Mask Optimization for Image Inpainting
This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust...
Saved in:
Published in | IEEE access Vol. 6; pp. 69728 - 69741 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust the masked region by trial and error until they obtain the desired natural inpainting result, because inpainting quality is significantly affected by even a slight change in the mask. This manual masking takes a great deal of users' working time and requires considerable input. To reduce the human labor required, we propose a method for masked region optimization so that good inpainting results can be automatically obtained. To this end, our approach estimates "naturalness of inpainting" for all super pixels in inpainted images and reforms an original mask on a super-pixel basis, so that the naturalness of the inpainting result is improved. The efficacy of this approach does not depend on inpainting algorithms, thus it can be applied for every inpainting method as a plug-in. To demonstrate the effectiveness of our approach, we test our algorithm with varied images and show that it outperforms the existing inpainting methods without masked region reformation. |
---|---|
AbstractList | This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and restores unwanted regions in images, users draw masks to specify the regions. However, it is widely known that the users typically need to adjust the masked region by trial and error until they obtain the desired natural inpainting result, because inpainting quality is significantly affected by even a slight change in the mask. This manual masking takes a great deal of users' working time and requires considerable input. To reduce the human labor required, we propose a method for masked region optimization so that good inpainting results can be automatically obtained. To this end, our approach estimates "naturalness of inpainting" for all super pixels in inpainted images and reforms an original mask on a super-pixel basis, so that the naturalness of the inpainting result is improved. The efficacy of this approach does not depend on inpainting algorithms, thus it can be applied for every inpainting method as a plug-in. To demonstrate the effectiveness of our approach, we test our algorithm with varied images and show that it outperforms the existing inpainting methods without masked region reformation. |
Author | Sato, Kosuke Iwai, Daisuke Mikami, Dan Isogawa, Mariko Kimata, Hideaki |
Author_xml | – sequence: 1 givenname: Mariko orcidid: 0000-0001-9560-0276 surname: Isogawa fullname: Isogawa, Mariko email: isogawa@sens.sys.es.osaka-u.ac.jp organization: NTT Media Intelligence Laboratories, Yokosuka, Japan – sequence: 2 givenname: Dan surname: Mikami fullname: Mikami, Dan organization: NTT Media Intelligence Laboratories, Yokosuka, Japan – sequence: 3 givenname: Daisuke orcidid: 0000-0002-3493-5635 surname: Iwai fullname: Iwai, Daisuke organization: Graduate School of Engineering Science, Osaka University, Toyonaka, Japan – sequence: 4 givenname: Hideaki surname: Kimata fullname: Kimata, Hideaki organization: NTT Media Intelligence Laboratories, Yokosuka, Japan – sequence: 5 givenname: Kosuke surname: Sato fullname: Sato, Kosuke organization: Graduate School of Engineering Science, Osaka University, Toyonaka, Japan |
BookMark | eNpNUE1Lw0AUXKSCtfYX9BIQvKW-_d4cS6kaUHqonpdNdlO2ttm4SQ_6601NKb7Lewwz84a5RaM61A6hGYY5xpA9LpbL1WYzJ4DVnCgpGeArNCZYZCnlVIz-3Tdo2rY76Ef1EJdj9PBm2s9k3XT-4H9M50OdVCEm-cFsXZLXjfF15-vtHbquzL510_OeoI-n1fvyJX1dP-fLxWtaMlBdSmlVuKpkFgsLIIiErCgUd0QKroSUhbKVtcxZgSU3GWdgsz6HqbhhUAlDJygffG0wO91EfzDxWwfj9R8Q4lab2Ply73RJWeHKrBTcQn8xI6hShSlMxkgJtOi97gevJoavo2s7vQvHWPfxNWGcZ5iAVD2LDqwyhraNrrp8xaBP_eqhX33qV5_77VWzQeWdcxeF4kCAAv0FMZN2cA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_2139_ssrn_4088220 crossref_primary_10_1016_j_eswa_2022_118070 crossref_primary_10_1007_s11063_019_10163_0 crossref_primary_10_1051_e3sconf_202447202010 crossref_primary_10_1109_ACCESS_2019_2952640 crossref_primary_10_3390_electronics12194065 crossref_primary_10_1080_13682199_2023_2180834 crossref_primary_10_1080_13682199_2023_2212572 crossref_primary_10_1007_s44267_023_00021_y crossref_primary_10_54525_tbbmd_798388 crossref_primary_10_1007_s11042_020_09835_0 crossref_primary_10_1007_s00371_023_03045_z crossref_primary_10_1109_ACCESS_2020_2995700 |
Cites_doi | 10.1109/TPAMI.2012.120 10.1145/2185520.2185578 10.1007/s11042-017-5546-4 10.1109/CVPR.2007.383267 10.1016/j.neunet.2006.10.001 10.1007/s11042-016-3550-8 10.1007/978-3-319-11752-2_43 10.1145/1531326.1531330 10.1145/3072959.3073659 10.1109/MSP.2013.2273004 10.1007/s11760-016-0876-7 10.1109/TIP.2014.2387379 10.7551/mitpress/1113.003.0010 10.1109/CVPR.1999.784720 10.1145/1186562.1015720 10.1109/TPAMI.2014.2330611 10.1109/MMUL.2007.60 10.1109/CVPR.2006.330 10.1109/CVPR.2017.434 10.1023/B:VISI.0000022288.19776.77 10.1109/ICCV.2003.1238308 10.1145/2601097.2601205 10.1109/TIP.2004.833105 10.1109/ICIP.2010.5653640 10.1167/13.4.5 10.1109/ICIP.2013.6738082 10.1109/CVPR.2014.382 10.1117/12.808942 10.1109/TGRS.2015.2423688 10.1109/ICIP.2011.6116372 10.1007/978-3-642-33863-2_58 10.1109/TIP.2014.2300823 10.1109/ICIP.2016.7533018 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2877401 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 69741 |
ExternalDocumentID | oai_doaj_org_article_c34bec9c65d04be4a6388baba942c03b 10_1109_ACCESS_2018_2877401 8502030 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-33fbefc4d16d0062709bb85e27658677b8dfdd4ed6175a9540d9695af5a40f6a3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:03:40 EDT 2024 Thu Oct 10 18:57:50 EDT 2024 Fri Aug 23 04:45:13 EDT 2024 Mon Nov 04 11:47:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-33fbefc4d16d0062709bb85e27658677b8dfdd4ed6175a9540d9695af5a40f6a3 |
ORCID | 0000-0002-3493-5635 0000-0001-9560-0276 |
OpenAccessLink | https://doaj.org/article/c34bec9c65d04be4a6388baba942c03b |
PQID | 2455912078 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | ieee_primary_8502030 doaj_primary_oai_doaj_org_article_c34bec9c65d04be4a6388baba942c03b proquest_journals_2455912078 crossref_primary_10_1109_ACCESS_2018_2877401 |
PublicationCentury | 2000 |
PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 20180000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 abe (ref31) 2012 ref12 ref15 wang (ref38) 2011 ref36 ref14 ref30 ref11 ref10 ref1 ref39 ref17 huang (ref5) 2014; 33 barnes (ref2) 2009; 28 ref16 herbrich (ref41) 2000 ref19 ref18 xie (ref6) 2012 tsochantaridis (ref44) 2005; 6 ref24 ref23 achanta (ref34) 2010 neubert (ref33) 2012 lucchi (ref37) 2010 ref20 ref42 frantc (ref25) 2014; 9120 ref22 ref21 ref43 ren (ref8) 2015; 1 ref28 ref27 iizuka (ref9) 2017; 36 ref29 ref7 ref4 khosla (ref32) 2012 ref3 voronin (ref26) 2015; 9399 ref40 |
References_xml | – ident: ref35 doi: 10.1109/TPAMI.2012.120 – ident: ref3 doi: 10.1145/2185520.2185578 – start-page: 1323 year: 2011 ident: ref38 article-title: Superpixel tracking publication-title: Proc IEEE Int Conf Comput Vis (ICCV)) contributor: fullname: wang – ident: ref15 doi: 10.1007/s11042-017-5546-4 – volume: 6 start-page: 1453 year: 2005 ident: ref44 article-title: Large margin methods for structured and interdependent output variables publication-title: J Mach Learn Res contributor: fullname: tsochantaridis – ident: ref42 doi: 10.1109/CVPR.2007.383267 – ident: ref43 doi: 10.1016/j.neunet.2006.10.001 – ident: ref20 doi: 10.1007/s11042-016-3550-8 – ident: ref7 doi: 10.1007/978-3-319-11752-2_43 – start-page: 3712 year: 2012 ident: ref31 article-title: Recognizing surface qualities from natural images based on learning to rank publication-title: Proc Int Conf Pattern Recognit (ICPR) contributor: fullname: abe – volume: 28 year: 2009 ident: ref2 article-title: PatchMatch: A randomized correspondence algorithm for structural image editing publication-title: ACM Trans Graph doi: 10.1145/1531326.1531330 contributor: fullname: barnes – volume: 36 year: 2017 ident: ref9 article-title: Globally and locally consistent image completion publication-title: ACM Trans Graph doi: 10.1145/3072959.3073659 contributor: fullname: iizuka – ident: ref18 doi: 10.1109/MSP.2013.2273004 – volume: 1 start-page: 901 year: 2015 ident: ref8 article-title: Shepard convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: ren – ident: ref14 doi: 10.1007/s11760-016-0876-7 – ident: ref29 doi: 10.1109/TIP.2014.2387379 – start-page: 115 year: 2000 ident: ref41 article-title: Large margin rank boundaries for ordinal regression publication-title: Advances in Large-Margin Classifiers doi: 10.7551/mitpress/1113.003.0010 contributor: fullname: herbrich – volume: 9120 start-page: 91200s-1 year: 2014 ident: ref25 article-title: Machine learning approach for objective inpainting quality assessment publication-title: Proc SPIE contributor: fullname: frantc – ident: ref13 doi: 10.1109/CVPR.1999.784720 – ident: ref11 doi: 10.1145/1186562.1015720 – ident: ref4 doi: 10.1109/TPAMI.2014.2330611 – ident: ref12 doi: 10.1109/MMUL.2007.60 – ident: ref19 doi: 10.1109/CVPR.2006.330 – ident: ref10 doi: 10.1109/CVPR.2017.434 – ident: ref36 doi: 10.1023/B:VISI.0000022288.19776.77 – ident: ref17 doi: 10.1109/ICCV.2003.1238308 – start-page: 296 year: 2012 ident: ref32 article-title: Memorability of image regions publication-title: Proc Adv Neural Inf Process Syst (NIPS) contributor: fullname: khosla – volume: 33 year: 2014 ident: ref5 article-title: Image completion using planar structure guidance publication-title: ACM Trans Graph doi: 10.1145/2601097.2601205 contributor: fullname: huang – ident: ref1 doi: 10.1109/TIP.2004.833105 – ident: ref21 doi: 10.1109/ICIP.2010.5653640 – ident: ref28 doi: 10.1167/13.4.5 – start-page: 1 year: 2012 ident: ref33 article-title: Superpixel benchmark and comparison publication-title: Proc Forum Bildverarbeitung contributor: fullname: neubert – ident: ref24 doi: 10.1109/ICIP.2013.6738082 – ident: ref30 doi: 10.1109/CVPR.2014.382 – ident: ref22 doi: 10.1117/12.808942 – start-page: 463 year: 2010 ident: ref37 article-title: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent contributor: fullname: lucchi – volume: 9399 start-page: 93990u-1 year: 2015 ident: ref26 article-title: No-reference visual quality assessment for image inpainting publication-title: Proc SPIE contributor: fullname: voronin – ident: ref40 doi: 10.1109/TGRS.2015.2423688 – year: 2010 ident: ref34 article-title: SLIC superpixels contributor: fullname: achanta – ident: ref27 doi: 10.1109/ICIP.2011.6116372 – ident: ref23 doi: 10.1007/978-3-642-33863-2_58 – start-page: 341 year: 2012 ident: ref6 article-title: Image denoising and inpainting with deep neural networks publication-title: Proc 25th Adv Neural Inf Process Syst contributor: fullname: xie – ident: ref39 doi: 10.1109/TIP.2014.2300823 – ident: ref16 doi: 10.1109/ICIP.2016.7533018 |
SSID | ssj0000816957 |
Score | 2.2152662 |
Snippet | This paper proposes a novel approach to image inpainting that optimizes the shape of masked regions given by users. In image inpainting, which removes and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 69728 |
SubjectTerms | Algorithms Computational efficiency Estimation Image restoration Image segmentation Inpainting Laboratories learning-to-rank Optimization Pixels segmentation super pixel Task analysis User requirements |
SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4IwoFZUBMpDiJ7dhjqUCAVFhAYrP8ioQQBdF24ddzdtyK18BmRXnYX-y77-x7ABwbwomguJAapBM5laTJBdM8l77hhWVC0-hEM7rlVw_05pE9duB0EQvjvY_OZ74fmvEs373aWdgqOxMsnJuhgb5US9nGai32U0IBCcnqlFioIPJsMBziGIL3luijXRBKz31TPjFHfyqq8ksSR_VyuQ6jecdar5Ln_mxq-vbjR87G__Z8A9YSz8wG7cTYhI4fb8Hql-yD23Ay0pPn7A5lxksKxsyQwWbXLyhisuvxm36KVSR24OHy4n54laeyCbmlREzzqmqMbyx1BXchRLIm0hjBfFkj2-B1bYRrnKPeIXlhWiJlcxKh0w3TlDRcV7uwPH4d-z3I0JxxorCcaVvQmheaWVR4oqwd6nVW2i6czvFUb212DBWtCiJVC78K8KsEfxfOA-aLW0Nq63gBsVJppShbUZxXEj_qCLaoRgkhjDZa0tKSynRhO-C7eEmCtgu9-R9UaRlOVEnRYCpKpEH7fz91ACuhg-2eSg-Wp-8zf4gsY2qO4vT6BLvmzHI priority: 102 providerName: IEEE |
Title | Mask Optimization for Image Inpainting |
URI | https://ieeexplore.ieee.org/document/8502030 https://www.proquest.com/docview/2455912078 https://doaj.org/article/c34bec9c65d04be4a6388baba942c03b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBCBUmVATIQ6ie3YY6moWqTCQqVulh_xghoqWv4_Z8etihhY2KIkinOf7bvvknsgdKsxw5zARnJAJzIisMs4VSwTtWO5oVyREEQze2GTOXle0MVeqy8fE9aWB26BG5iSwDDCMGoxHBEFC4ZrpZUghcGlDtoXiz1nKuhgnjNBq1hmCK4PhqMRSORjufgDeAm-Ed0PUxQq9scWK7_0cjA24xN0HFliOmzf7hQd1M0ZOtqrHdhFdzO1fk9fYccvYyplCvwznS5BQaTTZgUev49oPkfz8dPbaJLFpgeZIZhvsrJ0unaG2JxZn-BYYaE1p3VRAVdgVaW5ddaS2gL1oEoA4bICRFWOKoIdU-UF6jQfTX2JUnBGLM8BOWVyUrFcUQPmiheVBatMC5Og-638ctXWtpDBJ8BCtnBJD5eMcCXo0WO0u9UXpg4nYLpknC7513QlqOsR3j2EU_8rFCeot0Vcxk20lgUBdycvgMRc_cfQ1-jQi9N-P-mhzubzq74BRrHR_bB4-iH57xtnl8U6 |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hemh7oJSHGgiwB9QTG7y7ttc-phEogYReEomb5ddKFSIgklz49Yy9TtQHh96s1T7sb-2Zb-x5AJwbwomguJAapBM5laTJBdM8l77hhWVC0-hEM7njwxm9uWf3W3CxiYXx3kfnM98LzXiW757sKmyVXQoWzs3QQP-AvFrwNlprs6MSSkhIVqfUQgWRl_3BAEcR_LdEDy2DUHzuD_UTs_Snsir_yOKoYK6_wGTdtdav5KG3Wpqeff0ra-P_9n0XdhLTzPrt1PgKW36-B59_yz-4D98nevGQ_USp8ZjCMTPksNnoEYVMNpo_61-xjsQBzK6vpoNhngon5JYSscyrqjG-sdQV3IUgyZpIYwTzZY18g9e1Ea5xjnqH9IVpiaTNSYRON0xT0nBdHcL2_Gnuv0GGBo0TheVM24LWvNDMosoTZe1Qs7PSduBijad6bvNjqGhXEKla-FWAXyX4O_AjYL65NSS3jhcQK5XWirIVxZkl8aOOYItqlBHCaKMlLS2pTAf2A76blyRoO9Bd_0GVFuJClRRNpqJEInT0_lNn8HE4nYzVeHR3ewyfQmfbHZYubC9fVv4EOcfSnMap9gaX6c-9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mask+Optimization+for+Image+Inpainting&rft.jtitle=IEEE+access&rft.au=Isogawa%2C+Mariko&rft.au=Mikami%2C+Dan&rft.au=Iwai%2C+Daisuke&rft.au=Kimata%2C+Hideaki&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=69728&rft.epage=69741&rft_id=info:doi/10.1109%2FACCESS.2018.2877401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2877401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |