Exploring the role of the Rab network in epithelial-to-mesenchymal transition
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across th...
Saved in:
Published in | Bioinformatics advances Vol. 5; no. 1; p. vbae200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2635-0041 2635-0041 |
DOI | 10.1093/bioadv/vbae200 |
Cover
Abstract | Motivation
Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.
Results
We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest.
Availability and implementation
Source code for resnet is freely available at https://github.com/Unmani199/resnet |
---|---|
AbstractList | Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.MotivationRab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest.ResultsWe examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest.Source code for resnet is freely available at https://github.com/Unmani199/resnet.Availability and implementationSource code for resnet is freely available at https://github.com/Unmani199/resnet. Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, , assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further studies are needed to confirm their role as predictive markers of cancer metastasis. The use of within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Source code for is freely available at https://github.com/Unmani199/resnet. Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet |
Author | Hughes, Graham M Simpson, Jeremy C Jaygude, Unmani |
Author_xml | – sequence: 1 givenname: Unmani surname: Jaygude fullname: Jaygude, Unmani – sequence: 2 givenname: Graham M orcidid: 0000-0003-3088-345X surname: Hughes fullname: Hughes, Graham M email: g.hughes@ucd.ie – sequence: 3 givenname: Jeremy C orcidid: 0000-0002-7956-7805 surname: Simpson fullname: Simpson, Jeremy C email: jeremy.simpson@ucd.ie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39736966$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1PFTEUxRuDEUS2LMkkbnQxcPsx7XRlDOHDBGNidN10Oh1esdMO7cxT_nsK70mQjat7c_u7J-f2vEU7IQaL0CGGYwySnnQu6n59su60JQCv0B7htKkBGN551u-ig5xvAIAIwTGjb9AulYJyyfke-nr2Z_IxuXBdzStbpehtFYfH_rvuqmDn3zH9qlyo7OTK1Dvt6znWo802mNXdqH01Jx2ym10M79DrQftsD7Z1H_08P_txellffbv4cvr5qjYM2rmmojO9ISCMYFiS1kiGsSaSN0RoA23HDBXCYg0D6yTXQDsuemZs34pBEkr30aeN7rR0o-2NDcWDV1Nyo053Kmqn_n0JbqWu41phzFsGghWFD1uFFG8Xm2c1umys9zrYuGRFcQOUNQ2RBX3_Ar2JSwrlvkJJTDllEgp19NzSk5e_X12A4w1gUsw52eEJwaAe4lSbONU2zrLwcbMQl-l_7D0NAqKY |
Cites_doi | 10.1016/j.bbamcr.2016.11.020 10.1093/nar/gkx1064 10.1002/jcp.22439 10.1083/jcb.200808018 10.1111/febs.15453 10.1371/journal.pone.0020512 10.1155/2018/5416923 10.3390/ijms20112767 10.1093/ckj/sfac124 10.3389/fphar.2022.989655 10.1126/science.1105718 10.1083/jcb.200509019 10.3390/cancers14225674 10.1002/env.2730 10.1002/cm.20376 10.1038/s41467-019-08746-5 10.1371/journal.pone.0012445 10.1158/1541-7786.MCR-10-0568 10.1016/j.jgg.2019.11.010 10.3389/fcell.2021.648384 10.1007/s00018-019-03057-w 10.2174/1566524014666140128111347 10.1186/s12943-023-01761-7 10.1073/pnas.2102050118 10.1038/sdata.2018.61 10.1186/s12964-023-01225-x 10.1097/MD.0000000000029743 10.54097/hset.v31i.5152 10.1091/mbc.e05-01-0062 10.1038/cgt.2014.39 10.3390/cells10061330 10.1093/nar/gkx1132 10.3389/fcell.2023.1268922 10.1126/science.1262110 10.1111/mmi.14716 10.1073/pnas.202301299 10.1074/mcp.M900227-MCP200 10.1038/415530a 10.1038/msb4100063 10.1021/acs.jproteome.8b00702 10.1073/pnas.1424171112 10.1016/j.tre.2015.09.011 10.1038/nrg1272 10.1093/nar/gkac1000 10.1186/s12885-022-09370-1 10.1093/bioinformatics/btad490 10.1016/j.cell.2004.09.008 10.2174/1381612826666200917145228 10.1093/nar/28.1.27 10.1126/science.1105891 10.1093/bioinformatics/btm554 10.1007/s11269-016-1245-6 10.1093/nar/gkaa1106 10.1101/gr.1239303 10.1038/msb4100179 10.1158/0008-5472.CAN-11-0846 10.1371/journal.pone.0049766 10.1016/j.cell.2011.11.025 10.1093/database/baab069 10.1038/35077219 10.1007/s00521-020-04790-1 10.1038/srep11459 10.1073/pnas.1818013116 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. The Author(s) 2024. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. – notice: The Author(s) 2024. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/bioadv/vbae200 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2635-0041 |
ExternalDocumentID | PMC11684074 39736966 10_1093_bioadv_vbae200 10.1093/bioadv/vbae200 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 0R~ ABDBF ABEJV ABXVV ALMA_UNASSIGNED_HOLDINGS AMNDL GROUPED_DOAJ M~E OK1 RPM TOX ZCN AAYXX ABGNP AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY PQGLB NPM 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c408t-37bcdc207c741928c9411a296527ac08b4c377e1a0f4b96a03b67d4ced87f9233 |
IEDL.DBID | BENPR |
ISSN | 2635-0041 |
IngestDate | Thu Aug 21 18:34:45 EDT 2025 Thu Sep 04 20:56:02 EDT 2025 Fri Jul 25 11:39:40 EDT 2025 Wed Feb 19 02:03:12 EST 2025 Wed Sep 10 06:00:45 EDT 2025 Wed Jan 22 08:16:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-37bcdc207c741928c9411a296527ac08b4c377e1a0f4b96a03b67d4ced87f9233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Graham M Hughes and Jeremy C Simpson authors contributed equally |
ORCID | 0000-0002-7956-7805 0000-0003-3088-345X |
OpenAccessLink | https://www.proquest.com/docview/3191363490?pq-origsite=%requestingapplication% |
PMID | 39736966 |
PQID | 3191363490 |
PQPubID | 7215308 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684074 proquest_miscellaneous_3150345529 proquest_journals_3191363490 pubmed_primary_39736966 crossref_primary_10_1093_bioadv_vbae200 oup_primary_10_1093_bioadv_vbae200 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Bioinformatics advances |
PublicationTitleAlternate | Bioinform Adv |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hao (2025061901532531000_vbae200-B30) 2019; 20 Mi (2025061901532531000_vbae200-B58) 2021; 49 Peng (2025061901532531000_vbae200-B68) 2022; 13 Doncheva (2025061901532531000_vbae200-B19) 2019; 18 Li (2025061901532531000_vbae200-B45) 2022; 14 Homma (2025061901532531000_vbae200-B34) 2021; 288 Jackson (2025061901532531000_vbae200-B36) 2021; 2021 Misra (2025061901532531000_vbae200-B60) 2012; 7 Ostlund (2025061901532531000_vbae200-B64) 2010; 9 Mendoza (2025061901532531000_vbae200-B57) 2014; 14 Margiotta (2025061901532531000_vbae200-B55) 2017; 1864 Ardlie (2025061901532531000_vbae200-B3) 2015; 348 Karatzas (2025061901532531000_vbae200-B41) 2023; 39 Liu (2025061901532531000_vbae200-B48) 2014; 21 Fabregat (2025061901532531000_vbae200-B23) 2018; 46 van't Veer (2025061901532531000_vbae200-B91) 2002; 415 Tang (2025061901532531000_vbae200-B87) 2009; 66 Pinar (2025061901532531000_vbae200-B70) 2021; 116 Zhang (2025061901532531000_vbae200-B111) 2023; 31 Zitnik (2025061901532531000_vbae200-B115) 2019; 116 del Sol (2025061901532531000_vbae200-B82) 2006; 2 Pellinen (2025061901532531000_vbae200-B67) 2006; 173 Ruan (2025061901532531000_vbae200-B75) 2023; 22 Wang (2025061901532531000_vbae200-B95) 2018; 5 Zhao (2025061901532531000_vbae200-B113) 2019; 46 Argenzio (2025061901532531000_vbae200-B4) 2014; 127 Vestre (2025061901532531000_vbae200-B92) 2019; 76 Abdelazeem (2025061901532531000_vbae200-B1) 2022; 101 Tsunedomi (2025061901532531000_vbae200-B89) 2022; 22 Szklarczyk (2025061901532531000_vbae200-B85) 2023; 51 Kitano (2025061901532531000_vbae200-B42) 2007; 3 Maharati (2025061901532531000_vbae200-B54) 2023; 21 Yao (2025061901532531000_vbae200-B105) 2011; 9 Satopaa (2025061901532531000_vbae200-B77) 2011 Assenov (2025061901532531000_vbae200-B5) 2008; 24 Stelling (2025061901532531000_vbae200-B83) 2004; 118 Li (2025061901532531000_vbae200-B46) 2015; 112 Shannon (2025061901532531000_vbae200-B78) 2003; 13 Jin (2025061901532531000_vbae200-B38) 2021; 9 Luo (2025061901532531000_vbae200-B51) 2021; 27 Zhao (2025061901532531000_vbae200-B112) 2015; 5 Brunel (2025061901532531000_vbae200-B9) 2021; 10 Phi (2025061901532531000_vbae200-B69) 2018; 2018 Raser (2025061901532531000_vbae200-B72) 2005; 309 Sinka (2025061901532531000_vbae200-B80) 2008; 183 Rhim (2025061901532531000_vbae200-B73) 2012; 148 Goh (2025061901532531000_vbae200-B26) 2002; 99 Herrera (2025061901532531000_vbae200-B32) 2016; 30 Broido (2025061901532531000_vbae200-B8) 2019; 10 Ohashi (2025061901532531000_vbae200-B63) 2011; 71 Ozdamar (2025061901532531000_vbae200-B65) 2005; 307 Gurkan (2025061901532531000_vbae200-B29) 2005; 16 Rosen (2025061901532531000_vbae200-B74) 2023 Deshmukh (2025061901532531000_vbae200-B17) 2021; 118 Lim (2025061901532531000_vbae200-B47) 2022; 15 Dunn (2025061901532531000_vbae200-B21) 2016; 90 Kong (2025061901532531000_vbae200-B43) 2010; 5 Neumann (2025061901532531000_vbae200-B61) 2023; 11 Taipale (2025061901532531000_vbae200-B86) 2001; 411 Kanehisa (2025061901532531000_vbae200-B40) 2000; 28 Barabási (2025061901532531000_vbae200-B6) 2004; 5 Slenter (2025061901532531000_vbae200-B81) 2018; 46 Mirzasoleiman (2025061901532531000_vbae200-B59) 2011; 6 Caja (2025061901532531000_vbae200-B10) 2011; 226 Drakopoulos (2025061901532531000_vbae200-B20) 2020; 32 Mazziotta (2025061901532531000_vbae200-B56) 2022; 33 |
References_xml | – volume: 1864 start-page: 367 year: 2017 ident: 2025061901532531000_vbae200-B55 article-title: Rab7a regulates cell migration through Rac1 and vimentin publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2016.11.020 – volume: 46 start-page: D661 year: 2018 ident: 2025061901532531000_vbae200-B81 article-title: WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1064 – volume: 226 start-page: 1214 year: 2011 ident: 2025061901532531000_vbae200-B10 article-title: The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells publication-title: Journal of Cellular Physiology doi: 10.1002/jcp.22439 – volume: 183 start-page: 607 year: 2008 ident: 2025061901532531000_vbae200-B80 article-title: Golgi coiled-coil proteins contain multiple binding sites for rab family G proteins publication-title: J Cell Biol doi: 10.1083/jcb.200808018 – volume: 288 start-page: 36 year: 2021 ident: 2025061901532531000_vbae200-B34 article-title: Rab family of small GTPases: an updated view on their regulation and functions publication-title: Febs J doi: 10.1111/febs.15453 – volume: 6 start-page: e20512 year: 2011 ident: 2025061901532531000_vbae200-B59 article-title: Failure tolerance of motif structure in biological networks publication-title: PLoS One doi: 10.1371/journal.pone.0020512 – volume: 2018 start-page: e5416923 year: 2018 ident: 2025061901532531000_vbae200-B69 article-title: Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment publication-title: Stem Cells Int doi: 10.1155/2018/5416923 – year: 2011 ident: 2025061901532531000_vbae200-B77 – volume: 20 start-page: 2767 year: 2019 ident: 2025061901532531000_vbae200-B30 article-title: TGF-β-mediated Epithelial-Mesenchymal transition and cancer metastasis publication-title: Int J Mol Sci doi: 10.3390/ijms20112767 – volume: 15 start-page: 1770 year: 2022 ident: 2025061901532531000_vbae200-B47 article-title: The incidence of cancer recurrence and new cancer following commencement of dialysis publication-title: Clin Kidney J doi: 10.1093/ckj/sfac124 – volume: 13 start-page: 989655 year: 2022 ident: 2025061901532531000_vbae200-B68 article-title: RAB6B is a potential prognostic marker and correlated with the remolding of tumor immune microenvironment in hepatocellular carcinoma publication-title: Front Pharmacol doi: 10.3389/fphar.2022.989655 – volume: 307 start-page: 1603 year: 2005 ident: 2025061901532531000_vbae200-B65 article-title: Regulation of the polarity protein Par6 by TGFß receptors controls epithelial cell plasticity publication-title: Science doi: 10.1126/science.1105718 – volume: 173 start-page: 767 year: 2006 ident: 2025061901532531000_vbae200-B67 article-title: Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins publication-title: J Cell Biol doi: 10.1083/jcb.200509019 – volume: 14 start-page: 5674 year: 2022 ident: 2025061901532531000_vbae200-B45 article-title: Pan-Cancer analysis identifies tumor cell surface targets for CAR-T cell therapies and antibody drug conjugates publication-title: Cancers (Basel) doi: 10.3390/cancers14225674 – volume: 33 start-page: e2730 year: 2022 ident: 2025061901532531000_vbae200-B56 article-title: Normalization methods for spatio-temporal analysis of environmental performance: revisiting the min–max method publication-title: Environmetrics doi: 10.1002/env.2730 – volume: 66 start-page: 365 year: 2009 ident: 2025061901532531000_vbae200-B87 article-title: Rabs and cancer cell motility publication-title: Cell Motil Cytoskeleton doi: 10.1002/cm.20376 – volume: 10 start-page: 1017 year: 2019 ident: 2025061901532531000_vbae200-B8 article-title: Scale-free networks are rare publication-title: Nat Commun doi: 10.1038/s41467-019-08746-5 – volume: 5 start-page: e12445 year: 2010 ident: 2025061901532531000_vbae200-B43 article-title: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells publication-title: PLoS One doi: 10.1371/journal.pone.0012445 – volume: 9 start-page: 1608 year: 2011 ident: 2025061901532531000_vbae200-B105 article-title: Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-10-0568 – volume: 46 start-page: 595 year: 2019 ident: 2025061901532531000_vbae200-B113 article-title: dbEMT 2.0: an updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis publication-title: J Genet Genomics doi: 10.1016/j.jgg.2019.11.010 – volume: 9 start-page: 648384 year: 2021 ident: 2025061901532531000_vbae200-B38 article-title: Rab GTPases: central coordinators of membrane trafficking in cancer publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.648384 – volume: 76 start-page: 2593 year: 2019 ident: 2025061901532531000_vbae200-B92 article-title: Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity publication-title: Cell Mol Life Sci doi: 10.1007/s00018-019-03057-w – volume: 14 start-page: 235 year: 2014 ident: 2025061901532531000_vbae200-B57 article-title: On the role of Rab5 in cell migration publication-title: Curr Mol Med doi: 10.2174/1566524014666140128111347 – volume: 22 start-page: 60 year: 2023 ident: 2025061901532531000_vbae200-B75 article-title: Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment publication-title: Mol Cancer doi: 10.1186/s12943-023-01761-7 – volume: 118 start-page: e2102050118 year: 2021 ident: 2025061901532531000_vbae200-B17 article-title: Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2102050118 – volume: 5 start-page: 180061 year: 2018 ident: 2025061901532531000_vbae200-B95 article-title: Unifying cancer and normal RNA sequencing data from different sources publication-title: Sci Data doi: 10.1038/sdata.2018.61 – volume: 21 start-page: 201 year: 2023 ident: 2025061901532531000_vbae200-B54 article-title: PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells publication-title: Cell Commun Signal doi: 10.1186/s12964-023-01225-x – volume: 101 start-page: e29743 year: 2022 ident: 2025061901532531000_vbae200-B1 article-title: Incidence and comparative prognosis of cancers with metastasis to noncommon sites: a population-based study publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000029743 – volume: 31 start-page: 263 year: 2023 ident: 2025061901532531000_vbae200-B111 article-title: Application of random walks in data processing publication-title: Highlights in Science, Engineering and Technology doi: 10.54097/hset.v31i.5152 – volume: 16 start-page: 3847 year: 2005 ident: 2025061901532531000_vbae200-B29 article-title: Large-Scale profiling of rab GTPase trafficking networks: the membrome publication-title: Mol Biol Cell doi: 10.1091/mbc.e05-01-0062 – volume: 21 start-page: 364 year: 2014 ident: 2025061901532531000_vbae200-B48 article-title: Notch3 is important for TGF-β-induced epithelial–mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1 publication-title: Cancer Gene Ther doi: 10.1038/cgt.2014.39 – volume: 10 start-page: 1330 year: 2021 ident: 2025061901532531000_vbae200-B9 article-title: Autophagy and extracellular vesicles, connected to rabGTPase family, support aggressiveness in cancer stem cells publication-title: Cells doi: 10.3390/cells10061330 – volume: 46 start-page: D649 year: 2018 ident: 2025061901532531000_vbae200-B23 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1132 – volume: 11 start-page: 1268922 year: 2023 ident: 2025061901532531000_vbae200-B61 article-title: A rab-bit hole: rab40 GTPases as new regulators of the actin cytoskeleton and cell migration publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2023.1268922 – volume: 348 start-page: 648 year: 2015 ident: 2025061901532531000_vbae200-B3 article-title: The Genotype-Tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans publication-title: Science doi: 10.1126/science.1262110 – volume: 116 start-page: 53 year: 2021 ident: 2025061901532531000_vbae200-B70 article-title: The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi) publication-title: Molecular Microbiology doi: 10.1111/mmi.14716 – volume: 99 start-page: 12583 year: 2002 ident: 2025061901532531000_vbae200-B26 article-title: Classification of scale-free networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.202301299 – volume: 9 start-page: 648 year: 2010 ident: 2025061901532531000_vbae200-B64 article-title: Network-based identification of novel cancer genes publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M900227-MCP200 – volume: 415 start-page: 530 year: 2002 ident: 2025061901532531000_vbae200-B91 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 127 start-page: 5189 year: 2014 ident: 2025061901532531000_vbae200-B4 article-title: CLIC4 regulates cell adhesion and β1 integrin trafficking publication-title: J Cell Sci – volume: 2 start-page: 2006.0019 year: 2006 ident: 2025061901532531000_vbae200-B82 article-title: Residues crucial for maintaining short paths in network communication mediate signaling in proteins publication-title: Mol Syst Biol doi: 10.1038/msb4100063 – volume: 18 start-page: 623 year: 2019 ident: 2025061901532531000_vbae200-B19 article-title: Cytoscape StringApp: network analysis and visualization of proteomics data publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00702 – volume: 112 start-page: 1839 year: 2015 ident: 2025061901532531000_vbae200-B46 article-title: Suppression of cancer relapse and metastasis by inhibiting cancer stemness publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1424171112 – volume: 90 start-page: 39 year: 2016 ident: 2025061901532531000_vbae200-B21 article-title: Increasing the resilience of air traffic networks using a network graph theory approach publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2015.09.011 – volume: 5 start-page: 101 year: 2004 ident: 2025061901532531000_vbae200-B6 article-title: Network biology: understanding the cell’s functional organization publication-title: Nat Rev Genet doi: 10.1038/nrg1272 – volume: 51 start-page: D638 year: 2023 ident: 2025061901532531000_vbae200-B85 article-title: The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1000 – volume: 22 start-page: 260 year: 2022 ident: 2025061901532531000_vbae200-B89 article-title: Elevated expression of RAB3B plays important roles in chemoresistance and metastatic potential of hepatoma cells publication-title: BMC Cancer doi: 10.1186/s12885-022-09370-1 – volume: 39 start-page: btad490 year: 2023 ident: 2025061901532531000_vbae200-B41 article-title: Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad490 – volume: 118 start-page: 675 year: 2004 ident: 2025061901532531000_vbae200-B83 article-title: Robustness of cellular functions publication-title: Cell doi: 10.1016/j.cell.2004.09.008 – volume: 27 start-page: 989 year: 2021 ident: 2025061901532531000_vbae200-B51 article-title: Expression of Rab3b in human glioma: influence on cell proliferation and apoptosis publication-title: Curr Pharm Des doi: 10.2174/1381612826666200917145228 – volume-title: TNM classification. StatPearls year: 2023 ident: 2025061901532531000_vbae200-B74 – volume: 28 start-page: 27 year: 2000 ident: 2025061901532531000_vbae200-B40 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Research doi: 10.1093/nar/28.1.27 – volume: 309 start-page: 2010 year: 2005 ident: 2025061901532531000_vbae200-B72 article-title: Noise in gene expression: origins, consequences, and control publication-title: Science doi: 10.1126/science.1105891 – volume: 24 start-page: 282 year: 2008 ident: 2025061901532531000_vbae200-B5 article-title: Computing topological parameters of biological networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm554 – volume: 30 start-page: 1685 year: 2016 ident: 2025061901532531000_vbae200-B32 article-title: A Graph-Theoretic framework for assessing the resilience of sectorised water distribution networks publication-title: Water Resour Manage doi: 10.1007/s11269-016-1245-6 – volume: 49 start-page: D394 year: 2021 ident: 2025061901532531000_vbae200-B58 article-title: PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1106 – volume: 13 start-page: 2498 year: 2003 ident: 2025061901532531000_vbae200-B78 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 3 start-page: 137 year: 2007 ident: 2025061901532531000_vbae200-B42 article-title: Towards a theory of biological robustness publication-title: Mol Syst Biol doi: 10.1038/msb4100179 – volume: 71 start-page: 6836 year: 2011 ident: 2025061901532531000_vbae200-B63 article-title: A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT competent cells that express the ZEB transcription factors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0846 – volume: 7 start-page: e49766 year: 2012 ident: 2025061901532531000_vbae200-B60 article-title: Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). chen WN (ed publication-title: PLoS One doi: 10.1371/journal.pone.0049766 – volume: 148 start-page: 349 year: 2012 ident: 2025061901532531000_vbae200-B73 article-title: EMT and dissemination precede pancreatic tumor formation publication-title: Cell doi: 10.1016/j.cell.2011.11.025 – volume: 2021 start-page: baab069 year: 2021 ident: 2025061901532531000_vbae200-B36 article-title: OBO foundry in 2021: operationalizing open data principles to evaluate ontologies publication-title: Database doi: 10.1093/database/baab069 – volume: 411 start-page: 349 year: 2001 ident: 2025061901532531000_vbae200-B86 article-title: The hedgehog and wnt signalling pathways in cancer publication-title: Nature doi: 10.1038/35077219 – volume: 32 start-page: 4161 year: 2020 ident: 2025061901532531000_vbae200-B20 article-title: Evaluating graph resilience with tensor stack networks: a keras implementation publication-title: Neural Comput & Applic doi: 10.1007/s00521-020-04790-1 – volume: 5 start-page: 11459 year: 2015 ident: 2025061901532531000_vbae200-B112 article-title: dbEMT: an epithelial-mesenchymal transition associated gene resource publication-title: Sci Rep doi: 10.1038/srep11459 – volume: 116 start-page: 4426 year: 2019 ident: 2025061901532531000_vbae200-B115 article-title: Evolution of resilience in protein interactomes across the tree of life publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1818013116 |
SSID | ssj0002776143 |
Score | 2.2780447 |
Snippet | Motivation
Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene... Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a... Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | vbae200 |
SubjectTerms | Cancer Gene families Mammalian cells Membrane trafficking Metastases Original Therapeutic applications Tumors |
Title | Exploring the role of the Rab network in epithelial-to-mesenchymal transition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39736966 https://www.proquest.com/docview/3191363490 https://www.proquest.com/docview/3150345529 https://pubmed.ncbi.nlm.nih.gov/PMC11684074 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1dS9xAcLBKoS-l38baI0qhT8sl-5k8lSqKFLRFFO4t7E42eKDJWaPgv3c2ycW7PrQvS2CXJMzMzvcHwFepvEQUiqGoBJOu4iwnwcOM1ZUuE6Q1GIqnZ_rkUv6cqdngcLsb0iqXPLFj1GWDwUc-JVJJhRYyT74vblmYGhWiq8MIjRewRSw4IzrfOjg6-30-elm4ITNdirFbo5i6eWPLh-mDs56HsrYVabRW4baiaP6dL7kigI7fwOtBc4x_9Kh-Cxu-fgcv-1mSj-_hdMymi0mni0PWYNxU3fO5dXHdp3vH8zr2i1CHcU2Ex9qG3YTyI7x6vKF3t0FwdTlcH-Dy-Oji8IQNsxIYyiRriU84LJEnBk2I62aYyzS1PNeKG4tJ5iQKY3xqk0q6XNtEOG1Kib7MTEVKnvgIm3VT-22IDffKCpErj1IqRKfRpAo96V6ODFofwbclzIpF3xKj6EPZouihWwzQjWCfQPrfQ7tLiBfD_bkrnrEdwd64TZQfwhm29s19OKMSIZXieQSfegSNnyItKwwq1BFka6gbD4Su2us79fyq666dpqH_jZE7__6vz_CKh1HAnTdmFzbbP_f-C-knrZsMRDjp7PtJ50Ci9eLX7AnNcewL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBQwCcbI28SNODgjxaLWl3RWqWqm3YE8cdaU22dK0aP8UvxE7L3Y5wKmXKJItJxrPeD7PE-CNkFYgckmRF5wKUzCaOsVDlY6LOA_RPf1FcTqLJ0fi67E83oBffS6MD6vsz8TmoM4r9DbysWOViMdcpOGHxTn1XaO8d7VvodGyxZ5d_nRXtov3u1_c_r5lbGf78POEdl0FKIowqZ1EGcyRhQqV94AmmIoo0iyNJVMaw8QI5ErZSIeFMGmsQ25ilQu0eaIKB4e4W_cGbAqf0TqCzU_bs28Hg1WHKeX0HR-qQ_KxmVc6vxpfGW2ZT6Nb0X5rGXUrwPbv-MwVhbdzF-50SJV8bFnrHmzY8j7cbHtXLh_AdIjeIw5DEh-lSKqieT_QhpRteDmZl8QufN7HqWN0Wlf0zKc74cnyzK1de0XZxIw9hKNroeIjGJVVaZ8AUcxKzXkqLQohEU2MKpJoHdYz7gJtA3jX0yxbtCU4stZ1zrOWullH3QBeO5L-d9JWT_Gsk9eL7A93BfBqGHaS5t0nurTVpZ8jQy6kZGkAj9sNGj7lUJ1vjBgHkKxt3TDBV_FeHynnJ0017yjy9XaUePrv_3oJtyaH0_1sf3e29wxuM9-GuLEEbcGo_nFpnztsVJsXHUMS-H7dMvAblNIk7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+role+of+the+Rab+network+in+epithelial-to-mesenchymal+transition&rft.jtitle=Bioinformatics+advances&rft.au=Jaygude%2C+Unmani&rft.au=Hughes%2C+Graham+M&rft.au=Simpson%2C+Jeremy+C&rft.date=2025&rft.pub=Oxford+University+Press&rft.eissn=2635-0041&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fbioadv%2Fvbae200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon |