution of carbon emissions from building operations in Beijing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134272 – volume: vol. 212 year: 2022 ident: 10.1016/j.jclepro.2023.136656_bib41 – volume: 169 start-page: 241 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib14 article-title: The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2017.09.002 – volume: 275 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib34 article-title: Effectiveness of China's provincial industrial carbon emission reduction and optimization of carbon emission reduction paths in "lagging regions": efficiency-cost analysis - ScienceDirect publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111221 – year: 2014 ident: 10.1016/j.jclepro.2023.136656_bib30 article-title: Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data publication-title: Rem. Sens. doi: 10.3390/rs6021705 – volume: 686 start-page: 828 year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib6 article-title: High resolution carbon emissions estimation and spatial heterogeneity analysis based on big data in Nanjing City, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.138 – volume: 131 year: 2021 ident: 10.1016/j.jclepro.2023.136656_bib35 article-title: Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2021.108132 – start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2023.136656_bib7 article-title: VIIRS night-time lights publication-title: Int. J. Rem. Sens. – volume: 199 start-page: 85 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib10 article-title: Investigating factors affecting carbon emission in China and the USA: a perspective of stratified heterogeneity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.07.160 – volume: 168 start-page: 523 year: 2016 ident: 10.1016/j.jclepro.2023.136656_bib29 article-title: Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.055 – volume: 231 start-page: 1070 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib37 article-title: Spatio-temporal estimation of energy consumption in China's provinces based on satellite night-time light data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.200 – volume: 177 start-page: 101 year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib15 article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.12.197 – volume: 271 issue: 19 year: 2020 ident: 10.1016/j.jclepro.2023.136656_bib26 article-title: Spatial patterns and driving factors of urban residential embedded carbon emissions: an empirical study in Kaifeng, China publication-title: J. Environ. Manag. – year: 2018 ident: 10.1016/j.jclepro.2023.136656_bib16 article-title: Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data publication-title: J. Clean. Prod. – volume: 240 start-page: 778 year: 2019 ident: 10.1016/j.jclepro.2023.136656_bib8 article-title: A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.062 |
SSID | ssj0017074 |
Score | 2.5084941 |
Snippet | Timely and accurately estimating the spatial distribution of CO2 emissions is crucial for formulating energy conservation and emission reduction policies.... Timely and accurately estimating the spatial distribution of CO₂ emissions is crucial for formulating energy conservation and emission reduction policies.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 136656 |
SubjectTerms | carbon carbon dioxide China CO2 emission energy energy conservation industry mountains NPP-VIIRS POI Spatial distribution urban areas |
Title | How to accurately assess the spatial distribution of energy CO2 emissions? Based on POI and NPP-VIIRS comparison |
URI | https://dx.doi.org/10.1016/j.jclepro.2023.136656 https://www.proquest.com/docview/3153765012 |
Volume | 402 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhubSH0qYJzaNBgV69a1sjP04lXRJ2E7pZ8iI3oZchS7CX7C6ll_z2zvixeRAI9GYbSTYjeb6RNPo-xn7EIjeQaRdEkbYBSC2D3DoX5EYnSWzBmFps4vc4GV7D6a28XWOD7iwMpVW2vr_x6bW3bp_0W2v2Z3d3_UtawUpkjPhNuAbECQqQ0ijvPa7SPKI0bJiYabmLSj-d4ulPe1NsDB1VjzTEKeErIR3rt_Hplaeu4efkM_vUxo38qPm0L2zNl5vs4zM2wa9sNqz-8EXFtbVLIoC4_8t1vaXLMcjjc0qdxhYcMeW2Ile8KrivD__xwXnMSfqNFs_mP_kvBDfHscTkfMR16fh4MgluRqOLS25XyoVb7Prk-GowDFpBhcBCmC0CUWROJhB5mbrUZuAAf2hTeMitiJy3odQYEQBGWFDoVPhcOOHxMpPSGmFCsc3Wy6r03xjPnYsBJyPYxQ6EBh2nceGMw_dgRCn9DoPOjMq2bOMkenGvurSyqWqtr8j6qrH-Duutqs0auo33KmRdH6kX40YhJLxX9bDrU4X2pY0SXfpqOVciIpIbidi9-__N77EPdEeZBnG4z9YXD0v_HQOYhTmoR-gB2zganQ3H_wAJ0vAy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHoBD1UIraCl1Ja7ZTeJxHqeqrIp2W1hWvMTN8isSK5Ssuruqeulv70weW4qQkHqLEtuJxvZ8E3v8fYwdxSI3kGkXRJG2AUgtg9w6F-RGJ0lswZhabOJsnAyv4dutvF1jg-4sDKVVtr6_8em1t27v9Ftr9md3d_1LWsFKZIz4TbgGsM5eAE5fkjHo_V7leURp2FAx03oXFf97jKc_7U2xNfRUPRIRp4yvhISsnwaoR666xp-TV-xlGzjyL823vWZrvtxh2w_oBHfZbFj95IuKa2uXxABx_4vrek-XY5TH55Q7jS04osptVa54VXBfn_7jg_OYk_YbrZ7NP_NjRDfHscTkfMR16fh4MgluRqOLS25X0oVv2PXJ16vBMGgVFQILYbYIRJE5mUDkZepSm4EDnNGm8JBbETlvQ6kxJAAMsaDQqfC5cMLjZSalNcKE4i3bKKvS7zGeOxcD_o1gHzsQGnScxoUzDt-DIaX0-ww6Myrb0o2T6sW96vLKpqq1viLrq8b6-6y3qjZr-Daeq5B1faT-GTgKMeG5qp-6PlVoX9op0aWvlnMlImK5kQje7_6_-Y9sc3h1dqpOR-Pv79kWPaG0gzg8YBuLH0v_AaOZhTmsR-sfi_jxwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+accurately+assess+the+spatial+distribution+of+energy+CO2+emissions%3F+Based+on+POI+and+NPP-VIIRS+comparison&rft.jtitle=Journal+of+cleaner+production&rft.au=Zhang%2C+Xueyuan&rft.au=Xie%2C+Yaowen&rft.au=Jiao%2C+Jizong&rft.au=Zhu%2C+Wanyang&rft.date=2023-05-20&rft.issn=0959-6526&rft.volume=402&rft.spage=136656&rft_id=info:doi/10.1016%2Fj.jclepro.2023.136656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2023_136656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |