Incremental SAR Automatic Target Recognition With Error Correction and High Plasticity
Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challeng...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 1327 - 1339 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challenges of how to deal with incremental recognition scenarios. The existing deep learning-based SAR ATR methods usually predefine the total number of recognition classes. In realistic applications, the new tasks/classes will be added continuously. If all old data are stored and mixed with newly added data to update the model, the storage pressure and time consumption make the application infeasible. In this article, the high plastic error correction incremental learning (HPecIL) is proposed to address the model degradation and plasticity decline in the incremental scenario. Multiple optimal models trained on old tasks are used to correct accumulative errors and alleviate model degradation. Moreover, the sharp data distribution shift due to newly added data can also result in the model underperforming. A class-balanced training batch is constructed to deal with the issue of unbalanced data distribution. To make a tradeoff between model stability and model plasticity, low-effect nodes in the model are removed to boost the efficiency of model update. The proposed HPecIL outperforms the other state-of-the-art methods in incremental recognition scenarios. The experimental results demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human intervention. For SAR ATR, deep learning gradually emerges as a powerful tool and achieves promising performance. However, it faces serious challenges of how to deal with incremental recognition scenarios. The existing deep learning-based SAR ATR methods usually predefine the total number of recognition classes. In realistic applications, the new tasks/classes will be added continuously. If all old data are stored and mixed with newly added data to update the model, the storage pressure and time consumption make the application infeasible. In this article, the high plastic error correction incremental learning (HPecIL) is proposed to address the model degradation and plasticity decline in the incremental scenario. Multiple optimal models trained on old tasks are used to correct accumulative errors and alleviate model degradation. Moreover, the sharp data distribution shift due to newly added data can also result in the model underperforming. A class-balanced training batch is constructed to deal with the issue of unbalanced data distribution. To make a tradeoff between model stability and model plasticity, low-effect nodes in the model are removed to boost the efficiency of model update. The proposed HPecIL outperforms the other state-of-the-art methods in incremental recognition scenarios. The experimental results demonstrate the effectiveness of the proposed method. |
Author | Li, HengChao Ma, Fei Tang, Jiaxin Zhang, Fan Xiang, Deliang Zhou, Yongsheng |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Tang fullname: Tang, Jiaxin email: tangchiahsin@outlook.com organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 2 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang email: xiangdeliang@gmail.com organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China – sequence: 3 givenname: Fan orcidid: 0000-0002-2058-2373 surname: Zhang fullname: Zhang, Fan email: zhangf@mail.buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 4 givenname: Fei orcidid: 0000-0003-4906-6142 surname: Ma fullname: Ma, Fei email: mafei@mail.buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 5 givenname: Yongsheng orcidid: 0000-0001-7261-7606 surname: Zhou fullname: Zhou, Yongsheng email: zhyosh@mail.buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 6 givenname: HengChao orcidid: 0000-0002-9735-570X surname: Li fullname: Li, HengChao email: lihengchao_78@163.com organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China |
BookMark | eNqFkU9rGzEQxUVJoU7ST5CLoOd19V-rozFp4xJosN32KMbaWUdmvUq18iHfPutsyKGXngaG-b15vHdJLvrUIyE3nM05Z-7rj812sd7MBRNiLrniqtYfyExwzSuupb4gM-6kq7hi6hO5HIYDY0ZYJ2fk96oPGY_YF-joZrGmi1NJRygx0C3kPRa6xpD2fSwx9fRPLI_0NueU6TLljOF1C31D7-L-kT50MIxkLM_X5GML3YCf3-YV-fXtdru8q-5_fl8tF_dVUKwulYSWWcFsI5ExcLy2XIAydeA7bNRO4E4bywFVGxoWWoU765yVEoWEgK6WV2Q16TYJDv4pxyPkZ58g-tdFynsPebTUodc8SJChAWOMcpoB6FYphaZVknHdjFpfJq2nnP6ecCj-kE65H-17YYSyWgnhxis5XYWchiFj-_6VM38uw09l-HMZ_q2MkXL_UGNKcE6vZIjdf9ibiY2I-P7NGWtGT_IFBWiZlA |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3418775 crossref_primary_10_1109_LGRS_2024_3352750 crossref_primary_10_1016_j_cja_2024_05_047 crossref_primary_10_1109_TAES_2024_3443014 crossref_primary_10_1109_JSTARS_2022_3225882 crossref_primary_10_1109_JSTARS_2024_3452756 crossref_primary_10_1109_JSTARS_2022_3168799 crossref_primary_10_1109_TGRS_2023_3298016 crossref_primary_10_1109_JSTARS_2023_3318675 crossref_primary_10_1109_TGRS_2024_3351636 crossref_primary_10_1109_TGRS_2022_3160727 crossref_primary_10_1109_TGRS_2024_3354800 crossref_primary_10_1109_LGRS_2023_3263659 crossref_primary_10_1109_ACCESS_2025_3528633 crossref_primary_10_1109_TGRS_2023_3312330 crossref_primary_10_1109_TGRS_2024_3419794 crossref_primary_10_3390_drones7030205 crossref_primary_10_1117_1_JRS_19_016502 crossref_primary_10_1109_TGRS_2023_3248040 crossref_primary_10_1109_TGRS_2023_3293509 crossref_primary_10_1109_TGRS_2025_3538636 crossref_primary_10_3390_drones7120697 crossref_primary_10_1109_LGRS_2023_3269480 crossref_primary_10_1109_TGRS_2023_3283423 |
Cites_doi | 10.1109/ICCV.2019.00067 10.1109/JSTARS.2017.2755672 10.1073/pnas.1611835114 10.1109/TAES.2007.357120 10.1109/CVPR.2019.00046 10.1109/7.937475 10.1109/MGRS.2013.2248301 10.1109/CVPR.2018.00810 10.1109/83.552098 10.1109/ACCESS.2016.2611492 10.1109/TGRS.2020.2970076 10.1109/APSAR46974.2019.9048463 10.21437/Interspeech.2014-432 10.1109/CVPR42600.2020.01394 10.1109/RADAR.2000.851944 10.1109/TPAMI.2021.3057446 10.1109/TGRS.2019.2891266 10.1109/CVPR.2017.587 10.1109/WACV45572.2020.9093562 10.1007/978-3-030-01258-8_15 10.1109/CVPR.2017.753 10.1109/WACV45572.2020.9093365 10.1109/LGRS.2017.2698213 10.3390/rs12233863 10.1109/TGRS.2021.3116349 10.1109/TGRS.2014.2323552 10.1109/TGRS.2016.2551720 10.1109/LGRS.2021.3079418 10.1037/0033-295X.102.3.419 10.3390/rs8080683 10.1109/TPAMI.2017.2773081 10.1016/s0079-7421(08)60536-8 10.1117/12.242059 10.1109/LGRS.2021.3065682 10.1109/TGRS.2021.3100137 10.1007/978-3-030-01225-0_5 10.1007/978-3-030-11012-3_11 10.1007/978-3-030-01219-9_27 10.1145/1553374.1553517 10.3390/rs10030374 10.1007/978-3-030-01252-6_33 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2022.3141485 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 1339 |
ExternalDocumentID | oai_doaj_org_article_51c3a3cda6664950aa5f444e6f43015d 10_1109_JSTARS_2022_3141485 9676475 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871413; 62171015; 62171016 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: XK2020-03; buctrc202121 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-3af07207d3e00a918712a468c1bed4b2eb5671ae4fcd0cf4eb799733e23ace983 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 00:21:46 EDT 2025 Mon Jul 28 14:10:53 EDT 2025 Tue Jul 01 03:16:20 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Wed Aug 27 03:00:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-3af07207d3e00a918712a468c1bed4b2eb5671ae4fcd0cf4eb799733e23ace983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2058-2373 0000-0003-4906-6142 0000-0002-9735-570X 0000-0003-0152-6621 0000-0001-7261-7606 |
OpenAccessLink | https://doaj.org/article/51c3a3cda6664950aa5f444e6f43015d |
PQID | 2624754229 |
PQPubID | 75722 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2022_3141485 ieee_primary_9676475 crossref_citationtrail_10_1109_JSTARS_2022_3141485 proquest_journals_2624754229 doaj_primary_oai_doaj_org_article_51c3a3cda6664950aa5f444e6f43015d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Wu (ref26) 2018 ref50 Hinton (ref46) 2015 ref45 ref48 Kemker (ref25) 2017 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 He (ref27) 2018 ref35 ref34 ref37 ref36 ref30 Shin (ref24) 2017 ref32 ref2 ref1 ref39 ref38 Urban (ref47) 2016 Novak (ref3) 1997; 10 Rajasegaran (ref33) 2019 Yoon (ref31) 2017 ref23 ref20 ref22 ref21 ref28 ref29 |
References_xml | – ident: ref23 doi: 10.1109/ICCV.2019.00067 – ident: ref50 doi: 10.1109/JSTARS.2017.2755672 – ident: ref28 doi: 10.1073/pnas.1611835114 – ident: ref10 doi: 10.1109/TAES.2007.357120 – ident: ref43 doi: 10.1109/CVPR.2019.00046 – ident: ref9 doi: 10.1109/7.937475 – start-page: 98 volume-title: Proc. Brit. Mach. Vis. Conf. year: 2018 ident: ref27 article-title: Exemplar-supported generative reproduction for class incremental learning – year: 2015 ident: ref46 article-title: Distilling the knowledge in a neural network – ident: ref1 doi: 10.1109/MGRS.2013.2248301 – ident: ref35 doi: 10.1109/CVPR.2018.00810 – year: 2016 ident: ref47 article-title: Do deep convolutional nets really need to be deep and convolutional – ident: ref6 doi: 10.1109/83.552098 – year: 2017 ident: ref25 article-title: FearNet: Brain-inspired model for incremental learning – ident: ref2 doi: 10.1109/ACCESS.2016.2611492 – ident: ref17 doi: 10.1109/TGRS.2020.2970076 – ident: ref38 doi: 10.1109/APSAR46974.2019.9048463 – ident: ref48 doi: 10.21437/Interspeech.2014-432 – ident: ref44 doi: 10.1109/CVPR42600.2020.01394 – ident: ref4 doi: 10.1109/RADAR.2000.851944 – ident: ref20 doi: 10.1109/TPAMI.2021.3057446 – start-page: 12669 volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst. year: 2019 ident: ref33 article-title: Random path selection for continual learning – ident: ref39 doi: 10.1109/TGRS.2019.2891266 – ident: ref21 doi: 10.1109/CVPR.2017.587 – ident: ref45 doi: 10.1109/WACV45572.2020.9093562 – ident: ref22 doi: 10.1007/978-3-030-01258-8_15 – ident: ref34 doi: 10.1109/CVPR.2017.753 – ident: ref49 doi: 10.1109/WACV45572.2020.9093365 – ident: ref14 doi: 10.1109/LGRS.2017.2698213 – year: 2017 ident: ref31 article-title: Lifelong learning with dynamically expandable networks – volume: 10 start-page: 187 issue: 2 year: 1997 ident: ref3 article-title: The automatic target-recognition system in SAIP publication-title: Lincoln Lab. J. – start-page: 2990 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref24 article-title: Continual learning with deep generative replay – ident: ref13 doi: 10.3390/rs12233863 – ident: ref16 doi: 10.1109/TGRS.2021.3116349 – ident: ref8 doi: 10.1109/TGRS.2014.2323552 – ident: ref11 doi: 10.1109/TGRS.2016.2551720 – ident: ref40 doi: 10.1109/LGRS.2021.3079418 – ident: ref18 doi: 10.1037/0033-295X.102.3.419 – ident: ref7 doi: 10.3390/rs8080683 – ident: ref30 doi: 10.1109/TPAMI.2017.2773081 – ident: ref19 doi: 10.1016/s0079-7421(08)60536-8 – ident: ref5 doi: 10.1117/12.242059 – ident: ref15 doi: 10.1109/LGRS.2021.3065682 – ident: ref12 doi: 10.1109/TGRS.2021.3100137 – ident: ref36 doi: 10.1007/978-3-030-01225-0_5 – start-page: 5962 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. year: 2018 ident: ref26 article-title: Memory replay GANs: Learning to generate new categories without forgetting – ident: ref32 doi: 10.1007/978-3-030-11012-3_11 – ident: ref41 doi: 10.1007/978-3-030-01219-9_27 – ident: ref42 doi: 10.1145/1553374.1553517 – ident: ref37 doi: 10.3390/rs10030374 – ident: ref29 doi: 10.1007/978-3-030-01252-6_33 |
SSID | ssj0062793 |
Score | 2.4375942 |
Snippet | Synthetic aperture radar automatic target recognition (SAR ATR) uses computer processing capabilities to infer the classes of the targets without human... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1327 |
SubjectTerms | Automatic target recognition Automatic target recognition (ATR) Computational modeling Data models Deep learning Degradation Distribution Error correction Error correction & detection incremental learning Machine learning Methods Plastic properties Plasticity SAR (radar) Storage Synthetic aperture radar synthetic aperture radar (SAR) Target recognition Task analysis Training Training data |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4UEpBLBTkA8dm6_gRx8elaqmQitC2hd4sPwWiSqole2h_PbbjrMRDqLcosqMk33g8nz3-BuCdYzIIW8tKUGcrFnSoTG3bKhirg3fa8SzXdP6pObtiH6_59RYcbs7CeO9z8pmfp8u8l-96u05LZUeyEQ0TfBu2I3Ebz2pNXrchIgvsxnhEVkkypigM1VgeRRNfLC8iFyQkUlQWCQD_bRbKYv2luspfLjnPM6e7cD694Zhe8mO-Hszc3v8h3vjQT3gKT0rAiRajhezBlu-ewaMPuaDv3T58iQ5iXCKMjS4WS7RYD32WcUWXOUkcLacUo75DX78P39DJatWv0HEq65EPRSDdOZTyRdDnGIqnLO3h7jlcnZ5cHp9VpdZCZRluh4rqgAXBwlGPsZZ15FFEs6a1tfGOGeINb0StPQvWYRuYN0JKQaknVFsvW_oCdrq-8y8BpRlO6rRhSiiL8aAUkjPdxrgpcE2NnQGZ_r2yRYg81cO4UZmQYKlGwFQCTBXAZnC46XQ76nD8v_n7BOqmaRLRzjciGKqMScVrSzW1TkcKF3ki1poHxphvAotuj7sZ7CcANw8p2M3gYDIRVQb8T0UawlIxYSJf_bvXa3icXnBcvTmAnWG19m9iPDOYt9mQfwFwyPAf priority: 102 providerName: IEEE |
Title | Incremental SAR Automatic Target Recognition With Error Correction and High Plasticity |
URI | https://ieeexplore.ieee.org/document/9676475 https://www.proquest.com/docview/2624754229 https://doaj.org/article/51c3a3cda6664950aa5f444e6f43015d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReEO0WdSkgHzgS4djjOD4uiIcqFaF9FG6W44daCWXRNhz49x072VUrJLhwjRwnGX_2fOOMvyHk2IOOypW6UMK7AqKNRVO6uoiNszF462WWa_pxU10v4Pu9vP-n1FfKCevlgXvDncrSCSuct8izkcwza2UEgFBFQGxKn1Zf9HnrYKpfgyuOsBs0hkqmTxHkk-kMo0HOMUgFDAHkf34oy_UP9VVeLMrZ01zukp2BItJJ_2qfyIfQfibbV7kE7_OI_MQp3W_qYaPZZEonT90yC6_SeU7rptN1UtCypXe_u1_0YrVaruh5KsSRjzFQ23qaMjzoLZLnlFfdPX8hi8uL-fl1MVRHKBywuiuEjUxxprwIjFldYuTDLVS1K5vgoeGhkZUqbYDoPHMRQqO0VkIELqwLuhZ7ZKtdtuErocknaZt-cXIByOC00hJsjUwnSisaNyZ8bSvjBunwVMHiweQQgmnTG9gkA5vBwGNysrnpsVfOeL35WRqETdMke50vIBjMAAbzFhjGZJSGcNOJrlQFCvs-WA-pGaboH8MrDqn8L9f77_Hob-Rj-px-d-aAbHWrp3CIfKVrjjI0j_LRwr_XyuVE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXqVioYAPHJtt4kccH5eqZYFuhbZb6M3yUyBQgpbsofx6bMdZiYcQtyiyI8cznpnPHn8D8NJS4bmpRMGJNQX1yhe6Mk3htVHeWWVZomtanNfzS_r2il3twOH2LoxzLiWfuWl8TGf5tjObuFV2JGpeU85uwM3g91k13NYa7W6NeaLYDRGJKCJpTOYYqkpxFJR8trwIaBDjAFJpgADsFz-U6PpzfZU_jHLyNKf3YDGOcUgw-TLd9HpqfvxG3_i_P3Ef7uaQE80GHXkAO659CLdep5K-13vwIZiIYZMwNLqYLdFs03eJyBWtUpo4Wo5JRl2LPn7uP6GT9bpbo-NY2CNdi0CqtShmjKD3IRiPedr99SO4PD1ZHc-LXG2hMLRs-oIoX3JccktcWSpRBSSFFa0bU2lnqcZOs5pXylFvbGk8dZoLwQlxmCjjREP2YbftWvcYUPRxQsUjU0xoiAgFF4yqJkROnimizQTwOPfSZCryWBHjq0yQpBRyEJiMApNZYBM43Hb6NjBx_Lv5qyjUbdNIo51eBGHIvColqwxRxFgVQFxAiqVSzFNKXe1pMHzMTmAvCnD7kSy7CRyMKiLzkv8ucY1pLCeMxZO_93oBt-erxZk8e3P-7inciYMd9nIOYLdfb9yzEN30-nlS6p8f9PNo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+SAR+Automatic+Target+Recognition+With+Error+Correction+and+High+Plasticity&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Tang%2C+Jiaxin&rft.au=Xiang%2C+Deliang&rft.au=Zhang%2C+Fan&rft.au=Ma%2C+Fei&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=1327&rft.epage=1339&rft_id=info:doi/10.1109%2FJSTARS.2022.3141485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3141485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |