Mask Optimization for Image Inpainting

This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 69728 - 69741
Main Authors Isogawa, Mariko, Mikami, Dan, Iwai, Daisuke, Kimata, Hideaki, Sato, Kosuke
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust the masked region by trial and error until they obtain the desired natural inpainting result, because inpainting quality is significantly affected by even a slight change in the mask. This manual masking takes a great deal of users' working time and requires considerable input. To reduce the human labor required, we propose a method for masked region optimization so that good inpainting results can be automatically obtained. To this end, our approach estimates "naturalness of inpainting" for all super pixels in inpainted images and reforms an original mask on a super-pixel basis, so that the naturalness of the inpainting result is improved. The efficacy of this approach does not depend on inpainting algorithms, thus it can be applied for every inpainting method as a plug-in. To demonstrate the effectiveness of our approach, we test our algorithm with varied images and show that it outperforms the existing inpainting methods without masked region reformation.
AbstractList This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust the masked region by trial and error until they obtain the desired natural inpainting result, because inpainting quality is significantly affected by even a slight change in the mask. This manual masking takes a great deal of users' working time and requires considerable input. To reduce the human labor required, we propose a method for masked region optimization so that good inpainting results can be automatically obtained. To this end, our approach estimates "naturalness of inpainting" for all super pixels in inpainted images and reforms an original mask on a super-pixel basis, so that the naturalness of the inpainting result is improved. The efficacy of this approach does not depend on inpainting algorithms, thus it can be applied for every inpainting method as a plug-in. To demonstrate the effectiveness of our approach, we test our algorithm with varied images and show that it outperforms the existing inpainting methods without masked region reformation.
Author Sato, Kosuke
Iwai, Daisuke
Mikami, Dan
Isogawa, Mariko
Kimata, Hideaki
Author_xml – sequence: 1
  givenname: Mariko
  orcidid: 0000-0001-9560-0276
  surname: Isogawa
  fullname: Isogawa, Mariko
  email: isogawa@sens.sys.es.osaka-u.ac.jp
  organization: NTT Media Intelligence Laboratories, Yokosuka, Japan
– sequence: 2
  givenname: Dan
  surname: Mikami
  fullname: Mikami, Dan
  organization: NTT Media Intelligence Laboratories, Yokosuka, Japan
– sequence: 3
  givenname: Daisuke
  orcidid: 0000-0002-3493-5635
  surname: Iwai
  fullname: Iwai, Daisuke
  organization: Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
– sequence: 4
  givenname: Hideaki
  surname: Kimata
  fullname: Kimata, Hideaki
  organization: NTT Media Intelligence Laboratories, Yokosuka, Japan
– sequence: 5
  givenname: Kosuke
  surname: Sato
  fullname: Sato, Kosuke
  organization: Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
BookMark eNpNUE1Lw0AUXKSCtfYX9BIQvKW-_d4cS6kaUHqonpdNdlO2ttm4SQ_6601NKb7Lewwz84a5RaM61A6hGYY5xpA9LpbL1WYzJ4DVnCgpGeArNCZYZCnlVIz-3Tdo2rY76Ef1EJdj9PBm2s9k3XT-4H9M50OdVCEm-cFsXZLXjfF15-vtHbquzL510_OeoI-n1fvyJX1dP-fLxWtaMlBdSmlVuKpkFgsLIIiErCgUd0QKroSUhbKVtcxZgSU3GWdgsz6HqbhhUAlDJygffG0wO91EfzDxWwfj9R8Q4lab2Ply73RJWeHKrBTcQn8xI6hShSlMxkgJtOi97gevJoavo2s7vQvHWPfxNWGcZ5iAVD2LDqwyhraNrrp8xaBP_eqhX33qV5_77VWzQeWdcxeF4kCAAv0FMZN2cA
CODEN IAECCG
CitedBy_id crossref_primary_10_2139_ssrn_4088220
crossref_primary_10_1016_j_eswa_2022_118070
crossref_primary_10_1007_s11063_019_10163_0
crossref_primary_10_1051_e3sconf_202447202010
crossref_primary_10_1109_ACCESS_2019_2952640
crossref_primary_10_3390_electronics12194065
crossref_primary_10_1080_13682199_2023_2180834
crossref_primary_10_1080_13682199_2023_2212572
crossref_primary_10_1007_s44267_023_00021_y
crossref_primary_10_54525_tbbmd_798388
crossref_primary_10_1007_s11042_020_09835_0
crossref_primary_10_1007_s00371_023_03045_z
crossref_primary_10_1109_ACCESS_2020_2995700
Cites_doi 10.1109/TPAMI.2012.120
10.1145/2185520.2185578
10.1007/s11042-017-5546-4
10.1109/CVPR.2007.383267
10.1016/j.neunet.2006.10.001
10.1007/s11042-016-3550-8
10.1007/978-3-319-11752-2_43
10.1145/1531326.1531330
10.1145/3072959.3073659
10.1109/MSP.2013.2273004
10.1007/s11760-016-0876-7
10.1109/TIP.2014.2387379
10.7551/mitpress/1113.003.0010
10.1109/CVPR.1999.784720
10.1145/1186562.1015720
10.1109/TPAMI.2014.2330611
10.1109/MMUL.2007.60
10.1109/CVPR.2006.330
10.1109/CVPR.2017.434
10.1023/B:VISI.0000022288.19776.77
10.1109/ICCV.2003.1238308
10.1145/2601097.2601205
10.1109/TIP.2004.833105
10.1109/ICIP.2010.5653640
10.1167/13.4.5
10.1109/ICIP.2013.6738082
10.1109/CVPR.2014.382
10.1117/12.808942
10.1109/TGRS.2015.2423688
10.1109/ICIP.2011.6116372
10.1007/978-3-642-33863-2_58
10.1109/TIP.2014.2300823
10.1109/ICIP.2016.7533018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2877401
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 69741
ExternalDocumentID oai_doaj_org_article_c34bec9c65d04be4a6388baba942c03b
10_1109_ACCESS_2018_2877401
8502030
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-33fbefc4d16d0062709bb85e27658677b8dfdd4ed6175a9540d9695af5a40f6a3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:03:40 EDT 2024
Thu Oct 10 18:57:50 EDT 2024
Fri Aug 23 04:45:13 EDT 2024
Mon Nov 04 11:47:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-33fbefc4d16d0062709bb85e27658677b8dfdd4ed6175a9540d9695af5a40f6a3
ORCID 0000-0002-3493-5635
0000-0001-9560-0276
OpenAccessLink https://doaj.org/article/c34bec9c65d04be4a6388baba942c03b
PQID 2455912078
PQPubID 4845423
PageCount 14
ParticipantIDs ieee_primary_8502030
doaj_primary_oai_doaj_org_article_c34bec9c65d04be4a6388baba942c03b
proquest_journals_2455912078
crossref_primary_10_1109_ACCESS_2018_2877401
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
abe (ref31) 2012
ref12
ref15
wang (ref38) 2011
ref36
ref14
ref30
ref11
ref10
ref1
ref39
ref17
huang (ref5) 2014; 33
barnes (ref2) 2009; 28
ref16
herbrich (ref41) 2000
ref19
ref18
xie (ref6) 2012
tsochantaridis (ref44) 2005; 6
ref24
ref23
achanta (ref34) 2010
neubert (ref33) 2012
lucchi (ref37) 2010
ref20
ref42
frantc (ref25) 2014; 9120
ref22
ref21
ref43
ren (ref8) 2015; 1
ref28
ref27
iizuka (ref9) 2017; 36
ref29
ref7
ref4
khosla (ref32) 2012
ref3
voronin (ref26) 2015; 9399
ref40
References_xml – ident: ref35
  doi: 10.1109/TPAMI.2012.120
– ident: ref3
  doi: 10.1145/2185520.2185578
– start-page: 1323
  year: 2011
  ident: ref38
  article-title: Superpixel tracking
  publication-title: Proc IEEE Int Conf Comput Vis (ICCV))
  contributor:
    fullname: wang
– ident: ref15
  doi: 10.1007/s11042-017-5546-4
– volume: 6
  start-page: 1453
  year: 2005
  ident: ref44
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: J Mach Learn Res
  contributor:
    fullname: tsochantaridis
– ident: ref42
  doi: 10.1109/CVPR.2007.383267
– ident: ref43
  doi: 10.1016/j.neunet.2006.10.001
– ident: ref20
  doi: 10.1007/s11042-016-3550-8
– ident: ref7
  doi: 10.1007/978-3-319-11752-2_43
– start-page: 3712
  year: 2012
  ident: ref31
  article-title: Recognizing surface qualities from natural images based on learning to rank
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
  contributor:
    fullname: abe
– volume: 28
  year: 2009
  ident: ref2
  article-title: PatchMatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans Graph
  doi: 10.1145/1531326.1531330
  contributor:
    fullname: barnes
– volume: 36
  year: 2017
  ident: ref9
  article-title: Globally and locally consistent image completion
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073659
  contributor:
    fullname: iizuka
– ident: ref18
  doi: 10.1109/MSP.2013.2273004
– volume: 1
  start-page: 901
  year: 2015
  ident: ref8
  article-title: Shepard convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: ren
– ident: ref14
  doi: 10.1007/s11760-016-0876-7
– ident: ref29
  doi: 10.1109/TIP.2014.2387379
– start-page: 115
  year: 2000
  ident: ref41
  article-title: Large margin rank boundaries for ordinal regression
  publication-title: Advances in Large-Margin Classifiers
  doi: 10.7551/mitpress/1113.003.0010
  contributor:
    fullname: herbrich
– volume: 9120
  start-page: 91200s-1
  year: 2014
  ident: ref25
  article-title: Machine learning approach for objective inpainting quality assessment
  publication-title: Proc SPIE
  contributor:
    fullname: frantc
– ident: ref13
  doi: 10.1109/CVPR.1999.784720
– ident: ref11
  doi: 10.1145/1186562.1015720
– ident: ref4
  doi: 10.1109/TPAMI.2014.2330611
– ident: ref12
  doi: 10.1109/MMUL.2007.60
– ident: ref19
  doi: 10.1109/CVPR.2006.330
– ident: ref10
  doi: 10.1109/CVPR.2017.434
– ident: ref36
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref17
  doi: 10.1109/ICCV.2003.1238308
– start-page: 296
  year: 2012
  ident: ref32
  article-title: Memorability of image regions
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
  contributor:
    fullname: khosla
– volume: 33
  year: 2014
  ident: ref5
  article-title: Image completion using planar structure guidance
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601205
  contributor:
    fullname: huang
– ident: ref1
  doi: 10.1109/TIP.2004.833105
– ident: ref21
  doi: 10.1109/ICIP.2010.5653640
– ident: ref28
  doi: 10.1167/13.4.5
– start-page: 1
  year: 2012
  ident: ref33
  article-title: Superpixel benchmark and comparison
  publication-title: Proc Forum Bildverarbeitung
  contributor:
    fullname: neubert
– ident: ref24
  doi: 10.1109/ICIP.2013.6738082
– ident: ref30
  doi: 10.1109/CVPR.2014.382
– ident: ref22
  doi: 10.1117/12.808942
– start-page: 463
  year: 2010
  ident: ref37
  article-title: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
  contributor:
    fullname: lucchi
– volume: 9399
  start-page: 93990u-1
  year: 2015
  ident: ref26
  article-title: No-reference visual quality assessment for image inpainting
  publication-title: Proc SPIE
  contributor:
    fullname: voronin
– ident: ref40
  doi: 10.1109/TGRS.2015.2423688
– year: 2010
  ident: ref34
  article-title: SLIC superpixels
  contributor:
    fullname: achanta
– ident: ref27
  doi: 10.1109/ICIP.2011.6116372
– ident: ref23
  doi: 10.1007/978-3-642-33863-2_58
– start-page: 341
  year: 2012
  ident: ref6
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc 25th Adv Neural Inf Process Syst
  contributor:
    fullname: xie
– ident: ref39
  doi: 10.1109/TIP.2014.2300823
– ident: ref16
  doi: 10.1109/ICIP.2016.7533018
SSID ssj0000816957
Score 2.2152662
Snippet This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 69728
SubjectTerms Algorithms
Computational efficiency
Estimation
Image restoration
Image segmentation
Inpainting
Laboratories
learning-to-rank
Optimization
Pixels
segmentation
super pixel
Task analysis
User requirements
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4IwoFZUBMpDiJ7dhjqUCAVFhAYrP8ioQQBdF24ddzdtyK18BmRXnYX-y77-x7ABwbwomguJAapBM5laTJBdM8l77hhWVC0-hEM7rlVw_05pE9duB0EQvjvY_OZ74fmvEs373aWdgqOxMsnJuhgb5US9nGai32U0IBCcnqlFioIPJsMBziGIL3luijXRBKz31TPjFHfyqq8ksSR_VyuQ6jecdar5Ln_mxq-vbjR87G__Z8A9YSz8wG7cTYhI4fb8Hql-yD23Ay0pPn7A5lxksKxsyQwWbXLyhisuvxm36KVSR24OHy4n54laeyCbmlREzzqmqMbyx1BXchRLIm0hjBfFkj2-B1bYRrnKPeIXlhWiJlcxKh0w3TlDRcV7uwPH4d-z3I0JxxorCcaVvQmheaWVR4oqwd6nVW2i6czvFUb212DBWtCiJVC78K8KsEfxfOA-aLW0Nq63gBsVJppShbUZxXEj_qCLaoRgkhjDZa0tKSynRhO-C7eEmCtgu9-R9UaRlOVEnRYCpKpEH7fz91ACuhg-2eSg-Wp-8zf4gsY2qO4vT6BLvmzHI
  priority: 102
  providerName: IEEE
Title Mask Optimization for Image Inpainting
URI https://ieeexplore.ieee.org/document/8502030
https://www.proquest.com/docview/2455912078
https://doaj.org/article/c34bec9c65d04be4a6388baba942c03b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBCBUmVATIQ6ie3YY6moWqTCQqVulh_xghoqWv4_Z8etihhY2KIkinOf7bvvknsgdKsxw5zARnJAJzIisMs4VSwTtWO5oVyREEQze2GTOXle0MVeqy8fE9aWB26BG5iSwDDCMGoxHBEFC4ZrpZUghcGlDtoXiz1nKuhgnjNBq1hmCK4PhqMRSORjufgDeAm-Ed0PUxQq9scWK7_0cjA24xN0HFliOmzf7hQd1M0ZOtqrHdhFdzO1fk9fYccvYyplCvwznS5BQaTTZgUev49oPkfz8dPbaJLFpgeZIZhvsrJ0unaG2JxZn-BYYaE1p3VRAVdgVaW5ddaS2gL1oEoA4bICRFWOKoIdU-UF6jQfTX2JUnBGLM8BOWVyUrFcUQPmiheVBatMC5Og-638ctXWtpDBJ8BCtnBJD5eMcCXo0WO0u9UXpg4nYLpknC7513QlqOsR3j2EU_8rFCeot0Vcxk20lgUBdycvgMRc_cfQ1-jQi9N-P-mhzubzq74BRrHR_bB4-iH57xtnl8U6
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hemh7oJSHGgiwB9QTG7y7ttc-phEogYReEomb5ddKFSIgklz49Yy9TtQHh96s1T7sb-2Zb-x5AJwbwomguJAapBM5laTJBdM8l77hhWVC0-hEM7njwxm9uWf3W3CxiYXx3kfnM98LzXiW757sKmyVXQoWzs3QQP-AvFrwNlprs6MSSkhIVqfUQgWRl_3BAEcR_LdEDy2DUHzuD_UTs_Snsir_yOKoYK6_wGTdtdav5KG3Wpqeff0ra-P_9n0XdhLTzPrt1PgKW36-B59_yz-4D98nevGQ_USp8ZjCMTPksNnoEYVMNpo_61-xjsQBzK6vpoNhngon5JYSscyrqjG-sdQV3IUgyZpIYwTzZY18g9e1Ea5xjnqH9IVpiaTNSYRON0xT0nBdHcL2_Gnuv0GGBo0TheVM24LWvNDMosoTZe1Qs7PSduBijad6bvNjqGhXEKla-FWAXyX4O_AjYL65NSS3jhcQK5XWirIVxZkl8aOOYItqlBHCaKMlLS2pTAf2A76blyRoO9Bd_0GVFuJClRRNpqJEInT0_lNn8HE4nYzVeHR3ewyfQmfbHZYubC9fVv4EOcfSnMap9gaX6c-9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mask+Optimization+for+Image+Inpainting&rft.jtitle=IEEE+access&rft.au=Isogawa%2C+Mariko&rft.au=Mikami%2C+Dan&rft.au=Iwai%2C+Daisuke&rft.au=Kimata%2C+Hideaki&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=69728&rft.epage=69741&rft_id=info:doi/10.1109%2FACCESS.2018.2877401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2877401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon