Exploring the role of the Rab network in epithelial-to-mesenchymal transition

Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across th...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics advances Vol. 5; no. 1; p. vbae200
Main Authors Jaygude, Unmani, Hughes, Graham M, Simpson, Jeremy C
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2025
Subjects
Online AccessGet full text
ISSN2635-0041
2635-0041
DOI10.1093/bioadv/vbae200

Cover

Abstract Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet
AbstractList Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.MotivationRab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest.ResultsWe examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest.Source code for resnet is freely available at https://github.com/Unmani199/resnet.Availability and implementationSource code for resnet is freely available at https://github.com/Unmani199/resnet.
Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, , assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further studies are needed to confirm their role as predictive markers of cancer metastasis. The use of within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Source code for is freely available at https://github.com/Unmani199/resnet.
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet
Author Hughes, Graham M
Simpson, Jeremy C
Jaygude, Unmani
Author_xml – sequence: 1
  givenname: Unmani
  surname: Jaygude
  fullname: Jaygude, Unmani
– sequence: 2
  givenname: Graham M
  orcidid: 0000-0003-3088-345X
  surname: Hughes
  fullname: Hughes, Graham M
  email: g.hughes@ucd.ie
– sequence: 3
  givenname: Jeremy C
  orcidid: 0000-0002-7956-7805
  surname: Simpson
  fullname: Simpson, Jeremy C
  email: jeremy.simpson@ucd.ie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39736966$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PFTEUxRuDEUS2LMkkbnQxcPsx7XRlDOHDBGNidN10Oh1esdMO7cxT_nsK70mQjat7c_u7J-f2vEU7IQaL0CGGYwySnnQu6n59su60JQCv0B7htKkBGN551u-ig5xvAIAIwTGjb9AulYJyyfke-nr2Z_IxuXBdzStbpehtFYfH_rvuqmDn3zH9qlyo7OTK1Dvt6znWo802mNXdqH01Jx2ym10M79DrQftsD7Z1H_08P_txellffbv4cvr5qjYM2rmmojO9ISCMYFiS1kiGsSaSN0RoA23HDBXCYg0D6yTXQDsuemZs34pBEkr30aeN7rR0o-2NDcWDV1Nyo053Kmqn_n0JbqWu41phzFsGghWFD1uFFG8Xm2c1umys9zrYuGRFcQOUNQ2RBX3_Ar2JSwrlvkJJTDllEgp19NzSk5e_X12A4w1gUsw52eEJwaAe4lSbONU2zrLwcbMQl-l_7D0NAqKY
Cites_doi 10.1016/j.bbamcr.2016.11.020
10.1093/nar/gkx1064
10.1002/jcp.22439
10.1083/jcb.200808018
10.1111/febs.15453
10.1371/journal.pone.0020512
10.1155/2018/5416923
10.3390/ijms20112767
10.1093/ckj/sfac124
10.3389/fphar.2022.989655
10.1126/science.1105718
10.1083/jcb.200509019
10.3390/cancers14225674
10.1002/env.2730
10.1002/cm.20376
10.1038/s41467-019-08746-5
10.1371/journal.pone.0012445
10.1158/1541-7786.MCR-10-0568
10.1016/j.jgg.2019.11.010
10.3389/fcell.2021.648384
10.1007/s00018-019-03057-w
10.2174/1566524014666140128111347
10.1186/s12943-023-01761-7
10.1073/pnas.2102050118
10.1038/sdata.2018.61
10.1186/s12964-023-01225-x
10.1097/MD.0000000000029743
10.54097/hset.v31i.5152
10.1091/mbc.e05-01-0062
10.1038/cgt.2014.39
10.3390/cells10061330
10.1093/nar/gkx1132
10.3389/fcell.2023.1268922
10.1126/science.1262110
10.1111/mmi.14716
10.1073/pnas.202301299
10.1074/mcp.M900227-MCP200
10.1038/415530a
10.1038/msb4100063
10.1021/acs.jproteome.8b00702
10.1073/pnas.1424171112
10.1016/j.tre.2015.09.011
10.1038/nrg1272
10.1093/nar/gkac1000
10.1186/s12885-022-09370-1
10.1093/bioinformatics/btad490
10.1016/j.cell.2004.09.008
10.2174/1381612826666200917145228
10.1093/nar/28.1.27
10.1126/science.1105891
10.1093/bioinformatics/btm554
10.1007/s11269-016-1245-6
10.1093/nar/gkaa1106
10.1101/gr.1239303
10.1038/msb4100179
10.1158/0008-5472.CAN-11-0846
10.1371/journal.pone.0049766
10.1016/j.cell.2011.11.025
10.1093/database/baab069
10.1038/35077219
10.1007/s00521-020-04790-1
10.1038/srep11459
10.1073/pnas.1818013116
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
The Author(s) 2024. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
– notice: The Author(s) 2024. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/bioadv/vbae200
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2635-0041
ExternalDocumentID PMC11684074
39736966
10_1093_bioadv_vbae200
10.1093/bioadv/vbae200
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 0R~
ABDBF
ABEJV
ABXVV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
GROUPED_DOAJ
M~E
OK1
RPM
TOX
ZCN
AAYXX
ABGNP
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
PQGLB
NPM
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c408t-37bcdc207c741928c9411a296527ac08b4c377e1a0f4b96a03b67d4ced87f9233
IEDL.DBID BENPR
ISSN 2635-0041
IngestDate Thu Aug 21 18:34:45 EDT 2025
Thu Sep 04 20:56:02 EDT 2025
Fri Jul 25 11:39:40 EDT 2025
Wed Feb 19 02:03:12 EST 2025
Wed Sep 10 06:00:45 EDT 2025
Wed Jan 22 08:16:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-37bcdc207c741928c9411a296527ac08b4c377e1a0f4b96a03b67d4ced87f9233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Graham M Hughes and Jeremy C Simpson authors contributed equally
ORCID 0000-0002-7956-7805
0000-0003-3088-345X
OpenAccessLink https://www.proquest.com/docview/3191363490?pq-origsite=%requestingapplication%
PMID 39736966
PQID 3191363490
PQPubID 7215308
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684074
proquest_miscellaneous_3150345529
proquest_journals_3191363490
pubmed_primary_39736966
crossref_primary_10_1093_bioadv_vbae200
oup_primary_10_1093_bioadv_vbae200
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics advances
PublicationTitleAlternate Bioinform Adv
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hao (2025061901532531000_vbae200-B30) 2019; 20
Mi (2025061901532531000_vbae200-B58) 2021; 49
Peng (2025061901532531000_vbae200-B68) 2022; 13
Doncheva (2025061901532531000_vbae200-B19) 2019; 18
Li (2025061901532531000_vbae200-B45) 2022; 14
Homma (2025061901532531000_vbae200-B34) 2021; 288
Jackson (2025061901532531000_vbae200-B36) 2021; 2021
Misra (2025061901532531000_vbae200-B60) 2012; 7
Ostlund (2025061901532531000_vbae200-B64) 2010; 9
Mendoza (2025061901532531000_vbae200-B57) 2014; 14
Margiotta (2025061901532531000_vbae200-B55) 2017; 1864
Ardlie (2025061901532531000_vbae200-B3) 2015; 348
Karatzas (2025061901532531000_vbae200-B41) 2023; 39
Liu (2025061901532531000_vbae200-B48) 2014; 21
Fabregat (2025061901532531000_vbae200-B23) 2018; 46
van't Veer (2025061901532531000_vbae200-B91) 2002; 415
Tang (2025061901532531000_vbae200-B87) 2009; 66
Pinar (2025061901532531000_vbae200-B70) 2021; 116
Zhang (2025061901532531000_vbae200-B111) 2023; 31
Zitnik (2025061901532531000_vbae200-B115) 2019; 116
del Sol (2025061901532531000_vbae200-B82) 2006; 2
Pellinen (2025061901532531000_vbae200-B67) 2006; 173
Ruan (2025061901532531000_vbae200-B75) 2023; 22
Wang (2025061901532531000_vbae200-B95) 2018; 5
Zhao (2025061901532531000_vbae200-B113) 2019; 46
Argenzio (2025061901532531000_vbae200-B4) 2014; 127
Vestre (2025061901532531000_vbae200-B92) 2019; 76
Abdelazeem (2025061901532531000_vbae200-B1) 2022; 101
Tsunedomi (2025061901532531000_vbae200-B89) 2022; 22
Szklarczyk (2025061901532531000_vbae200-B85) 2023; 51
Kitano (2025061901532531000_vbae200-B42) 2007; 3
Maharati (2025061901532531000_vbae200-B54) 2023; 21
Yao (2025061901532531000_vbae200-B105) 2011; 9
Satopaa (2025061901532531000_vbae200-B77) 2011
Assenov (2025061901532531000_vbae200-B5) 2008; 24
Stelling (2025061901532531000_vbae200-B83) 2004; 118
Li (2025061901532531000_vbae200-B46) 2015; 112
Shannon (2025061901532531000_vbae200-B78) 2003; 13
Jin (2025061901532531000_vbae200-B38) 2021; 9
Luo (2025061901532531000_vbae200-B51) 2021; 27
Zhao (2025061901532531000_vbae200-B112) 2015; 5
Brunel (2025061901532531000_vbae200-B9) 2021; 10
Phi (2025061901532531000_vbae200-B69) 2018; 2018
Raser (2025061901532531000_vbae200-B72) 2005; 309
Sinka (2025061901532531000_vbae200-B80) 2008; 183
Rhim (2025061901532531000_vbae200-B73) 2012; 148
Goh (2025061901532531000_vbae200-B26) 2002; 99
Herrera (2025061901532531000_vbae200-B32) 2016; 30
Broido (2025061901532531000_vbae200-B8) 2019; 10
Ohashi (2025061901532531000_vbae200-B63) 2011; 71
Ozdamar (2025061901532531000_vbae200-B65) 2005; 307
Gurkan (2025061901532531000_vbae200-B29) 2005; 16
Rosen (2025061901532531000_vbae200-B74) 2023
Deshmukh (2025061901532531000_vbae200-B17) 2021; 118
Lim (2025061901532531000_vbae200-B47) 2022; 15
Dunn (2025061901532531000_vbae200-B21) 2016; 90
Kong (2025061901532531000_vbae200-B43) 2010; 5
Neumann (2025061901532531000_vbae200-B61) 2023; 11
Taipale (2025061901532531000_vbae200-B86) 2001; 411
Kanehisa (2025061901532531000_vbae200-B40) 2000; 28
Barabási (2025061901532531000_vbae200-B6) 2004; 5
Slenter (2025061901532531000_vbae200-B81) 2018; 46
Mirzasoleiman (2025061901532531000_vbae200-B59) 2011; 6
Caja (2025061901532531000_vbae200-B10) 2011; 226
Drakopoulos (2025061901532531000_vbae200-B20) 2020; 32
Mazziotta (2025061901532531000_vbae200-B56) 2022; 33
References_xml – volume: 1864
  start-page: 367
  year: 2017
  ident: 2025061901532531000_vbae200-B55
  article-title: Rab7a regulates cell migration through Rac1 and vimentin
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2016.11.020
– volume: 46
  start-page: D661
  year: 2018
  ident: 2025061901532531000_vbae200-B81
  article-title: WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1064
– volume: 226
  start-page: 1214
  year: 2011
  ident: 2025061901532531000_vbae200-B10
  article-title: The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells
  publication-title: Journal of Cellular Physiology
  doi: 10.1002/jcp.22439
– volume: 183
  start-page: 607
  year: 2008
  ident: 2025061901532531000_vbae200-B80
  article-title: Golgi coiled-coil proteins contain multiple binding sites for rab family G proteins
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200808018
– volume: 288
  start-page: 36
  year: 2021
  ident: 2025061901532531000_vbae200-B34
  article-title: Rab family of small GTPases: an updated view on their regulation and functions
  publication-title: Febs J
  doi: 10.1111/febs.15453
– volume: 6
  start-page: e20512
  year: 2011
  ident: 2025061901532531000_vbae200-B59
  article-title: Failure tolerance of motif structure in biological networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020512
– volume: 2018
  start-page: e5416923
  year: 2018
  ident: 2025061901532531000_vbae200-B69
  article-title: Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment
  publication-title: Stem Cells Int
  doi: 10.1155/2018/5416923
– year: 2011
  ident: 2025061901532531000_vbae200-B77
– volume: 20
  start-page: 2767
  year: 2019
  ident: 2025061901532531000_vbae200-B30
  article-title: TGF-β-mediated Epithelial-Mesenchymal transition and cancer metastasis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20112767
– volume: 15
  start-page: 1770
  year: 2022
  ident: 2025061901532531000_vbae200-B47
  article-title: The incidence of cancer recurrence and new cancer following commencement of dialysis
  publication-title: Clin Kidney J
  doi: 10.1093/ckj/sfac124
– volume: 13
  start-page: 989655
  year: 2022
  ident: 2025061901532531000_vbae200-B68
  article-title: RAB6B is a potential prognostic marker and correlated with the remolding of tumor immune microenvironment in hepatocellular carcinoma
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.989655
– volume: 307
  start-page: 1603
  year: 2005
  ident: 2025061901532531000_vbae200-B65
  article-title: Regulation of the polarity protein Par6 by TGFß receptors controls epithelial cell plasticity
  publication-title: Science
  doi: 10.1126/science.1105718
– volume: 173
  start-page: 767
  year: 2006
  ident: 2025061901532531000_vbae200-B67
  article-title: Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200509019
– volume: 14
  start-page: 5674
  year: 2022
  ident: 2025061901532531000_vbae200-B45
  article-title: Pan-Cancer analysis identifies tumor cell surface targets for CAR-T cell therapies and antibody drug conjugates
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14225674
– volume: 33
  start-page: e2730
  year: 2022
  ident: 2025061901532531000_vbae200-B56
  article-title: Normalization methods for spatio-temporal analysis of environmental performance: revisiting the min–max method
  publication-title: Environmetrics
  doi: 10.1002/env.2730
– volume: 66
  start-page: 365
  year: 2009
  ident: 2025061901532531000_vbae200-B87
  article-title: Rabs and cancer cell motility
  publication-title: Cell Motil Cytoskeleton
  doi: 10.1002/cm.20376
– volume: 10
  start-page: 1017
  year: 2019
  ident: 2025061901532531000_vbae200-B8
  article-title: Scale-free networks are rare
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08746-5
– volume: 5
  start-page: e12445
  year: 2010
  ident: 2025061901532531000_vbae200-B43
  article-title: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012445
– volume: 9
  start-page: 1608
  year: 2011
  ident: 2025061901532531000_vbae200-B105
  article-title: Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-10-0568
– volume: 46
  start-page: 595
  year: 2019
  ident: 2025061901532531000_vbae200-B113
  article-title: dbEMT 2.0: an updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2019.11.010
– volume: 9
  start-page: 648384
  year: 2021
  ident: 2025061901532531000_vbae200-B38
  article-title: Rab GTPases: central coordinators of membrane trafficking in cancer
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.648384
– volume: 76
  start-page: 2593
  year: 2019
  ident: 2025061901532531000_vbae200-B92
  article-title: Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-019-03057-w
– volume: 14
  start-page: 235
  year: 2014
  ident: 2025061901532531000_vbae200-B57
  article-title: On the role of Rab5 in cell migration
  publication-title: Curr Mol Med
  doi: 10.2174/1566524014666140128111347
– volume: 22
  start-page: 60
  year: 2023
  ident: 2025061901532531000_vbae200-B75
  article-title: Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment
  publication-title: Mol Cancer
  doi: 10.1186/s12943-023-01761-7
– volume: 118
  start-page: e2102050118
  year: 2021
  ident: 2025061901532531000_vbae200-B17
  article-title: Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2102050118
– volume: 5
  start-page: 180061
  year: 2018
  ident: 2025061901532531000_vbae200-B95
  article-title: Unifying cancer and normal RNA sequencing data from different sources
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.61
– volume: 21
  start-page: 201
  year: 2023
  ident: 2025061901532531000_vbae200-B54
  article-title: PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-023-01225-x
– volume: 101
  start-page: e29743
  year: 2022
  ident: 2025061901532531000_vbae200-B1
  article-title: Incidence and comparative prognosis of cancers with metastasis to noncommon sites: a population-based study
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000029743
– volume: 31
  start-page: 263
  year: 2023
  ident: 2025061901532531000_vbae200-B111
  article-title: Application of random walks in data processing
  publication-title: Highlights in Science, Engineering and Technology
  doi: 10.54097/hset.v31i.5152
– volume: 16
  start-page: 3847
  year: 2005
  ident: 2025061901532531000_vbae200-B29
  article-title: Large-Scale profiling of rab GTPase trafficking networks: the membrome
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e05-01-0062
– volume: 21
  start-page: 364
  year: 2014
  ident: 2025061901532531000_vbae200-B48
  article-title: Notch3 is important for TGF-β-induced epithelial–mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2014.39
– volume: 10
  start-page: 1330
  year: 2021
  ident: 2025061901532531000_vbae200-B9
  article-title: Autophagy and extracellular vesicles, connected to rabGTPase family, support aggressiveness in cancer stem cells
  publication-title: Cells
  doi: 10.3390/cells10061330
– volume: 46
  start-page: D649
  year: 2018
  ident: 2025061901532531000_vbae200-B23
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx1132
– volume: 11
  start-page: 1268922
  year: 2023
  ident: 2025061901532531000_vbae200-B61
  article-title: A rab-bit hole: rab40 GTPases as new regulators of the actin cytoskeleton and cell migration
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2023.1268922
– volume: 348
  start-page: 648
  year: 2015
  ident: 2025061901532531000_vbae200-B3
  article-title: The Genotype-Tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans
  publication-title: Science
  doi: 10.1126/science.1262110
– volume: 116
  start-page: 53
  year: 2021
  ident: 2025061901532531000_vbae200-B70
  article-title: The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi)
  publication-title: Molecular Microbiology
  doi: 10.1111/mmi.14716
– volume: 99
  start-page: 12583
  year: 2002
  ident: 2025061901532531000_vbae200-B26
  article-title: Classification of scale-free networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.202301299
– volume: 9
  start-page: 648
  year: 2010
  ident: 2025061901532531000_vbae200-B64
  article-title: Network-based identification of novel cancer genes
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M900227-MCP200
– volume: 415
  start-page: 530
  year: 2002
  ident: 2025061901532531000_vbae200-B91
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 127
  start-page: 5189
  year: 2014
  ident: 2025061901532531000_vbae200-B4
  article-title: CLIC4 regulates cell adhesion and β1 integrin trafficking
  publication-title: J Cell Sci
– volume: 2
  start-page: 2006.0019
  year: 2006
  ident: 2025061901532531000_vbae200-B82
  article-title: Residues crucial for maintaining short paths in network communication mediate signaling in proteins
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100063
– volume: 18
  start-page: 623
  year: 2019
  ident: 2025061901532531000_vbae200-B19
  article-title: Cytoscape StringApp: network analysis and visualization of proteomics data
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00702
– volume: 112
  start-page: 1839
  year: 2015
  ident: 2025061901532531000_vbae200-B46
  article-title: Suppression of cancer relapse and metastasis by inhibiting cancer stemness
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1424171112
– volume: 90
  start-page: 39
  year: 2016
  ident: 2025061901532531000_vbae200-B21
  article-title: Increasing the resilience of air traffic networks using a network graph theory approach
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2015.09.011
– volume: 5
  start-page: 101
  year: 2004
  ident: 2025061901532531000_vbae200-B6
  article-title: Network biology: understanding the cell’s functional organization
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1272
– volume: 51
  start-page: D638
  year: 2023
  ident: 2025061901532531000_vbae200-B85
  article-title: The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac1000
– volume: 22
  start-page: 260
  year: 2022
  ident: 2025061901532531000_vbae200-B89
  article-title: Elevated expression of RAB3B plays important roles in chemoresistance and metastatic potential of hepatoma cells
  publication-title: BMC Cancer
  doi: 10.1186/s12885-022-09370-1
– volume: 39
  start-page: btad490
  year: 2023
  ident: 2025061901532531000_vbae200-B41
  article-title: Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad490
– volume: 118
  start-page: 675
  year: 2004
  ident: 2025061901532531000_vbae200-B83
  article-title: Robustness of cellular functions
  publication-title: Cell
  doi: 10.1016/j.cell.2004.09.008
– volume: 27
  start-page: 989
  year: 2021
  ident: 2025061901532531000_vbae200-B51
  article-title: Expression of Rab3b in human glioma: influence on cell proliferation and apoptosis
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612826666200917145228
– volume-title: TNM classification. StatPearls
  year: 2023
  ident: 2025061901532531000_vbae200-B74
– volume: 28
  start-page: 27
  year: 2000
  ident: 2025061901532531000_vbae200-B40
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/28.1.27
– volume: 309
  start-page: 2010
  year: 2005
  ident: 2025061901532531000_vbae200-B72
  article-title: Noise in gene expression: origins, consequences, and control
  publication-title: Science
  doi: 10.1126/science.1105891
– volume: 24
  start-page: 282
  year: 2008
  ident: 2025061901532531000_vbae200-B5
  article-title: Computing topological parameters of biological networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm554
– volume: 30
  start-page: 1685
  year: 2016
  ident: 2025061901532531000_vbae200-B32
  article-title: A Graph-Theoretic framework for assessing the resilience of sectorised water distribution networks
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-016-1245-6
– volume: 49
  start-page: D394
  year: 2021
  ident: 2025061901532531000_vbae200-B58
  article-title: PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1106
– volume: 13
  start-page: 2498
  year: 2003
  ident: 2025061901532531000_vbae200-B78
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 3
  start-page: 137
  year: 2007
  ident: 2025061901532531000_vbae200-B42
  article-title: Towards a theory of biological robustness
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100179
– volume: 71
  start-page: 6836
  year: 2011
  ident: 2025061901532531000_vbae200-B63
  article-title: A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT competent cells that express the ZEB transcription factors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0846
– volume: 7
  start-page: e49766
  year: 2012
  ident: 2025061901532531000_vbae200-B60
  article-title: Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). chen WN (ed
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049766
– volume: 148
  start-page: 349
  year: 2012
  ident: 2025061901532531000_vbae200-B73
  article-title: EMT and dissemination precede pancreatic tumor formation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.025
– volume: 2021
  start-page: baab069
  year: 2021
  ident: 2025061901532531000_vbae200-B36
  article-title: OBO foundry in 2021: operationalizing open data principles to evaluate ontologies
  publication-title: Database
  doi: 10.1093/database/baab069
– volume: 411
  start-page: 349
  year: 2001
  ident: 2025061901532531000_vbae200-B86
  article-title: The hedgehog and wnt signalling pathways in cancer
  publication-title: Nature
  doi: 10.1038/35077219
– volume: 32
  start-page: 4161
  year: 2020
  ident: 2025061901532531000_vbae200-B20
  article-title: Evaluating graph resilience with tensor stack networks: a keras implementation
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-020-04790-1
– volume: 5
  start-page: 11459
  year: 2015
  ident: 2025061901532531000_vbae200-B112
  article-title: dbEMT: an epithelial-mesenchymal transition associated gene resource
  publication-title: Sci Rep
  doi: 10.1038/srep11459
– volume: 116
  start-page: 4426
  year: 2019
  ident: 2025061901532531000_vbae200-B115
  article-title: Evolution of resilience in protein interactomes across the tree of life
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1818013116
SSID ssj0002776143
Score 2.2780447
Snippet Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene...
Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a...
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage vbae200
SubjectTerms Cancer
Gene families
Mammalian cells
Membrane trafficking
Metastases
Original
Therapeutic applications
Tumors
Title Exploring the role of the Rab network in epithelial-to-mesenchymal transition
URI https://www.ncbi.nlm.nih.gov/pubmed/39736966
https://www.proquest.com/docview/3191363490
https://www.proquest.com/docview/3150345529
https://pubmed.ncbi.nlm.nih.gov/PMC11684074
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1dS9xAcLBKoS-l38baI0qhT8sl-5k8lSqKFLRFFO4t7E42eKDJWaPgv3c2ycW7PrQvS2CXJMzMzvcHwFepvEQUiqGoBJOu4iwnwcOM1ZUuE6Q1GIqnZ_rkUv6cqdngcLsb0iqXPLFj1GWDwUc-JVJJhRYyT74vblmYGhWiq8MIjRewRSw4IzrfOjg6-30-elm4ITNdirFbo5i6eWPLh-mDs56HsrYVabRW4baiaP6dL7kigI7fwOtBc4x_9Kh-Cxu-fgcv-1mSj-_hdMymi0mni0PWYNxU3fO5dXHdp3vH8zr2i1CHcU2Ex9qG3YTyI7x6vKF3t0FwdTlcH-Dy-Oji8IQNsxIYyiRriU84LJEnBk2I62aYyzS1PNeKG4tJ5iQKY3xqk0q6XNtEOG1Kib7MTEVKnvgIm3VT-22IDffKCpErj1IqRKfRpAo96V6ODFofwbclzIpF3xKj6EPZouihWwzQjWCfQPrfQ7tLiBfD_bkrnrEdwd64TZQfwhm29s19OKMSIZXieQSfegSNnyItKwwq1BFka6gbD4Su2us79fyq666dpqH_jZE7__6vz_CKh1HAnTdmFzbbP_f-C-knrZsMRDjp7PtJ50Ci9eLX7AnNcewL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBQwCcbI28SNODgjxaLWl3RWqWqm3YE8cdaU22dK0aP8UvxE7L3Y5wKmXKJItJxrPeD7PE-CNkFYgckmRF5wKUzCaOsVDlY6LOA_RPf1FcTqLJ0fi67E83oBffS6MD6vsz8TmoM4r9DbysWOViMdcpOGHxTn1XaO8d7VvodGyxZ5d_nRXtov3u1_c_r5lbGf78POEdl0FKIowqZ1EGcyRhQqV94AmmIoo0iyNJVMaw8QI5ErZSIeFMGmsQ25ilQu0eaIKB4e4W_cGbAqf0TqCzU_bs28Hg1WHKeX0HR-qQ_KxmVc6vxpfGW2ZT6Nb0X5rGXUrwPbv-MwVhbdzF-50SJV8bFnrHmzY8j7cbHtXLh_AdIjeIw5DEh-lSKqieT_QhpRteDmZl8QufN7HqWN0Wlf0zKc74cnyzK1de0XZxIw9hKNroeIjGJVVaZ8AUcxKzXkqLQohEU2MKpJoHdYz7gJtA3jX0yxbtCU4stZ1zrOWullH3QBeO5L-d9JWT_Gsk9eL7A93BfBqGHaS5t0nurTVpZ8jQy6kZGkAj9sNGj7lUJ1vjBgHkKxt3TDBV_FeHynnJ0017yjy9XaUePrv_3oJtyaH0_1sf3e29wxuM9-GuLEEbcGo_nFpnztsVJsXHUMS-H7dMvAblNIk7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+role+of+the+Rab+network+in+epithelial-to-mesenchymal+transition&rft.jtitle=Bioinformatics+advances&rft.au=Jaygude%2C+Unmani&rft.au=Hughes%2C+Graham+M&rft.au=Simpson%2C+Jeremy+C&rft.date=2025&rft.pub=Oxford+University+Press&rft.eissn=2635-0041&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fbioadv%2Fvbae200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon