GCSANet: A Global Context Spatial Attention Deep Learning Network for Remote Sensing Scene Classification
Deep convolutional neural networks have become an indispensable method in remote sensing image scene classification because of their powerful feature extraction capabilities. However, the ability of the models to extract multiscale features and global features on surface objects of complex scenes is...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 1150 - 1162 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep convolutional neural networks have become an indispensable method in remote sensing image scene classification because of their powerful feature extraction capabilities. However, the ability of the models to extract multiscale features and global features on surface objects of complex scenes is currently insufficient. We propose a framework based on global context spatial attention (GCSA) and densely connected convolutional networks to extract multiscale global scene features, called GCSANet. The mixup operation is used to enhance the spatial mixed data of remote sensing images, and the discrete sample space is rendered continuous to improve the smoothness in the neighborhood of the data space. The characteristics of multiscale surface objects are extracted, and their internal dense connection is strengthened by the densely connected backbone network. GCSA is introduced into the densely connected backbone network to encode the context information of the remote sensing scene image into the local features. Experiments were performed on four remote sensing scene datasets to evaluate the performance of GCSANet. The GCSANet achieved the highest classification precision on AID and NWPU datasets and the second-best performance on the UC Merced dataset, indicating the GCSANet can effectively extract the global features of remote sensing images. In addition, the GCSANet presents the highest classification accuracy on the constructed mountain image scene dataset. These results reveal that the GCSANet can effectively extract multiscale global scene features on complex remote sensing scenes. The source codes of this method can be foundin https://github.com/ShubingOuyangcug/GCSANet . |
---|---|
AbstractList | Deep convolutional neural networks have become an indispensable method in remote sensing image scene classification because of their powerful feature extraction capabilities. However, the ability of the models to extract multiscale features and global features on surface objects of complex scenes is currently insufficient. We propose a framework based on global context spatial attention (GCSA) and densely connected convolutional networks to extract multiscale global scene features, called GCSANet. The mixup operation is used to enhance the spatial mixed data of remote sensing images, and the discrete sample space is rendered continuous to improve the smoothness in the neighborhood of the data space. The characteristics of multiscale surface objects are extracted, and their internal dense connection is strengthened by the densely connected backbone network. GCSA is introduced into the densely connected backbone network to encode the context information of the remote sensing scene image into the local features. Experiments were performed on four remote sensing scene datasets to evaluate the performance of GCSANet. The GCSANet achieved the highest classification precision on AID and NWPU datasets and the second-best performance on the UC Merced dataset, indicating the GCSANet can effectively extract the global features of remote sensing images. In addition, the GCSANet presents the highest classification accuracy on the constructed mountain image scene dataset. These results reveal that the GCSANet can effectively extract multiscale global scene features on complex remote sensing scenes. The source codes of this method can be foundin https://github.com/ShubingOuyangcug/GCSANet. |
Author | Chen, Weitao Tong, Wei Li, Xianju Wang, Lizhe Ouyang, Shubing Zheng, Xiongwei |
Author_xml | – sequence: 1 givenname: Weitao orcidid: 0000-0002-6272-1618 surname: Chen fullname: Chen, Weitao email: wtchen@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Shubing orcidid: 0000-0003-4737-4205 surname: Ouyang fullname: Ouyang, Shubing email: oysb@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Wei orcidid: 0000-0003-2873-7584 surname: Tong fullname: Tong, Wei email: weitong@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 4 givenname: Xianju orcidid: 0000-0001-7785-2541 surname: Li fullname: Li, Xianju email: ddwhlxj@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 5 givenname: Xiongwei surname: Zheng fullname: Zheng, Xiongwei email: zhengxiongwei@mail.cgs.gov.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 6 givenname: Lizhe orcidid: 0000-0003-2766-0845 surname: Wang fullname: Wang, Lizhe email: lizhe.wang@gmail.com organization: School of Computer Science, China University of Geosciences, Wuhan, China |
BookMark | eNp9kU9v1DAQxS1UJLaFT9CLJc7Z-k8c29yiBZaiFUhNOVu2M6m8pPbiuAK-fZOmcODAwRrZ837PM3rn6CymCAhdUrKllOirz91te9NtGWFsy2lNFWteoA2jglZUcHGGNlRzXdGa1K_Q-TQdCWmY1HyDwn7XtV-gvMMt3o_J2RHvUizwq-DuZEuY720pEEtIEb8HOOED2BxDvMMz9TPl73hIGd_AfSqAO4jT0uo8RMC70U5TGIK3C_0avRzsOMGb53qBvn38cLv7VB2-7q937aHyNVGl4j3ve1BOcRC1sIzCIIS0WnLnJbOkaaiX3klHfS10MywN0QiuLGOaKsIv0PXq2yd7NKcc7m3-bZIN5ukh5Ttjcwl-BOPAa-Zk78jgatYQRdx8JGuYmv_p_ez1dvU65fTjAaZijukhx3l8M4uYYpILPav0qvI5TVOGwfhQnnYu2YbRUGKWlMyakllSMs8pzSz_h_0z8f-py5UKAPCX0I1UhCn-CG5Mnt4 |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1016_j_jag_2022_103087 crossref_primary_10_1109_LGRS_2024_3365509 crossref_primary_10_3390_su141912563 crossref_primary_10_1109_TGRS_2023_3336546 crossref_primary_10_1016_j_jag_2022_102833 crossref_primary_10_1108_IJICC_07_2023_0198 crossref_primary_10_1109_ACCESS_2023_3335382 crossref_primary_10_1109_JSTARS_2022_3155665 crossref_primary_10_3390_rs16020278 crossref_primary_10_1109_ACCESS_2023_3264502 crossref_primary_10_1016_j_jag_2024_103853 crossref_primary_10_1038_s41598_024_63363_7 crossref_primary_10_1002_cpe_7733 crossref_primary_10_1109_TGRS_2023_3332336 crossref_primary_10_1109_JSTARS_2024_3354455 crossref_primary_10_3390_rs14133216 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1109_TGRS_2024_3370556 crossref_primary_10_3390_rs15061552 crossref_primary_10_1109_TGRS_2024_3424489 crossref_primary_10_1109_TCSVT_2024_3391018 crossref_primary_10_1109_TIP_2025_3533205 crossref_primary_10_1016_j_compeleceng_2023_108672 crossref_primary_10_3390_rs15030831 crossref_primary_10_1016_j_neucom_2024_129248 crossref_primary_10_1109_TGRS_2023_3266838 crossref_primary_10_1111_phor_12489 crossref_primary_10_1049_ipr2_13107 crossref_primary_10_1109_TGRS_2023_3265346 crossref_primary_10_1109_TGRS_2022_3201755 crossref_primary_10_3390_su141912465 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_3934_nhm_2023070 crossref_primary_10_1080_10106049_2022_2143912 crossref_primary_10_1016_j_eswa_2025_126823 crossref_primary_10_1109_TGRS_2023_3313800 crossref_primary_10_1109_JSTARS_2024_3355290 crossref_primary_10_1038_s41598_025_89735_1 crossref_primary_10_1093_bib_bbad131 crossref_primary_10_1109_TGRS_2023_3313769 crossref_primary_10_3390_rs17071131 crossref_primary_10_1109_TBDATA_2023_3327220 crossref_primary_10_1109_TGRS_2024_3496854 crossref_primary_10_1080_01431161_2023_2204200 crossref_primary_10_1080_17538947_2024_2432522 crossref_primary_10_1109_JSTARS_2024_3352578 crossref_primary_10_1007_s11600_023_01057_w crossref_primary_10_1016_j_cja_2023_12_012 crossref_primary_10_1109_LRA_2025_3529325 crossref_primary_10_1016_j_rse_2024_114497 crossref_primary_10_1109_TGRS_2024_3438942 crossref_primary_10_11834_jig_230653 crossref_primary_10_1109_JSTARS_2024_3444773 crossref_primary_10_1016_j_engappai_2024_107909 crossref_primary_10_1109_JSTARS_2023_3285389 crossref_primary_10_14358_PERS_23_00067R2 crossref_primary_10_3390_rs16091532 crossref_primary_10_1007_s00371_022_02666_0 crossref_primary_10_1109_JSTARS_2023_3265677 crossref_primary_10_1109_JSTARS_2024_3502461 crossref_primary_10_1109_LGRS_2023_3266008 crossref_primary_10_1016_j_inffus_2022_12_025 crossref_primary_10_1016_j_jag_2024_104082 crossref_primary_10_1109_TGRS_2024_3363057 crossref_primary_10_3390_rs16213987 crossref_primary_10_1007_s00371_023_03112_5 crossref_primary_10_1177_14759217241302370 crossref_primary_10_1109_TGRS_2023_3241331 crossref_primary_10_1016_j_rsase_2024_101167 |
Cites_doi | 10.1109/TGRS.2021.3099033 10.1109/JSTARS.2020.3005403 10.3390/rs10010023 10.1109/TGRS.2015.2488681 10.1109/CVPR.2018.00418 10.3390/rs10050734 10.1080/22797254.2020.1868273 10.1109/JSTARS.2017.2761800 10.1016/j.patcog.2012.07.017 10.1080/2150704X.2017.1415477 10.1109/CVPR.2018.00813 10.1109/CVPR.2016.90 10.3390/rs13030433 10.3390/rs10020290 10.1016/j.patcog.2016.07.001 10.1109/JPROC.2017.2675998 10.1109/TGRS.2020.3033336 10.1109/JSTARS.2017.2683799 10.1109/TGRS.2017.2685945 10.1016/j.isprsjprs.2020.11.025 10.1109/ACCESS.2018.2798799 10.1016/S1872-2032(08)60029-3 10.1109/TGRS.2015.2435801 10.1109/TGRS.2017.2783902 10.3390/rs11050494 10.1109/TGRS.2014.2351395 10.1109/JSTARS.2015.2444405 10.1109/ICCVW.2019.00246 10.3390/rs10060934 10.1016/j.isprsjprs.2018.01.023 10.1109/TGRS.2017.2711275 10.3390/rs10030444 10.1080/01431161.2014.890762 10.1109/ACCESS.2020.3022882 10.1109/JSTARS.2021.3058691 10.1109/LGRS.2017.2779469 10.1109/TNNLS.2021.3071369 10.1109/LGRS.2014.2357392 10.1109/ACCESS.2019.2918732 10.1109/JSTARS.2020.3009352 10.1080/01431161.2016.1171928 10.1109/TGRS.2017.2700322 10.3390/rs10030410 10.1109/LGRS.2017.2786241 10.1080/17538947.2014.925517 10.3390/rs10071158 10.1016/j.cviu.2019.04.004 10.1109/CVPR.2017.243 10.1080/2150704X.2020.1864052 10.1109/TGRS.2017.2702596 10.3390/rs71114680 10.1109/FSKD.2015.7382030 10.1109/LGRS.2017.2731997 10.1109/JSTARS.2014.2339842 10.1109/JSTARS.2021.3051569 10.1109/IGARSS.2019.8900199 10.1007/s00521-020-05071-7 10.1109/JSTARS.2012.2228254 10.1109/TGRS.2013.2265322 10.1109/TPAMI.2002.1017623 10.1109/ICIP.2008.4712139 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2022.3141826 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: WRHA-DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 1162 |
ExternalDocumentID | oai_doaj_org_article_bec92b7db0fb426080b08072628066dc 10_1109_JSTARS_2022_3141826 9678028 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Natural Science Foundation of China grantid: U1803117; 41925007; 42071430 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-3d3dde8b83e545a21ef557a973bc72a0661c7cb7b1c4596f973b56538a2291803 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:26:05 EDT 2025 Mon Jul 28 14:10:44 EDT 2025 Tue Jul 01 03:16:20 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Wed Aug 27 02:21:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-3d3dde8b83e545a21ef557a973bc72a0661c7cb7b1c4596f973b56538a2291803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4737-4205 0000-0001-7785-2541 0000-0003-2873-7584 0000-0002-6272-1618 0000-0003-2766-0845 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9678028 |
PQID | 2622827359 |
PQPubID | 75722 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bec92b7db0fb426080b08072628066dc crossref_citationtrail_10_1109_JSTARS_2022_3141826 ieee_primary_9678028 proquest_journals_2622827359 crossref_primary_10_1109_JSTARS_2022_3141826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref55 ref11 gao (ref46) 2016 müller (ref60) 2019 ref54 yi (ref52) 2010 ref10 ref17 ref16 ref19 krizhevsky (ref18) 2012; 25 ref51 ref50 ref45 ref48 ref47 ref41 yue (ref3) 2021; 54 ref49 ref8 ref9 ref4 ref6 ref5 ref40 ref35 simonyan (ref26) 2014 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 gong (ref7) 2017; 14 srivastava (ref44) 2015 ref70 zhang (ref42) 0 ref68 ref24 ref67 ref23 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 gong (ref2) 2017; 105 mariani (ref43) 2018 ref62 ref61 |
References_xml | – ident: ref70 doi: 10.1109/TGRS.2021.3099033 – ident: ref68 doi: 10.1109/JSTARS.2020.3005403 – start-page: 2377 year: 2015 ident: ref44 article-title: Training very deep networks publication-title: Proc Adv Neural Inf Process Syst – year: 2014 ident: ref26 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref6 doi: 10.3390/rs10010023 – ident: ref22 doi: 10.1109/TGRS.2015.2488681 – ident: ref19 doi: 10.1109/CVPR.2018.00418 – ident: ref59 doi: 10.3390/rs10050734 – ident: ref66 doi: 10.1080/22797254.2020.1868273 – start-page: 4694 year: 2019 ident: ref60 article-title: When does label smoothing help? publication-title: Proc Adv Neural Inf Process Syst – ident: ref61 doi: 10.1109/JSTARS.2017.2761800 – ident: ref11 doi: 10.1016/j.patcog.2012.07.017 – ident: ref5 doi: 10.1080/2150704X.2017.1415477 – volume: 54 start-page: 141 year: 2021 ident: ref3 article-title: Remote sensing scene classification based on high-order graph convolutional network publication-title: Eur J Remote Sens doi: 10.1080/22797254.2020.1868273 – ident: ref48 doi: 10.1109/CVPR.2018.00813 – ident: ref45 doi: 10.1109/CVPR.2016.90 – ident: ref64 doi: 10.3390/rs13030433 – start-page: 270 year: 2010 ident: ref52 article-title: Bag-of-visual-words and spatial extensions for land-use classification publication-title: Proc Adv Geograph Inf Syst – ident: ref38 doi: 10.3390/rs10020290 – ident: ref37 doi: 10.1016/j.patcog.2016.07.001 – volume: 105 start-page: 1865 year: 2017 ident: ref2 article-title: Remote sensing image scene classification: Benchmark and state of the art publication-title: Proc IEEE doi: 10.1109/JPROC.2017.2675998 – ident: ref69 doi: 10.1109/TGRS.2020.3033336 – ident: ref54 doi: 10.1109/JSTARS.2017.2683799 – ident: ref53 doi: 10.1109/TGRS.2017.2685945 – ident: ref24 doi: 10.1016/j.isprsjprs.2020.11.025 – ident: ref32 doi: 10.1109/ACCESS.2018.2798799 – ident: ref55 doi: 10.1016/S1872-2032(08)60029-3 – ident: ref1 doi: 10.1109/TGRS.2015.2435801 – ident: ref25 doi: 10.1109/TGRS.2017.2783902 – ident: ref23 doi: 10.3390/rs11050494 – ident: ref14 doi: 10.1109/TGRS.2014.2351395 – ident: ref15 doi: 10.1109/JSTARS.2015.2444405 – ident: ref51 doi: 10.1109/ICCVW.2019.00246 – ident: ref56 doi: 10.3390/rs10060934 – ident: ref30 doi: 10.1016/j.isprsjprs.2018.01.023 – ident: ref28 doi: 10.1109/TGRS.2017.2711275 – volume: 25 start-page: 1097 year: 2012 ident: ref18 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – ident: ref36 doi: 10.3390/rs10030444 – ident: ref12 doi: 10.1080/01431161.2014.890762 – ident: ref34 doi: 10.1109/ACCESS.2020.3022882 – ident: ref50 doi: 10.1109/JSTARS.2021.3058691 – ident: ref33 doi: 10.1109/LGRS.2017.2779469 – ident: ref67 doi: 10.1109/TNNLS.2021.3071369 – ident: ref17 doi: 10.1109/LGRS.2014.2357392 – ident: ref62 doi: 10.1109/ACCESS.2019.2918732 – ident: ref41 doi: 10.1109/JSTARS.2020.3009352 – ident: ref21 doi: 10.1080/01431161.2016.1171928 – ident: ref27 doi: 10.1109/TGRS.2017.2700322 – ident: ref58 doi: 10.3390/rs10030410 – year: 2018 ident: ref43 article-title: BAGAN: Data augmentation with balancing GAN publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref35 doi: 10.1109/LGRS.2017.2786241 – ident: ref29 doi: 10.1080/17538947.2014.925517 – ident: ref57 doi: 10.3390/rs10071158 – ident: ref40 doi: 10.1016/j.cviu.2019.04.004 – ident: ref47 doi: 10.1109/CVPR.2017.243 – ident: ref49 doi: 10.1080/2150704X.2020.1864052 – ident: ref31 doi: 10.1109/TGRS.2017.2702596 – ident: ref8 doi: 10.3390/rs71114680 – ident: ref16 doi: 10.1109/FSKD.2015.7382030 – volume: 14 start-page: 1735 year: 2017 ident: ref7 article-title: Remote sensing image scene classification using bag of convolutional features publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2017.2731997 – ident: ref13 doi: 10.1109/JSTARS.2014.2339842 – ident: ref65 doi: 10.1109/JSTARS.2021.3051569 – ident: ref63 doi: 10.1109/IGARSS.2019.8900199 – ident: ref39 doi: 10.1007/s00521-020-05071-7 – ident: ref4 doi: 10.1109/JSTARS.2012.2228254 – year: 0 ident: ref42 article-title: mixup: Beyond empirical risk minimization publication-title: Proc Int Conf Learn Representations – ident: ref20 doi: 10.1109/TGRS.2013.2265322 – ident: ref10 doi: 10.1109/TPAMI.2002.1017623 – start-page: 646 year: 2016 ident: ref46 article-title: Deep networks with stochastic depth publication-title: Proc Eur Conf Comput Vis – ident: ref9 doi: 10.1109/ICIP.2008.4712139 |
SSID | ssj0062793 |
Score | 2.5515766 |
Snippet | Deep convolutional neural networks have become an indispensable method in remote sensing image scene classification because of their powerful feature... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1150 |
SubjectTerms | Artificial neural networks Attention mechanism Classification Computer networks Context Convolutional neural networks Data mining Datasets Deep learning feature channel Feature extraction global context information Image analysis Image classification Image enhancement Machine learning Mountains Neural networks Object recognition Performance evaluation Remote sensing Scene classification Smoothness Spatial data Spatial discrimination learning |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA4yEHwRdYrTKXnw0bI2aZvGtzndhuAeNgd7C02ayUDm0Ar6771LsqEI-uJDX5qkae-ud9-1x3eEXOi85CJmVSSFgQTFpFVUVLGNrMiMdBxjjoHvfpQPp-ndLJt9afWFNWGeHtgLrgN7SKZFpeO5Rjb1ItZwCJbjL8G8Muh9Ieatkynvg3MGZhc4hpJYdsDIu-MJZIOMQZKaIqb-FoccXX_or_LDKbtI098juwEi0q6_tX2yZZcHZHvgWvB-NMli0Jt0R7a-ol3qGfupo5h6ryn2F17g0rr2VYz0xtoVDRyqj3Tka74pAFU6tqAkSydYwA5DEwNOj7oWmVg85PR1SKb924feMAoNEyKTxkUd8YqDtyp0wS0Ao5Ildp5lopSCayNYCfJKjDBa6MSkmcznOACAjhclYzIpYn5EGsvnpT0mFGniU8A6eZmJVOpcFxaAEki6AkRkeNYibC0-ZQKbODa1eFIuq4il8jJXKHMVZN4il5tFK0-m8fv0a9TLZioyYbsTYB8q2If6yz5apIla3VxEQnQGTNUi7bWWVXhrXxUsggxU8Eye_MfWp2QHH8d_sGmTRv3yZs8AwtT63FnrJwLj58k priority: 102 providerName: Directory of Open Access Journals |
Title | GCSANet: A Global Context Spatial Attention Deep Learning Network for Remote Sensing Scene Classification |
URI | https://ieeexplore.ieee.org/document/9678028 https://www.proquest.com/docview/2622827359 https://doaj.org/article/bec92b7db0fb426080b08072628066dc |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQKGXJm1aum0SdOgx3siSbVm5bdImoZA9ZBvITVjybAkpm9B6Ie2v74ykXegHpQeDsSwj88ajN9L4DcA733TaSNUX1gQKUELVF20vsUBTBxs1xqIC3-W0ubiuPt7UNxtwuP4XBhFj8hmO-TTu5ff3YclLZUeWPCvNh5uwSYFb-ldr5XUbZaLALvERW7BkTFYYKqU9IhOfXM0oFlSKQtSKGfUvs1AU68_VVf5wyXGeOduGy9UIU3rJ3Xg5-HH48Zt44_--wg48y4RTTJKFPIcNXLyAJ-exoO_3Xbg9P51Npjgci4lI-v8iClY9DoKrFd9y12FIOZHiPeKDyIqsn8U0ZZALor3iCglyFDNOh6emWSAXKmLBTU5Fiui_hOuzD59OL4pcfqEIlWyHQveafF_rW41EszpV4ryuTWeN9sGojrhKGUzwxpehqm0z5waih7rtlLJlK_Ur2FrcL_A1CBadr4g5NV1tKusb3yLRLiVtT_wq6HoEagWHC1mbnEtkfHExRpHWJQwdY-gyhiM4XHd6SNIc_779hHFe38q62vEC4ePyZ-rIoq3ypvdy7lm7v5WeDqMa3oBu-jCCXcZ0_ZAM5wj2Vlbjsg_45qgTxbNG1_bN33u9hac8wLSgswdbw9cl7hPFGfxBXBo4iBb-E3aE9JA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgSXFigVWwr4wLHZOnYcx9yWlnaB7h66rdSbFTteVIG2FWQl4NczY3tX4kOIQ6QojiMnbzJ-k4zfALxydSs1F11htMcAxVdd0XQ8FEErb6LGWFTgm0zr8WX1_kpdbcDBei1MCCEmn4Uh7cZ_-d2NX9KnskODnhXnwztwF-d9VabVWiu_WwsdJXaRkZiCRGOyxlDJzSEa-eh8htGgEBikVsSpf5mHolx_rq_yh1OOM83JNkxWY0wJJp-Gy94N_Y_f5Bv_9yYewlamnGyUbOQRbITFY7h3Gkv6ft-B69Oj2Wga-tdsxFIFABYlq771jOoVX1PXvk9Zkew4hFuWNVk_smnKIWdIfNl5QNADm1FCPDbNPDpRFktuUjJSxP8JXJ68vTgaF7kAQ-Er3vSF7CR6v8Y1MuADb0UZ5krp1mjpvBYtspXSa--0K32lTD2nBiSIsmmFMGXD5S5sLm4W4Skwkp2vkDvVrdKVcbVrAhIvwU2HDMtLNQCxgsP6rE5ORTI-2xilcGMThpYwtBnDARysO90mcY5_n_6GcF6fSsra8QDiY_OLatGmjXC6c3zuSL2_4Q43LWr6BV13fgA7hOn6IhnOAeyvrMZmL_DVYieMaLVUZu_vvV7C_fHF5MyevZt-eAYPaLDp884-bPZfluE5Ep7evYh2_hObBvbk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCSANet%3A+A+Global+Context+Spatial+Attention+Deep+Learning+Network+for+Remote+Sensing+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Weitao&rft.au=Ouyang%2C+Shubing&rft.au=Tong%2C+Wei&rft.au=Li%2C+Xianju&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=1150&rft.epage=1162&rft_id=info:doi/10.1109%2FJSTARS.2022.3141826&rft.externalDocID=9678028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |