A Hybrid White Shark Equilibrium Optimizer for Power Scheduling Problem Based IoT
The power schedule problem (PSP) is the problem of managing, controlling, and scheduling power consumption of electrical appliances/devices to operate at the best periods according to several constraints and objectives. The PSP is a complex and high-constraint scheduling problem, making its search s...
Saved in:
Published in | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The power schedule problem (PSP) is the problem of managing, controlling, and scheduling power consumption of electrical appliances/devices to operate at the best periods according to several constraints and objectives. The PSP is a complex and high-constraint scheduling problem, making its search space extensive and rugged. The PSP components can be controlled and managed by utilizing a communication approach that interconnects the appliances and enhances exchanging data. Several communication approaches were used for the PSP, where the Internet of Things (IoT) is the best for data exchange. The PSP has been extensively handled using various optimization approaches, particularly metaheuristics, due to their capabilities to optimize different search space scales. Nevertheless, in some cases, these optimization algorithms suffer from low execution abilities, especially with huge search spaces like the PSP. In this study, a recent metaheuristic, called white shark optimizer (WSO), is adapted and enhanced to address the PSP efficiently. The proposed enhanced method is introduced to improve the WSO optimization performance and find better schedules for the PSP by hybridizing the WSO components with a well-known optimization algorithm called equilibrium optimizer. The proposed method is called the white shark equilibrium optimizer (WSEO). The proposed method is operated through a residential IoT system to manage home appliances efficiently. Moreover. the PSP is mathematically formulated as multi-objective PSP considering three main objectives, including electricity bills, power consumption balance, and users' comfortabilities. In the evaluation stage, a new case study in the United Arab Emirates (UAE) is proposed that contains most of the available appliances in the UAE. The evaluation is presented in three main phases, including original, original with a hybrid approach, and hybrid approach evaluations. The proposed WSEO outperformed all compared methods in optimizing the PSP. |
---|---|
AbstractList | The power schedule problem (PSP) is the problem of managing, controlling, and scheduling power consumption of electrical appliances/devices to operate at the best periods according to several constraints and objectives. The PSP is a complex and high-constraint scheduling problem, making its search space extensive and rugged. The PSP components can be controlled and managed by utilizing a communication approach that interconnects the appliances and enhances exchanging data. Several communication approaches were used for the PSP, where the Internet of Things (IoT) is the best for data exchange. The PSP has been extensively handled using various optimization approaches, particularly metaheuristics, due to their capabilities to optimize different search space scales. Nevertheless, in some cases, these optimization algorithms suffer from low execution abilities, especially with huge search spaces like the PSP. In this study, a recent metaheuristic, called white shark optimizer (WSO), is adapted and enhanced to address the PSP efficiently. The proposed enhanced method is introduced to improve the WSO optimization performance and find better schedules for the PSP by hybridizing the WSO components with a well-known optimization algorithm called equilibrium optimizer. The proposed method is called the white shark equilibrium optimizer (WSEO). The proposed method is operated through a residential IoT system to manage home appliances efficiently. Moreover. the PSP is mathematically formulated as multi-objective PSP considering three main objectives, including electricity bills, power consumption balance, and users’ comfortabilities. In the evaluation stage, a new case study in the United Arab Emirates (UAE) is proposed that contains most of the available appliances in the UAE. The evaluation is presented in three main phases, including original, original with a hybrid approach, and hybrid approach evaluations. The proposed WSEO outperformed all compared methods in optimizing the PSP. |
Author | Al-Betar, Mohammed Azmi Assaleh, Khaled Kassaymeh, Sofian Makhadmeh, Sharif Naser |
Author_xml | – sequence: 1 givenname: Sharif Naser surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: College of Engineering and Information Technology, Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates – sequence: 2 givenname: Mohammed Azmi surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: College of Engineering and Information Technology, Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates – sequence: 3 givenname: Khaled surname: Assaleh fullname: Assaleh, Khaled organization: College of Engineering and Information Technology, Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates – sequence: 4 givenname: Sofian surname: Kassaymeh fullname: Kassaymeh, Sofian organization: College of Engineering and Information Technology, Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates |
BookMark | eNqFUctKHEEULYJCjPoFbgpcz6Qe3fVYToZJHBA0jCHLoh63nRp7usbqbsR8fUpbRLLJ3dzL4TwunC_oqEsdIHRByZxSor8ulsvVZjNnhLE5Z0xXvPqEThgVesZrLo4-3J_Red_vSBlVoFqeoJ8LfPXscgz49zYOgDdbmx_w6nGMbSzwuMc3hyHu4x_IuEkZ36ancm38FsLYxu4e3-bkWtjjb7aHgNfp7gwdN7bt4fxtn6Jf31d3y6vZ9c2P9XJxPfMVUcOMSwGeE8aDUywIqryogXrONQ08KN-oWgihbN0wxa2SPhCwwYnCcBQ88FO0nnxDsjtzyHFv87NJNppXIOV7Y_MQfQuG1Q2ISjviXFPVVFgZiHKcSO-cs5oXr8vJ65DT4wj9YHZpzF153zBZSyqlUKqw-MTyOfV9huY9lRLzUoWZqjAvVZi3KopK_6PycbBDTN2QbWz_o72YtBEA3tO0VrLSkv8FIpCYIw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1038_s41598_024_53249_z crossref_primary_10_1007_s10462_023_10618_w crossref_primary_10_1016_j_asej_2024_103188 crossref_primary_10_1016_j_eswa_2024_124973 crossref_primary_10_1007_s11063_023_11357_3 crossref_primary_10_1016_j_prime_2024_100788 crossref_primary_10_1007_s00521_024_10131_3 crossref_primary_10_1016_j_aej_2025_02_061 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_3233_MGS_230065 crossref_primary_10_1007_s00521_023_08772_x crossref_primary_10_1007_s11831_023_09923_y crossref_primary_10_1109_ACCESS_2023_3298553 crossref_primary_10_1016_j_heliyon_2023_e20133 crossref_primary_10_1007_s11760_024_03204_2 crossref_primary_10_1007_s13369_024_08755_7 crossref_primary_10_3390_s23177370 crossref_primary_10_1007_s44196_024_00716_0 crossref_primary_10_1016_j_asoc_2023_111008 crossref_primary_10_1016_j_heliyon_2024_e28073 crossref_primary_10_2478_amns_2024_2755 crossref_primary_10_1142_S0218001424520025 crossref_primary_10_1016_j_egyr_2024_04_006 crossref_primary_10_1051_e3sconf_202346502003 |
Cites_doi | 10.1016/j.swevo.2020.100793 10.3390/en11113125 10.1007/s12652-018-1085-8 10.1016/j.rser.2019.109362 10.1109/COMST.2016.2610578 10.1109/TII.2017.2776104 10.1016/j.knosys.2019.105190 10.1016/j.jobe.2020.101603 10.3390/electronics10040447 10.1007/978-3-319-65636-6_45 10.1109/TSMCA.2004.824873 10.3390/su14106049 10.1007/978-3-319-65636-6_18 10.1016/j.rser.2015.03.031 10.1109/ICCSCE.2018.8685003 10.3390/en11040888 10.1080/23744731.2019.1690922 10.1007/3-540-36970-8_5 10.1007/978-3-319-65521-5_16 10.1109/EEEIC.2016.7555867 10.3390/app9040792 10.1109/ACCESS.2018.2805849 10.1109/TSG.2013.2251018 10.1016/j.rser.2012.11.002 10.1080/23311916.2018.1502242 10.1109/COMST.2014.2341586 10.1016/j.future.2017.11.022 10.1016/j.scs.2020.102517 10.1088/1742-6596/1140/1/012006 10.1109/PICICT53635.2021.00026 10.3390/electronics9030406 10.1109/ICONCE.2014.6808719 10.1016/j.rser.2015.10.117 10.1109/JEEIT.2019.8717468 10.1109/SURV.2012.021312.00034 10.3390/app9235226 10.1145/1570256.1570386 10.1109/RTEICT42901.2018.9012604 10.1023/A:1024771215616 10.1016/j.knosys.2022.108457 10.1007/s10586-022-03675-3 10.1109/COMST.2017.2698366 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3229434 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_25fe649b0bbf4516a7d08b307cbbba93 10_1109_ACCESS_2022_3229434 9987497 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ajman University grantid: 2021-IRG-ENIT-6 funderid: 10.13039/501100019286 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-376ec3023db82d618c65e1c3391d3d8cf856668a5f283a87cd0eadb6c33b1ece3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:56 EDT 2025 Sun Jun 29 16:01:16 EDT 2025 Tue Jul 01 02:48:36 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-376ec3023db82d618c65e1c3391d3d8cf856668a5f283a87cd0eadb6c33b1ece3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2894-7998 |
OpenAccessLink | https://doaj.org/article/25fe649b0bbf4516a7d08b307cbbba93 |
PQID | 2757177688 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25fe649b0bbf4516a7d08b307cbbba93 crossref_primary_10_1109_ACCESS_2022_3229434 ieee_primary_9987497 crossref_citationtrail_10_1109_ACCESS_2022_3229434 proquest_journals_2757177688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Al-Odat (ref29) 2018 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref44) 2017 Chapman (ref42) 2003; 4 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1016/j.swevo.2020.100793 – ident: ref34 doi: 10.3390/en11113125 – ident: ref8 doi: 10.1007/s12652-018-1085-8 – ident: ref4 doi: 10.1016/j.rser.2019.109362 – ident: ref39 doi: 10.1109/COMST.2016.2610578 – ident: ref26 doi: 10.1109/TII.2017.2776104 – ident: ref43 doi: 10.1016/j.knosys.2019.105190 – ident: ref7 doi: 10.1016/j.jobe.2020.101603 – ident: ref10 doi: 10.3390/electronics10040447 – ident: ref23 doi: 10.1007/978-3-319-65636-6_45 – ident: ref36 doi: 10.1109/TSMCA.2004.824873 – ident: ref28 doi: 10.3390/su14106049 – ident: ref18 doi: 10.1007/978-3-319-65636-6_18 – ident: ref11 doi: 10.1016/j.rser.2015.03.031 – ident: ref13 doi: 10.1109/ICCSCE.2018.8685003 – ident: ref15 doi: 10.3390/en11040888 – year: 2018 ident: ref29 article-title: IoT-based secure embedded scheme for insulin pump data acquisition and monitoring publication-title: arXiv:1812.02357 – ident: ref22 doi: 10.1080/23744731.2019.1690922 – ident: ref38 doi: 10.1007/3-540-36970-8_5 – ident: ref9 doi: 10.1007/978-3-319-65521-5_16 – ident: ref30 doi: 10.1109/EEEIC.2016.7555867 – ident: ref33 doi: 10.3390/app9040792 – ident: ref35 doi: 10.1109/ACCESS.2018.2805849 – ident: ref16 doi: 10.1109/TSG.2013.2251018 – ident: ref32 doi: 10.1016/j.rser.2012.11.002 – ident: ref41 doi: 10.1080/23311916.2018.1502242 – ident: ref3 doi: 10.1109/COMST.2014.2341586 – ident: ref31 doi: 10.1016/j.future.2017.11.022 – ident: ref5 doi: 10.1016/j.scs.2020.102517 – ident: ref6 doi: 10.1088/1742-6596/1140/1/012006 – ident: ref14 doi: 10.1109/PICICT53635.2021.00026 – ident: ref20 doi: 10.3390/electronics9030406 – ident: ref2 doi: 10.1109/ICONCE.2014.6808719 – ident: ref12 doi: 10.1016/j.rser.2015.10.117 – volume-title: Commonwealth year: 2017 ident: ref44 – ident: ref21 doi: 10.1109/JEEIT.2019.8717468 – ident: ref1 doi: 10.1109/SURV.2012.021312.00034 – ident: ref19 doi: 10.3390/app9235226 – ident: ref37 doi: 10.1145/1570256.1570386 – ident: ref24 doi: 10.1109/RTEICT42901.2018.9012604 – volume: 4 start-page: 415 issue: 4 year: 2003 ident: ref42 article-title: A streamlined, bi-organelle, multiplex PCR approach to species identification: Application to global conservation and trade monitoring of the great white shark, Carcharodon carcharias publication-title: Conservation Genet. doi: 10.1023/A:1024771215616 – ident: ref27 doi: 10.1016/j.knosys.2022.108457 – ident: ref25 doi: 10.1007/s10586-022-03675-3 – ident: ref40 doi: 10.1109/COMST.2017.2698366 |
SSID | ssj0000816957 |
Score | 2.4072957 |
Snippet | The power schedule problem (PSP) is the problem of managing, controlling, and scheduling power consumption of electrical appliances/devices to operate at the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Data exchange Electric appliances Equilibrium equilibrium optimizer Heuristic methods Home appliances Household appliances Internet of Things IoT Optimization Peak to average power ratio Power consumption Power demand Power management power schedule problem Schedules Scheduling Searching Smart homes white shark equilibrium optimizer White shark optimizer |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBAgWxpSAfOHa3iZP4cdyuWi1IhSJaqTfLr6Cq7S60m0P765lxvBEvIW5RZEdOZjyveL4P4J2svC851d1EiwlK7cLYlqUbeylbDI9VEAky_-SjmJ_XHy6aiw3YH3phYozp8Fmc0GX6lx-WvqNS2QGmBrLWchM2MXHre7WGegoRSOhGZmChstAH09kM3wFTQM4nqLYEhPaL80kY_ZlU5Q9LnNzL8TacrBfWnyq5mnQrN_EPv2E2_u_Kn8KTHGeyaa8Yz2AjLp7D45_QB3fg85TN76lhiyWWPEbYzVfs6Ht3mfoAuhv2Ce3JzeVDvGUY2rJTIlRjX1DKgY6vf2WnPRkNO0RPGNj75dkLOD8-OpvNx5lhYezrQq3IukRPtEHBKR5EqbxoYumrSpehCsq3CqM9oWzTYhRilfShQM1zAke4MvpYvYStxXIRXwELVjsM5QpnPXr9UFq0BKLlWtiWOy31CPj60xuf4ceJBePapDSk0KaXlyF5mSyvEewPk7716Bv_Hn5IMh2GEnR2uoGyMHknGt60UdTaFc61xFJsZSiUQ1PnnXNWVyPYIfkND8miG8HeWkNM3uZ3hssG02HM2NTu32e9hke0wL5mswdbq9suvsEoZuXeJvX9ARcZ7dw priority: 102 providerName: IEEE |
Title | A Hybrid White Shark Equilibrium Optimizer for Power Scheduling Problem Based IoT |
URI | https://ieeexplore.ieee.org/document/9987497 https://www.proquest.com/docview/2757177688 https://doaj.org/article/25fe649b0bbf4516a7d08b307cbbba93 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6u15ODR1U12N49jWypV8IUK3kJeK6JttbYH_fVOsttSEfTidcm-ZiYz34Tk-xA65Jm1hIZ1N1ZCg5Ibl2hCTGI5LwEeC8ciZf7FJevf5-cPxcOC1FfYE1bRA1eGO6FF6VkuTWpMGURlNXepMBCZ1hijZeT5hJq30EzFHCwIkwWvaYZIKk_a3S78ETSElB5DEAdatG-lKDL21xIrP_JyLDan62itRom4XX3dBlryw020usAduIVu2rj_EY5b4ahxhwPz8jPuvU2f4i7-6QBfQTYYPH36MQZgiq-DHBq-BR-5sPn8EV9XUjK4A3XM4bPR3Ta6P-3ddftJrY-Q2DwVk5AbvA2iP84I6hgRlhWe2CyTxGVO2FIAVmNCFyVgCC24dSnEjWEwwhBvfbaDloejod9F2GlpAIilRluo2Y5omMespJLpkhrJZQPRmamUrcnDg4bFi4pNRCpVZV8V7Ktq-zbQ0fym14o74_fhneCD-dBAfB0vQDioOhzUX-HQQFvBg_OHQDfJc8kbqDnzqKon6buivIBmFvotsfcfr95HK-F3qvWZJlqejKf-ABDLxLRicLbi4cIv3fnl4Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXEQgEfOHa3sZP4cdyuWm2hW4rYSr1ZfgVVpbulbA701zN2vBEvIW5RZEdOZjyveL4P4K0onaMs1t14gwlKZf3QUGqHTogGw2PpeYLMn53w6Vn17rw-34DdvhcmhJAOn4VRvEz_8v3StbFUtoepgaiUuAN30e_XtOvW6isqkUJC1SJDC9FC7Y0nE3wLTAIZG6HiRii0X9xPQunPtCp_2OLkYA4fwmy9tO5cyeWoXdmRu_0NtfF_1_4IHuRIk4w71XgMG2HxBLZ-wh_cho9jMv0eW7ZI4skjEb35khx8bS9SJ0B7RT6gRbm6uA03BINbchop1cgnlLOPB9g_k9OOjobsoy_05Gg5fwpnhwfzyXSYORaGrirkKtqX4CJxkLeSeU6l43WgriwV9aWXrpEY73Fp6gbjECOF8wXqnuU4wtLgQvkMNhfLRXgOxBtlMZgrrHHo9z01aAt4wxQ3DbNKqAGw9afXLgOQRx6MLzolIoXSnbx0lJfO8hrAbj_pusPf-Pfw_SjTfmgEz043UBY670XN6ibwStnC2ibyFBvhC2nR2DlrrVHlALaj_PqHZNENYGetITpv9G-aiRoTYszZ5Iu_z3oD96bz2bE-Pjp5_xLux8V2FZwd2FzdtOEVxjQr-zqp8g-kFPEl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+White+Shark+Equilibrium+Optimizer+for+Power+Scheduling+Problem+Based+IoT&rft.jtitle=IEEE+access&rft.au=Sharif+Naser+Makhadmeh&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Assaleh%2C+Khaled&rft.au=Kassaymeh%2C+Sofian&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=10&rft.spage=132212&rft_id=info:doi/10.1109%2FACCESS.2022.3229434&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |