Incremental SAR Automatic Target Recognition With Error Correction and High Plasticity

Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challeng...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 1327 - 1339
Main Authors Tang, Jiaxin, Xiang, Deliang, Zhang, Fan, Ma, Fei, Zhou, Yongsheng, Li, HengChao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challenges of how to deal with incremental recognition scenarios. The existing deep learning-based SAR ATR methods usually predefine the total number of recognition classes. In realistic applications, the new tasks/classes will be added continuously. If all old data are stored and mixed with newly added data to update the model, the storage pressure and time consumption make the application infeasible. In this article, the high plastic error correction incremental learning (HPecIL) is proposed to address the model degradation and plasticity decline in the incremental scenario. Multiple optimal models trained on old tasks are used to correct accumulative errors and alleviate model degradation. Moreover, the sharp data distribution shift due to newly added data can also result in the model underperforming. A class-balanced training batch is constructed to deal with the issue of unbalanced data distribution. To make a tradeoff between model stability and model plasticity, low-effect nodes in the model are removed to boost the efficiency of model update. The proposed HPecIL outperforms the other state-of-the-art methods in incremental recognition scenarios. The experimental results demonstrate the effectiveness of the proposed method.
AbstractList Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challenges of how to deal with incremental recognition scenarios. The existing deep learning-based SAR ATR methods usually predefine the total number of recognition classes. In realistic applications, the new tasks/classes will be added continuously. If all old data are stored and mixed with newly added data to update the model, the storage pressure and time consumption make the application infeasible. In this article, the high plastic error correction incremental learning (HPecIL) is proposed to address the model degradation and plasticity decline in the incremental scenario. Multiple optimal models trained on old tasks are used to correct accumulative errors and alleviate model degradation. Moreover, the sharp data distribution shift due to newly added data can also result in the model underperforming. A class-balanced training batch is constructed to deal with the issue of unbalanced data distribution. To make a tradeoff between model stability and model plasticity, low-effect nodes in the model are removed to boost the efficiency of model update. The proposed HPecIL outperforms the other state-of-the-art methods in incremental recognition scenarios. The experimental results demonstrate the effectiveness of the proposed method.
Author Li, HengChao
Ma, Fei
Tang, Jiaxin
Zhang, Fan
Xiang, Deliang
Zhou, Yongsheng
Author_xml – sequence: 1
  givenname: Jiaxin
  surname: Tang
  fullname: Tang, Jiaxin
  email: tangchiahsin@outlook.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 2
  givenname: Deliang
  orcidid: 0000-0003-0152-6621
  surname: Xiang
  fullname: Xiang, Deliang
  email: xiangdeliang@gmail.com
  organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-2058-2373
  surname: Zhang
  fullname: Zhang, Fan
  email: zhangf@mail.buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 4
  givenname: Fei
  orcidid: 0000-0003-4906-6142
  surname: Ma
  fullname: Ma, Fei
  email: mafei@mail.buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 5
  givenname: Yongsheng
  orcidid: 0000-0001-7261-7606
  surname: Zhou
  fullname: Zhou, Yongsheng
  email: zhyosh@mail.buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 6
  givenname: HengChao
  orcidid: 0000-0002-9735-570X
  surname: Li
  fullname: Li, HengChao
  email: lihengchao_78@163.com
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
BookMark eNqFkU9rGzEQxUVJoU7ST5CLoOd19V-rozFp4xJosN32KMbaWUdmvUq18iHfPutsyKGXngaG-b15vHdJLvrUIyE3nM05Z-7rj812sd7MBRNiLrniqtYfyExwzSuupb4gM-6kq7hi6hO5HIYDY0ZYJ2fk96oPGY_YF-joZrGmi1NJRygx0C3kPRa6xpD2fSwx9fRPLI_0NueU6TLljOF1C31D7-L-kT50MIxkLM_X5GML3YCf3-YV-fXtdru8q-5_fl8tF_dVUKwulYSWWcFsI5ExcLy2XIAydeA7bNRO4E4bywFVGxoWWoU765yVEoWEgK6WV2Q16TYJDv4pxyPkZ58g-tdFynsPebTUodc8SJChAWOMcpoB6FYphaZVknHdjFpfJq2nnP6ecCj-kE65H-17YYSyWgnhxis5XYWchiFj-_6VM38uw09l-HMZ_q2MkXL_UGNKcE6vZIjdf9ibiY2I-P7NGWtGT_IFBWiZlA
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3418775
crossref_primary_10_1109_LGRS_2024_3352750
crossref_primary_10_1016_j_cja_2024_05_047
crossref_primary_10_1109_TAES_2024_3443014
crossref_primary_10_1109_JSTARS_2022_3225882
crossref_primary_10_1109_JSTARS_2024_3452756
crossref_primary_10_1109_JSTARS_2022_3168799
crossref_primary_10_1109_TGRS_2023_3298016
crossref_primary_10_1109_JSTARS_2023_3318675
crossref_primary_10_1109_TGRS_2024_3351636
crossref_primary_10_1109_TGRS_2022_3160727
crossref_primary_10_1109_TGRS_2024_3354800
crossref_primary_10_1109_LGRS_2023_3263659
crossref_primary_10_1109_ACCESS_2025_3528633
crossref_primary_10_1109_TGRS_2023_3312330
crossref_primary_10_1109_TGRS_2024_3419794
crossref_primary_10_3390_drones7030205
crossref_primary_10_1117_1_JRS_19_016502
crossref_primary_10_1109_TGRS_2023_3248040
crossref_primary_10_1109_TGRS_2023_3293509
crossref_primary_10_1109_TGRS_2025_3538636
crossref_primary_10_3390_drones7120697
crossref_primary_10_1109_LGRS_2023_3269480
crossref_primary_10_1109_TGRS_2023_3283423
Cites_doi 10.1109/ICCV.2019.00067
10.1109/JSTARS.2017.2755672
10.1073/pnas.1611835114
10.1109/TAES.2007.357120
10.1109/CVPR.2019.00046
10.1109/7.937475
10.1109/MGRS.2013.2248301
10.1109/CVPR.2018.00810
10.1109/83.552098
10.1109/ACCESS.2016.2611492
10.1109/TGRS.2020.2970076
10.1109/APSAR46974.2019.9048463
10.21437/Interspeech.2014-432
10.1109/CVPR42600.2020.01394
10.1109/RADAR.2000.851944
10.1109/TPAMI.2021.3057446
10.1109/TGRS.2019.2891266
10.1109/CVPR.2017.587
10.1109/WACV45572.2020.9093562
10.1007/978-3-030-01258-8_15
10.1109/CVPR.2017.753
10.1109/WACV45572.2020.9093365
10.1109/LGRS.2017.2698213
10.3390/rs12233863
10.1109/TGRS.2021.3116349
10.1109/TGRS.2014.2323552
10.1109/TGRS.2016.2551720
10.1109/LGRS.2021.3079418
10.1037/0033-295X.102.3.419
10.3390/rs8080683
10.1109/TPAMI.2017.2773081
10.1016/s0079-7421(08)60536-8
10.1117/12.242059
10.1109/LGRS.2021.3065682
10.1109/TGRS.2021.3100137
10.1007/978-3-030-01225-0_5
10.1007/978-3-030-11012-3_11
10.1007/978-3-030-01219-9_27
10.1145/1553374.1553517
10.3390/rs10030374
10.1007/978-3-030-01252-6_33
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2022.3141485
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1339
ExternalDocumentID oai_doaj_org_article_51c3a3cda6664950aa5f444e6f43015d
10_1109_JSTARS_2022_3141485
9676475
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871413; 62171015; 62171016
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XK2020-03; buctrc202121
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-3af07207d3e00a918712a468c1bed4b2eb5671ae4fcd0cf4eb799733e23ace983
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 00:21:46 EDT 2025
Mon Jul 28 14:10:53 EDT 2025
Tue Jul 01 03:16:20 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Wed Aug 27 03:00:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3af07207d3e00a918712a468c1bed4b2eb5671ae4fcd0cf4eb799733e23ace983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2058-2373
0000-0003-4906-6142
0000-0002-9735-570X
0000-0003-0152-6621
0000-0001-7261-7606
OpenAccessLink https://doaj.org/article/51c3a3cda6664950aa5f444e6f43015d
PQID 2624754229
PQPubID 75722
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSTARS_2022_3141485
ieee_primary_9676475
crossref_citationtrail_10_1109_JSTARS_2022_3141485
proquest_journals_2624754229
doaj_primary_oai_doaj_org_article_51c3a3cda6664950aa5f444e6f43015d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Wu (ref26) 2018
ref50
Hinton (ref46) 2015
ref45
ref48
Kemker (ref25) 2017
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
He (ref27) 2018
ref35
ref34
ref37
ref36
ref30
Shin (ref24) 2017
ref32
ref2
ref1
ref39
ref38
Urban (ref47) 2016
Novak (ref3) 1997; 10
Rajasegaran (ref33) 2019
Yoon (ref31) 2017
ref23
ref20
ref22
ref21
ref28
ref29
References_xml – ident: ref23
  doi: 10.1109/ICCV.2019.00067
– ident: ref50
  doi: 10.1109/JSTARS.2017.2755672
– ident: ref28
  doi: 10.1073/pnas.1611835114
– ident: ref10
  doi: 10.1109/TAES.2007.357120
– ident: ref43
  doi: 10.1109/CVPR.2019.00046
– ident: ref9
  doi: 10.1109/7.937475
– start-page: 98
  volume-title: Proc. Brit. Mach. Vis. Conf.
  year: 2018
  ident: ref27
  article-title: Exemplar-supported generative reproduction for class incremental learning
– year: 2015
  ident: ref46
  article-title: Distilling the knowledge in a neural network
– ident: ref1
  doi: 10.1109/MGRS.2013.2248301
– ident: ref35
  doi: 10.1109/CVPR.2018.00810
– year: 2016
  ident: ref47
  article-title: Do deep convolutional nets really need to be deep and convolutional
– ident: ref6
  doi: 10.1109/83.552098
– year: 2017
  ident: ref25
  article-title: FearNet: Brain-inspired model for incremental learning
– ident: ref2
  doi: 10.1109/ACCESS.2016.2611492
– ident: ref17
  doi: 10.1109/TGRS.2020.2970076
– ident: ref38
  doi: 10.1109/APSAR46974.2019.9048463
– ident: ref48
  doi: 10.21437/Interspeech.2014-432
– ident: ref44
  doi: 10.1109/CVPR42600.2020.01394
– ident: ref4
  doi: 10.1109/RADAR.2000.851944
– ident: ref20
  doi: 10.1109/TPAMI.2021.3057446
– start-page: 12669
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref33
  article-title: Random path selection for continual learning
– ident: ref39
  doi: 10.1109/TGRS.2019.2891266
– ident: ref21
  doi: 10.1109/CVPR.2017.587
– ident: ref45
  doi: 10.1109/WACV45572.2020.9093562
– ident: ref22
  doi: 10.1007/978-3-030-01258-8_15
– ident: ref34
  doi: 10.1109/CVPR.2017.753
– ident: ref49
  doi: 10.1109/WACV45572.2020.9093365
– ident: ref14
  doi: 10.1109/LGRS.2017.2698213
– year: 2017
  ident: ref31
  article-title: Lifelong learning with dynamically expandable networks
– volume: 10
  start-page: 187
  issue: 2
  year: 1997
  ident: ref3
  article-title: The automatic target-recognition system in SAIP
  publication-title: Lincoln Lab. J.
– start-page: 2990
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref24
  article-title: Continual learning with deep generative replay
– ident: ref13
  doi: 10.3390/rs12233863
– ident: ref16
  doi: 10.1109/TGRS.2021.3116349
– ident: ref8
  doi: 10.1109/TGRS.2014.2323552
– ident: ref11
  doi: 10.1109/TGRS.2016.2551720
– ident: ref40
  doi: 10.1109/LGRS.2021.3079418
– ident: ref18
  doi: 10.1037/0033-295X.102.3.419
– ident: ref7
  doi: 10.3390/rs8080683
– ident: ref30
  doi: 10.1109/TPAMI.2017.2773081
– ident: ref19
  doi: 10.1016/s0079-7421(08)60536-8
– ident: ref5
  doi: 10.1117/12.242059
– ident: ref15
  doi: 10.1109/LGRS.2021.3065682
– ident: ref12
  doi: 10.1109/TGRS.2021.3100137
– ident: ref36
  doi: 10.1007/978-3-030-01225-0_5
– start-page: 5962
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref26
  article-title: Memory replay GANs: Learning to generate new categories without forgetting
– ident: ref32
  doi: 10.1007/978-3-030-11012-3_11
– ident: ref41
  doi: 10.1007/978-3-030-01219-9_27
– ident: ref42
  doi: 10.1145/1553374.1553517
– ident: ref37
  doi: 10.3390/rs10030374
– ident: ref29
  doi: 10.1007/978-3-030-01252-6_33
SSID ssj0062793
Score 2.4375942
Snippet Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1327
SubjectTerms Automatic target recognition
Automatic target recognition (ATR)
Computational modeling
Data models
Deep learning
Degradation
Distribution
Error correction
Error correction & detection
incremental learning
Machine learning
Methods
Plastic properties
Plasticity
SAR (radar)
Storage
Synthetic aperture radar
synthetic aperture radar (SAR)
Target recognition
Task analysis
Training
Training data
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4UEpBLBTkA8dm6_gRx8elaqmQitC2hd4sPwWiSqole2h_PbbjrMRDqLcosqMk33g8nz3-BuCdYzIIW8tKUGcrFnSoTG3bKhirg3fa8SzXdP6pObtiH6_59RYcbs7CeO9z8pmfp8u8l-96u05LZUeyEQ0TfBu2I3Ebz2pNXrchIgvsxnhEVkkypigM1VgeRRNfLC8iFyQkUlQWCQD_bRbKYv2luspfLjnPM6e7cD694Zhe8mO-Hszc3v8h3vjQT3gKT0rAiRajhezBlu-ewaMPuaDv3T58iQ5iXCKMjS4WS7RYD32WcUWXOUkcLacUo75DX78P39DJatWv0HEq65EPRSDdOZTyRdDnGIqnLO3h7jlcnZ5cHp9VpdZCZRluh4rqgAXBwlGPsZZ15FFEs6a1tfGOGeINb0StPQvWYRuYN0JKQaknVFsvW_oCdrq-8y8BpRlO6rRhSiiL8aAUkjPdxrgpcE2NnQGZ_r2yRYg81cO4UZmQYKlGwFQCTBXAZnC46XQ76nD8v_n7BOqmaRLRzjciGKqMScVrSzW1TkcKF3ki1poHxphvAotuj7sZ7CcANw8p2M3gYDIRVQb8T0UawlIxYSJf_bvXa3icXnBcvTmAnWG19m9iPDOYt9mQfwFwyPAf
  priority: 102
  providerName: IEEE
Title Incremental SAR Automatic Target Recognition With Error Correction and High Plasticity
URI https://ieeexplore.ieee.org/document/9676475
https://www.proquest.com/docview/2624754229
https://doaj.org/article/51c3a3cda6664950aa5f444e6f43015d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReEO0WdSkgHzgS4djjOD4uiIcqFaF9FG6W44daCWXRNhz49x072VUrJLhwjRwnGX_2fOOMvyHk2IOOypW6UMK7AqKNRVO6uoiNszF462WWa_pxU10v4Pu9vP-n1FfKCevlgXvDncrSCSuct8izkcwza2UEgFBFQGxKn1Zf9HnrYKpfgyuOsBs0hkqmTxHkk-kMo0HOMUgFDAHkf34oy_UP9VVeLMrZ01zukp2BItJJ_2qfyIfQfibbV7kE7_OI_MQp3W_qYaPZZEonT90yC6_SeU7rptN1UtCypXe_u1_0YrVaruh5KsSRjzFQ23qaMjzoLZLnlFfdPX8hi8uL-fl1MVRHKBywuiuEjUxxprwIjFldYuTDLVS1K5vgoeGhkZUqbYDoPHMRQqO0VkIELqwLuhZ7ZKtdtuErocknaZt-cXIByOC00hJsjUwnSisaNyZ8bSvjBunwVMHiweQQgmnTG9gkA5vBwGNysrnpsVfOeL35WRqETdMke50vIBjMAAbzFhjGZJSGcNOJrlQFCvs-WA-pGaboH8MrDqn8L9f77_Hob-Rj-px-d-aAbHWrp3CIfKVrjjI0j_LRwr_XyuVE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXqVioYAPHJtt4kccH5eqZYFuhbZb6M3yUyBQgpbsofx6bMdZiYcQtyiyI8cznpnPHn8D8NJS4bmpRMGJNQX1yhe6Mk3htVHeWWVZomtanNfzS_r2il3twOH2LoxzLiWfuWl8TGf5tjObuFV2JGpeU85uwM3g91k13NYa7W6NeaLYDRGJKCJpTOYYqkpxFJR8trwIaBDjAFJpgADsFz-U6PpzfZU_jHLyNKf3YDGOcUgw-TLd9HpqfvxG3_i_P3Ef7uaQE80GHXkAO659CLdep5K-13vwIZiIYZMwNLqYLdFs03eJyBWtUpo4Wo5JRl2LPn7uP6GT9bpbo-NY2CNdi0CqtShmjKD3IRiPedr99SO4PD1ZHc-LXG2hMLRs-oIoX3JccktcWSpRBSSFFa0bU2lnqcZOs5pXylFvbGk8dZoLwQlxmCjjREP2YbftWvcYUPRxQsUjU0xoiAgFF4yqJkROnimizQTwOPfSZCryWBHjq0yQpBRyEJiMApNZYBM43Hb6NjBx_Lv5qyjUbdNIo51eBGHIvColqwxRxFgVQFxAiqVSzFNKXe1pMHzMTmAvCnD7kSy7CRyMKiLzkv8ucY1pLCeMxZO_93oBt-erxZk8e3P-7inciYMd9nIOYLdfb9yzEN30-nlS6p8f9PNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+SAR+Automatic+Target+Recognition+With+Error+Correction+and+High+Plasticity&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Tang%2C+Jiaxin&rft.au=Xiang%2C+Deliang&rft.au=Zhang%2C+Fan&rft.au=Ma%2C+Fei&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=1327&rft.epage=1339&rft_id=info:doi/10.1109%2FJSTARS.2022.3141485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3141485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon