Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury

In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing eve...

Full description

Saved in:
Bibliographic Details
Published inNeuromodulation (Malden, Mass.) Vol. 27; no. 4; pp. 661 - 671
Main Authors Singh, Goutam, Keller, Anastasia, Lucas, Kathryn, Borders, Catherine, Stout, Danielle, King, Molly, Parikh, Parth, Stepp, Nicole, Ugiliweneza, Beatrice, D’Amico, Jessica M., Gerasimenko, Yury, Behrman, Andrea L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1094-7159
1525-1403
1525-1403
DOI10.1016/j.neurom.2023.04.475

Cover

Abstract In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3–C4 and C6–C7) and thoracic (T10–T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20–70 mA and thoracic site = 25–190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. The Clinicaltrials.gov registration number for the study is NCT04032990.
AbstractList In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3–C4 and C6–C7) and thoracic (T10–T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20–70 mA and thoracic site = 25–190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. The Clinicaltrials.gov registration number for the study is NCT04032990.
In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.OBJECTIVEIn adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.MATERIALS AND METHODSIn this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.RESULTSAll seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.CONCLUSIONSWe indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.The Clinicaltrials.gov registration number for the study is NCT04032990.CLINICAL TRIAL REGISTRATIONThe Clinicaltrials.gov registration number for the study is NCT04032990.
Author King, Molly
Stout, Danielle
Parikh, Parth
D’Amico, Jessica M.
Lucas, Kathryn
Behrman, Andrea L.
Borders, Catherine
Stepp, Nicole
Gerasimenko, Yury
Singh, Goutam
Keller, Anastasia
Ugiliweneza, Beatrice
Author_xml – sequence: 1
  givenname: Goutam
  orcidid: 0000-0002-3382-2321
  surname: Singh
  fullname: Singh, Goutam
  email: goutam.singh@louisville.edu
  organization: Kosair Charities School of Physical Therapy, Spalding University, Louisville, KY, USA
– sequence: 2
  givenname: Anastasia
  surname: Keller
  fullname: Keller, Anastasia
  organization: University of California San Francisco, San Francisco, CA, USA
– sequence: 3
  givenname: Kathryn
  surname: Lucas
  fullname: Lucas, Kathryn
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 4
  givenname: Catherine
  surname: Borders
  fullname: Borders, Catherine
  organization: University of Louisville Health, Louisville, KY, US
– sequence: 5
  givenname: Danielle
  surname: Stout
  fullname: Stout, Danielle
  organization: University of Louisville Health, Louisville, KY, US
– sequence: 6
  givenname: Molly
  surname: King
  fullname: King, Molly
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 7
  givenname: Parth
  surname: Parikh
  fullname: Parikh, Parth
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 8
  givenname: Nicole
  surname: Stepp
  fullname: Stepp, Nicole
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 9
  givenname: Beatrice
  surname: Ugiliweneza
  fullname: Ugiliweneza, Beatrice
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 10
  givenname: Jessica M.
  surname: D’Amico
  fullname: D’Amico, Jessica M.
  organization: Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
– sequence: 11
  givenname: Yury
  surname: Gerasimenko
  fullname: Gerasimenko, Yury
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
– sequence: 12
  givenname: Andrea L.
  surname: Behrman
  fullname: Behrman, Andrea L.
  organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37269282$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYOMOA_9ByJZuqkyr3q5EKSwnYYRF93iMqRSt-g0VUmbpBr658w_Nd01A-JCV0m43znknnOLrqyzgNBbSnJKaPlhn1uYvZtyRhjPichFVbxAN7RgRUYF4VfpThqRVbRortFtCHtCaNWw6hW65hUrG1azG_S4UQPEE1a2xytQwXRmNOntBtyCPxqtxstsu3NeaaPx1isb9ByVBTcHvDkYm5DW-R5vopnmUUXjLI4Or6eDd0fA92f9Nxedx6vZ6svYWNzuzNh7sPinibv08s4m-z_91nY_-9Nr9HJQY4A3T-cd-rH6sm3vs4fvX9ft54dMC1LHjLOiYd3QiLovSkrrIu0-CM67suSibggQXqmOq0JTUQKIsuOCKpWATlXdUPM79H7xTb_-NUOIcjJBwzgum8oUF-OVEAVL6LsndO4m6OXBm0n5k3yONQEfF0B7F4KHQWoTL8FEr8woKZHnDuVeLh3Kc4eSCJk6TGLxl_jZ_z-yT4sMUkhHA14GbcBq6I0HHWXvzL8NfgPtsrm_
CitedBy_id crossref_primary_10_1097_BSD_0000000000001699
crossref_primary_10_3390_children11091116
crossref_primary_10_1089_neu_2023_0438
Cites_doi 10.2522/ptj.20050212
10.1016/j.clinph.2019.11.056
10.1016/j.rehab.2015.05.003
10.1097/01.BRS.0000129026.03194.0F
10.1038/s41598-022-11306-5
10.1109/TNSRE.2020.3048592
10.1097/WCO.0000000000000382
10.17116/kurort2016523-27
10.1038/sj.sc.3101123
10.1038/s41598-018-33123-5
10.1016/0014-4886(92)90174-O
10.1097/00007632-200106010-00009
10.1371/journal.pone.0192013
10.1017/S0140525X00041613
10.1038/sc.2016.139
10.1089/neu.2017.5584
10.1187/cbe.13-04-0082
10.1038/s41467-021-26026-z
10.1016/j.pmr.2014.09.002
10.1097/NPT.0000000000000184
10.1016/S0166-4115(08)61281-9
10.1038/s41598-017-14003-w
10.1016/j.resp.2009.08.003
10.1089/neu.2017.5461
10.1016/S0003-9993(97)90425-1
10.1097/00003246-200211001-00014
10.1002/mus.21007
10.1371/journal.pone.0260166
10.1310/sci2502-121
10.46292/sci21-00084
10.3389/fnins.2021.615103
10.1093/ptj/80.7.688
10.1007/s10527-017-9642-6
10.1111/nmo.12999
10.1177/2329048X19835656
10.1016/j.medengphy.2010.09.003
10.1016/j.ejpn.2016.07.007
10.1152/jn.00433.2019
10.1177/2151458516681141
10.1016/j.inat.2022.101594
10.46292/sci21-00046
10.1080/10790268.2004.11753786
10.2522/ptj.20070315
10.1016/B978-0-444-52137-8.00016-4
10.14814/phy2.14397
10.1097/jes.0b013e3180a0321b
10.1109/TNSRE.2018.2834339
10.3389/fnins.2021.749465
10.1109/TNSRE.2021.3049133
10.1016/j.neulet.2017.01.003
10.1111/j.1469-8749.2012.04411.x
10.1056/NEJMoa1803588
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neurom.2023.04.475
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1525-1403
EndPage 671
ExternalDocumentID 37269282
10_1016_j_neurom_2023_04_475
S1094715923006487
Genre Journal Article
GrantInformation_xml – fundername: University of Louisville
– fundername: School of Medicine
– fundername: Heritage
– fundername: Ministry of Science and Higher Education of the Russian Federation
GroupedDBID ---
.3N
.GA
.Y3
05W
10A
123
1OC
29N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6I.
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFTH
AAHHS
AAONW
AAQFI
AAQQT
AAXUO
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFNM
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACGFS
ACMXC
ACPOU
ACPRK
ACRLP
ACSCC
ACXME
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFXIZ
AFZJQ
AHMBA
AIACR
AIKHN
AITUG
AIURR
AIWBW
AJAOE
AJBDE
AKRWK
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMRAJ
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMXJE
BNPGV
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBS
EFJIC
EJD
EMK
EST
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FUBAC
FYGXN
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SSH
SUPJJ
SV3
T5K
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
XG1
YFH
ZZTAW
~IA
~WT
0R~
AALRI
AANHP
AATTM
AAYWO
AAYXX
ACIEU
ACRPL
ACVFH
ACYXJ
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
AAMMB
ADPDF
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c408t-32592bf948d561185094f433b6634890e037ab3a5c146ee46b341aa33bba7bf83
IEDL.DBID AIKHN
ISSN 1094-7159
1525-1403
IngestDate Fri Sep 05 04:54:04 EDT 2025
Mon Jul 21 06:01:26 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Tue Jul 01 03:25:49 EDT 2025
Tue Jun 18 08:51:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords spinal cord injury
safety and feasibility
Cervical spinal cord stimulation
hand grip
pediatric
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-32592bf948d561185094f433b6634890e037ab3a5c146ee46b341aa33bba7bf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3382-2321
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1094715923006487
PMID 37269282
PQID 2822374452
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2822374452
pubmed_primary_37269282
crossref_citationtrail_10_1016_j_neurom_2023_04_475
crossref_primary_10_1016_j_neurom_2023_04_475
elsevier_sciencedirect_doi_10_1016_j_neurom_2023_04_475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuromodulation (Malden, Mass.)
PublicationTitleAlternate Neuromodulation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Behrman, Nair, Bowden (bib26) 2008; 88
Krassioukov (bib45) 2009; 169
Hofstoetter, Freundl, Binder, Minassian (bib48) 2018; 13
Levin (bib8) 1996; 19
Mayr, Krenn, Dimitrijevic (bib23) 2016; 29
Wang, Hoh, Leary, Griffith, McComb (bib27) 2004; 29
Nikityuk, Moshonkina, Gerasimenko, Vissarionov, Baindurashvili (bib57) 2016; 93
Vogel (bib3) 2014
Mulcahey, Vogel, Sheikh (bib33) 2017; 55
Hagan, Feler, Sun (bib4) 2022; 29
Behrman, Ardolino, Harkema (bib12) 2017; 41
Behrman, Harkema (bib16) 2000; 80
Freyvert, Yong, Morikawa (bib22) 2018; 8
Wu, Levine, Wecht (bib46) 2020; 131
Proctor (bib2) 2002; 30
Behrman, Bowden, Nair (bib13) 2006; 86
Maher, Markey, Ebert-May (bib41) 2013; 12
Indrayan, Holt (bib38) 2016
Smith, Mulcahey, Betz (bib10) 2001; 39
Angeli, Boakye, Morton (bib18) 2018; 379
Inanici, Brighton, Samejima, Hofstetter, Moritz (bib53) 2021; 29
Wong, Wilson, Winkelstein (bib34) 2001
Powell, Davidson (bib6) 2015; 26
Kumru, Flores, Rodríguez-Cañón (bib37) 2021; 10
Parhizi, Barss, Mushahwar (bib55) 2021; 15
Ismail, Fatemi, Johnston (bib25) 2017; 21
Kunkel-Bagden, Dai, Bregman (bib28) 1992; 116
bib1
Hickey, Vogel, Willis, Anderson (bib44) 2004; 27
Schottler, Vogel, Sturm (bib5) 2012; 54
Keller, Singh, Sommerfeld (bib31) 2021; 12
Brock, Brock, Aziz (bib47) 2017; 29
McIntyre, Sadowsky, Behrman (bib9) 2022; 28
Dean, Yates, Collins (bib14) 2008; 38
Collins (bib15) 2007; 35
Zhang, Liu, Zhou, Wei, Liu (bib51) 2021; 15
Taylor, McHugh, Mockler, Minogue, Reilly, Fleming (bib52) 2021; 16
Rejc, Angeli, Atkinson, Harkema (bib19) 2017; 7
Gerasimenko, Gorodnichev, Moshonkina, Sayenko, Gad, Reggie Edgerton (bib24) 2015; 58
Grishin, Moshonkina, Solopova, Gorodnichev, Gerasimenko (bib36) 2017; 50
Broderick, Kennedy, Breen, Kearns, ÓLaighin (bib42) 2011; 33
Thaler, Toledo, Korte (bib43) 2017; 8
Mulcahey, Betz, Smith, Weiss, Davis (bib11) 1997; 78
Gad, Lee, Terrafranca (bib21) 2018; 35
McGeady, Alam, Zheng, Vučković (bib49) 2022; 11
Inanici, Samejima, Gad, Edgerton, Hofstetter, Moritz (bib20) 2018; 26
Sawilowsky (bib39) 2009; 8
Huang, Nikooyan, Moore (bib35) 2022; 12
Harkema, Behrman, Barbeau (bib17) 2012; 109
Rath, Vette, Ramasubramaniam (bib30) 2018; 35
Zhang, Momeni, Ramanujam (bib54) 2020; 28
Cohen (bib40) 1988
Manson, Calvert, Ling, Tychhon, Ali, Sayenko (bib50) 2020; 8
Solopova, Sukhotina, Zhvansky (bib58) 2017; 639
Singh, Lucas, Keller (bib60) 2023; 29
Behrman, Trimble, Argetsinger (bib32) 2019; 25
Motavalli, McElroy, Alon (bib59) 2019; 6
Wakabayashi, Komori, Kawa-Uchi (bib29) 2001; 26
Ada, Canning, Carr, Kilbreath, Shepherd (bib7) 1994
Barss, Parhizi, Mushahwar (bib56) 2020; 123
Hickey (10.1016/j.neurom.2023.04.475_bib44) 2004; 27
Cohen (10.1016/j.neurom.2023.04.475_bib40) 1988
Behrman (10.1016/j.neurom.2023.04.475_bib26) 2008; 88
Harkema (10.1016/j.neurom.2023.04.475_bib17) 2012; 109
Angeli (10.1016/j.neurom.2023.04.475_bib18) 2018; 379
Singh (10.1016/j.neurom.2023.04.475_bib60) 2023; 29
McGeady (10.1016/j.neurom.2023.04.475_bib49) 2022; 11
Brock (10.1016/j.neurom.2023.04.475_bib47) 2017; 29
Motavalli (10.1016/j.neurom.2023.04.475_bib59) 2019; 6
Wong (10.1016/j.neurom.2023.04.475_bib34) 2001
Mulcahey (10.1016/j.neurom.2023.04.475_bib33) 2017; 55
Parhizi (10.1016/j.neurom.2023.04.475_bib55) 2021; 15
Manson (10.1016/j.neurom.2023.04.475_bib50) 2020; 8
Zhang (10.1016/j.neurom.2023.04.475_bib54) 2020; 28
Mayr (10.1016/j.neurom.2023.04.475_bib23) 2016; 29
Behrman (10.1016/j.neurom.2023.04.475_bib32) 2019; 25
Zhang (10.1016/j.neurom.2023.04.475_bib51) 2021; 15
Powell (10.1016/j.neurom.2023.04.475_bib6) 2015; 26
Inanici (10.1016/j.neurom.2023.04.475_bib53) 2021; 29
Behrman (10.1016/j.neurom.2023.04.475_bib12) 2017; 41
Wu (10.1016/j.neurom.2023.04.475_bib46) 2020; 131
Collins (10.1016/j.neurom.2023.04.475_bib15) 2007; 35
Freyvert (10.1016/j.neurom.2023.04.475_bib22) 2018; 8
McIntyre (10.1016/j.neurom.2023.04.475_bib9) 2022; 28
Grishin (10.1016/j.neurom.2023.04.475_bib36) 2017; 50
Rejc (10.1016/j.neurom.2023.04.475_bib19) 2017; 7
Keller (10.1016/j.neurom.2023.04.475_bib31) 2021; 12
Ismail (10.1016/j.neurom.2023.04.475_bib25) 2017; 21
Solopova (10.1016/j.neurom.2023.04.475_bib58) 2017; 639
Hagan (10.1016/j.neurom.2023.04.475_bib4) 2022; 29
Smith (10.1016/j.neurom.2023.04.475_bib10) 2001; 39
Inanici (10.1016/j.neurom.2023.04.475_bib20) 2018; 26
Indrayan (10.1016/j.neurom.2023.04.475_bib38) 2016
Kumru (10.1016/j.neurom.2023.04.475_bib37) 2021; 10
Mulcahey (10.1016/j.neurom.2023.04.475_bib11) 1997; 78
Kunkel-Bagden (10.1016/j.neurom.2023.04.475_bib28) 1992; 116
Vogel (10.1016/j.neurom.2023.04.475_bib3) 2014
Gad (10.1016/j.neurom.2023.04.475_bib21) 2018; 35
Thaler (10.1016/j.neurom.2023.04.475_bib43) 2017; 8
Schottler (10.1016/j.neurom.2023.04.475_bib5) 2012; 54
Wakabayashi (10.1016/j.neurom.2023.04.475_bib29) 2001; 26
Maher (10.1016/j.neurom.2023.04.475_bib41) 2013; 12
Behrman (10.1016/j.neurom.2023.04.475_bib16) 2000; 80
Broderick (10.1016/j.neurom.2023.04.475_bib42) 2011; 33
Hofstoetter (10.1016/j.neurom.2023.04.475_bib48) 2018; 13
Taylor (10.1016/j.neurom.2023.04.475_bib52) 2021; 16
Wang (10.1016/j.neurom.2023.04.475_bib27) 2004; 29
Nikityuk (10.1016/j.neurom.2023.04.475_bib57) 2016; 93
Gerasimenko (10.1016/j.neurom.2023.04.475_bib24) 2015; 58
Dean (10.1016/j.neurom.2023.04.475_bib14) 2008; 38
Rath (10.1016/j.neurom.2023.04.475_bib30) 2018; 35
Krassioukov (10.1016/j.neurom.2023.04.475_bib45) 2009; 169
Huang (10.1016/j.neurom.2023.04.475_bib35) 2022; 12
Sawilowsky (10.1016/j.neurom.2023.04.475_bib39) 2009; 8
Levin (10.1016/j.neurom.2023.04.475_bib8) 1996; 19
Behrman (10.1016/j.neurom.2023.04.475_bib13) 2006; 86
Ada (10.1016/j.neurom.2023.04.475_bib7) 1994
Barss (10.1016/j.neurom.2023.04.475_bib56) 2020; 123
Proctor (10.1016/j.neurom.2023.04.475_bib2) 2002; 30
References_xml – volume: 39
  start-page: 118
  year: 2001
  end-page: 123
  ident: bib10
  article-title: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury
  publication-title: Spinal Cord
– start-page: 239
  year: 1994
  end-page: 265
  ident: bib7
  article-title: Chapter 12. Task-specific training of reaching and manipulation
  publication-title: Advances in Psychology
– volume: 28
  start-page: 13
  year: 2022
  end-page: 90
  ident: bib9
  article-title: A systematic review of the scientific literature for rehabilitation/habilitation among individuals with pediatric-onset spinal cord injury
  publication-title: Top Spinal Cord Inj Rehabil
– volume: 29
  start-page: 310
  year: 2021
  end-page: 319
  ident: bib53
  article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 26
  start-page: 1215
  year: 2001
  end-page: 1222
  ident: bib29
  article-title: Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy
  publication-title: Spine
– volume: 639
  start-page: 192
  year: 2017
  end-page: 198
  ident: bib58
  article-title: Effects of spinal cord stimulation on motor functions in children with cerebral palsy
  publication-title: Neurosci Lett
– volume: 29
  year: 2022
  ident: bib4
  article-title: Spinal cord injury in adult and pediatric populations
  publication-title: Interdiscip Neurosurg
– volume: 93
  start-page: 23
  year: 2016
  end-page: 27
  ident: bib57
  article-title: The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Article in Russian
  publication-title: Vopr Kurortol Fizioter Lech Fiz Kult
– volume: 54
  start-page: 1138
  year: 2012
  end-page: 1143
  ident: bib5
  article-title: Spinal cord injuries in young children: a review of children injured at 5 years of age and younger
  publication-title: Dev Med Child Neurol
– volume: 169
  start-page: 157
  year: 2009
  end-page: 164
  ident: bib45
  article-title: Autonomic function following cervical spinal cord injury
  publication-title: Respir Physiol Neurobiol
– volume: 16
  year: 2021
  ident: bib52
  article-title: Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: a methodological review
  publication-title: PLoS One
– volume: 80
  start-page: 688
  year: 2000
  end-page: 700
  ident: bib16
  article-title: Locomotor training after human spinal cord injury: a series of case studies
  publication-title: Phys Ther
– volume: 116
  start-page: 40
  year: 1992
  end-page: 51
  ident: bib28
  article-title: Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function
  publication-title: Exp Neurol
– volume: 27
  start-page: S54
  year: 2004
  end-page: S60
  ident: bib44
  article-title: Prevalence and etiology of autonomic dysreflexia in children with spinal cord injuries
  publication-title: J Spinal Cord Med
– volume: 35
  start-page: 2145
  year: 2018
  end-page: 2158
  ident: bib21
  article-title: Non-invasive activation of cervical spinal networks after severe paralysis
  publication-title: J Neurotrauma
– year: 1988
  ident: bib40
  article-title: Statistical Power Analysis for the Behavioral Sciences
– volume: 12
  start-page: 7733
  year: 2022
  ident: bib35
  article-title: Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury
  publication-title: Sci Rep
– volume: 55
  start-page: 331
  year: 2017
  end-page: 340
  ident: bib33
  article-title: Recommendations for the National Institute for Neurologic Disorders and Stroke spinal cord injury common data elements for children and youth with SCI
  publication-title: Spinal Cord
– volume: 8
  year: 2018
  ident: bib22
  article-title: Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients
  publication-title: Sci Rep
– volume: 88
  start-page: 580
  year: 2008
  end-page: 590
  ident: bib26
  article-title: Locomotor training restores walking in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury
  publication-title: Phys Ther. May
– volume: 8
  start-page: 26
  year: 2009
  ident: bib39
  article-title: New effect size rules of thumb
  publication-title: J Mod App Stat Meth
– volume: 41
  start-page: S39
  year: 2017
  end-page: S45
  ident: bib12
  article-title: Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury
  publication-title: J Neurol Phys Ther
– volume: 29
  start-page: 721
  year: 2016
  end-page: 726
  ident: bib23
  article-title: Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury
  publication-title: Curr Opin Neurol
– volume: 12
  start-page: 5850
  year: 2021
  ident: bib31
  article-title: Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury
  publication-title: Nat Commun
– volume: 123
  start-page: 158
  year: 2020
  end-page: 166
  ident: bib56
  article-title: Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks
  publication-title: J Neurophysiol
– volume: 11
  start-page: 1043
  year: 2022
  ident: bib49
  article-title: Effect of cervical transcutaneous spinal cord stimulation on sensorimotor cortical activity during upper-limb movements in healthy individuals
  publication-title: J Clin Med
– volume: 7
  year: 2017
  ident: bib19
  article-title: Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic
  publication-title: Sci Rep
– volume: 26
  start-page: 1272
  year: 2018
  end-page: 1278
  ident: bib20
  article-title: Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2014
  ident: bib3
  article-title: Spinal Cord Injury in the Child and Young Adult
– volume: 78
  start-page: 597
  year: 1997
  end-page: 607
  ident: bib11
  article-title: Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation
  publication-title: Arch Phys Med Rehabil
– volume: 15
  year: 2021
  ident: bib51
  article-title: Restoring sensorimotor function through neuromodulation after spinal cord injury: progress and remaining challenges
  publication-title: Front Neurosci
– volume: 35
  start-page: 102
  year: 2007
  end-page: 109
  ident: bib15
  article-title: Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation
  publication-title: Exerc Sport Sci Rev
– volume: 8
  start-page: 44
  year: 2017
  end-page: 48
  ident: bib43
  article-title: Can direct current electrotherapy be used for patients with orthopedic implants?
  publication-title: Geriatr Orthop Surg Rehabil
– volume: 29
  year: 2017
  ident: bib47
  article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha
  publication-title: Neurogastroenterol Motil
– volume: 29
  start-page: 16
  year: 2023
  end-page: 32
  ident: bib60
  article-title: Transcutaneous spinal stimulation from adults to children: a review
  publication-title: Top Spinal Cord Inj Rehabil
– volume: 21
  start-page: 23
  year: 2017
  end-page: 48
  ident: bib25
  article-title: Cerebral plasticity: windows of opportunity in the developing brain
  publication-title: Eur J Paediatr Neurol
– start-page: 144
  year: 2001
  end-page: 184
  ident: bib34
  article-title: Pain Assessment and managment in children
  publication-title: Wong’s Essentials of Pediatric Nursing
– volume: 58
  start-page: 225
  year: 2015
  end-page: 231
  ident: bib24
  article-title: Transcutaneous electrical spinal-cord stimulation in humans
  publication-title: Ann Phys Rehabil Med
– volume: 109
  start-page: 259
  year: 2012
  end-page: 274
  ident: bib17
  article-title: Evidence-based therapy for recovery of function after spinal cord injury
  publication-title: Handb Clin Neurol
– volume: 26
  start-page: 109
  year: 2015
  end-page: 132
  ident: bib6
  article-title: Pediatric spinal cord injury: a review by organ system
  publication-title: Phys Med Rehabil Clin N Am
– volume: 29
  start-page: 1493
  year: 2004
  end-page: 1497
  ident: bib27
  article-title: High rates of neurological improvement following severe traumatic pediatric spinal cord injury
  publication-title: Spine
– volume: 379
  start-page: 1244
  year: 2018
  end-page: 1250
  ident: bib18
  article-title: Recovery of over-ground walking after chronic motor complete spinal cord injury
  publication-title: N Engl J Med
– volume: 15
  year: 2021
  ident: bib55
  article-title: Simultaneous cervical and lumbar spinal cord stimulation induces facilitation of both spinal and corticospinal circuitry in humans
  publication-title: Front Neurosci
– volume: 131
  start-page: 451
  year: 2020
  end-page: 460
  ident: bib46
  article-title: Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots
  publication-title: Clin Neurophysiol
– volume: 6
  year: 2019
  ident: bib59
  article-title: An exploratory electrical stimulation protocol in the management of an infant with spina bifida: a case report
  publication-title: Child Neurol Open
– volume: 50
  start-page: 300
  year: 2017
  end-page: 304
  ident: bib36
  article-title: A five-channel noninvasive electrical stimulator of the spinal cord for rehabilitation of patients with severe motor disorders
  publication-title: Biomed Eng
– volume: 30
  start-page: S489
  year: 2002
  end-page: S499
  ident: bib2
  article-title: Spinal cord injury
  publication-title: Crit Care Med
– volume: 86
  start-page: 1406
  year: 2006
  end-page: 1425
  ident: bib13
  article-title: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery
  publication-title: Phys Ther
– volume: 25
  start-page: 121
  year: 2019
  end-page: 131
  ident: bib32
  article-title: Interrater reliability of the pediatric neuromuscular recovery scale for spinal cord injury
  publication-title: Top Spinal Cord Inj Rehabil
– volume: 33
  start-page: 56
  year: 2011
  end-page: 61
  ident: bib42
  article-title: Patient tolerance of neuromuscular electrical stimulation (NMES) in the presence of orthopaedic implants
  publication-title: Med Eng Phys
– volume: 35
  start-page: 2540
  year: 2018
  end-page: 2553
  ident: bib30
  article-title: Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury
  publication-title: J Neurotrauma
– volume: 10
  start-page: 195
  year: 2021
  ident: bib37
  article-title: Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention
  publication-title: J Clin Med
– volume: 12
  start-page: 345
  year: 2013
  end-page: 351
  ident: bib41
  article-title: The other half of the story: effect size analysis in quantitative research
  publication-title: CBE Life Sci Educ
– volume: 8
  year: 2020
  ident: bib50
  article-title: The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration
  publication-title: Physiol Rep
– volume: 38
  start-page: 978
  year: 2008
  end-page: 986
  ident: bib14
  article-title: Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation
  publication-title: Muscle Nerve
– ident: bib1
  article-title: Spinal cord injury facts and figures at a glance. Center NSCIS
– volume: 28
  start-page: 3167
  year: 2020
  end-page: 3174
  ident: bib54
  article-title: Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2016
  ident: bib38
  article-title: Concise Encyclopedia of Biostatistics for Medical Professionals by Abhaya Indrayan and Martin Holt
– volume: 19
  start-page: 79
  year: 1996
  end-page: 80
  ident: bib8
  article-title: Should stereotypic movement synergies in hemiparetic patients be considered adaptive?
  publication-title: Behav Brain Sci
– volume: 13
  year: 2018
  ident: bib48
  article-title: Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes
  publication-title: PLoS One
– volume: 86
  start-page: 1406
  year: 2006
  ident: 10.1016/j.neurom.2023.04.475_bib13
  article-title: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery
  publication-title: Phys Ther
  doi: 10.2522/ptj.20050212
– volume: 131
  start-page: 451
  year: 2020
  ident: 10.1016/j.neurom.2023.04.475_bib46
  article-title: Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2019.11.056
– year: 1988
  ident: 10.1016/j.neurom.2023.04.475_bib40
– volume: 58
  start-page: 225
  year: 2015
  ident: 10.1016/j.neurom.2023.04.475_bib24
  article-title: Transcutaneous electrical spinal-cord stimulation in humans
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2015.05.003
– volume: 29
  start-page: 1493
  year: 2004
  ident: 10.1016/j.neurom.2023.04.475_bib27
  article-title: High rates of neurological improvement following severe traumatic pediatric spinal cord injury
  publication-title: Spine
  doi: 10.1097/01.BRS.0000129026.03194.0F
– volume: 12
  start-page: 7733
  year: 2022
  ident: 10.1016/j.neurom.2023.04.475_bib35
  article-title: Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-11306-5
– volume: 28
  start-page: 3167
  year: 2020
  ident: 10.1016/j.neurom.2023.04.475_bib54
  article-title: Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3048592
– volume: 29
  start-page: 721
  year: 2016
  ident: 10.1016/j.neurom.2023.04.475_bib23
  article-title: Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000382
– volume: 93
  start-page: 23
  year: 2016
  ident: 10.1016/j.neurom.2023.04.475_bib57
  article-title: The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Article in Russian
  publication-title: Vopr Kurortol Fizioter Lech Fiz Kult
  doi: 10.17116/kurort2016523-27
– volume: 39
  start-page: 118
  year: 2001
  ident: 10.1016/j.neurom.2023.04.475_bib10
  article-title: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101123
– volume: 8
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib22
  article-title: Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33123-5
– volume: 116
  start-page: 40
  year: 1992
  ident: 10.1016/j.neurom.2023.04.475_bib28
  article-title: Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function
  publication-title: Exp Neurol
  doi: 10.1016/0014-4886(92)90174-O
– volume: 26
  start-page: 1215
  year: 2001
  ident: 10.1016/j.neurom.2023.04.475_bib29
  article-title: Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy
  publication-title: Spine
  doi: 10.1097/00007632-200106010-00009
– volume: 13
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib48
  article-title: Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192013
– volume: 19
  start-page: 79
  year: 1996
  ident: 10.1016/j.neurom.2023.04.475_bib8
  article-title: Should stereotypic movement synergies in hemiparetic patients be considered adaptive?
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00041613
– volume: 55
  start-page: 331
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib33
  article-title: Recommendations for the National Institute for Neurologic Disorders and Stroke spinal cord injury common data elements for children and youth with SCI
  publication-title: Spinal Cord
  doi: 10.1038/sc.2016.139
– volume: 35
  start-page: 2540
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib30
  article-title: Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2017.5584
– volume: 12
  start-page: 345
  year: 2013
  ident: 10.1016/j.neurom.2023.04.475_bib41
  article-title: The other half of the story: effect size analysis in quantitative research
  publication-title: CBE Life Sci Educ
  doi: 10.1187/cbe.13-04-0082
– volume: 8
  start-page: 26
  year: 2009
  ident: 10.1016/j.neurom.2023.04.475_bib39
  article-title: New effect size rules of thumb
  publication-title: J Mod App Stat Meth
– volume: 12
  start-page: 5850
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib31
  article-title: Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26026-z
– volume: 26
  start-page: 109
  year: 2015
  ident: 10.1016/j.neurom.2023.04.475_bib6
  article-title: Pediatric spinal cord injury: a review by organ system
  publication-title: Phys Med Rehabil Clin N Am
  doi: 10.1016/j.pmr.2014.09.002
– volume: 41
  start-page: S39
  issue: suppl 3 Suppl 3 IV STEP Spec Iss
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib12
  article-title: Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury
  publication-title: J Neurol Phys Ther
  doi: 10.1097/NPT.0000000000000184
– start-page: 239
  year: 1994
  ident: 10.1016/j.neurom.2023.04.475_bib7
  article-title: Chapter 12. Task-specific training of reaching and manipulation
  doi: 10.1016/S0166-4115(08)61281-9
– volume: 7
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib19
  article-title: Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14003-w
– volume: 169
  start-page: 157
  year: 2009
  ident: 10.1016/j.neurom.2023.04.475_bib45
  article-title: Autonomic function following cervical spinal cord injury
  publication-title: Respir Physiol Neurobiol
  doi: 10.1016/j.resp.2009.08.003
– volume: 35
  start-page: 2145
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib21
  article-title: Non-invasive activation of cervical spinal networks after severe paralysis
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2017.5461
– volume: 10
  start-page: 195
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib37
  article-title: Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention
  publication-title: J Clin Med
– volume: 78
  start-page: 597
  year: 1997
  ident: 10.1016/j.neurom.2023.04.475_bib11
  article-title: Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/S0003-9993(97)90425-1
– start-page: 144
  year: 2001
  ident: 10.1016/j.neurom.2023.04.475_bib34
  article-title: Pain Assessment and managment in children
– volume: 30
  start-page: S489
  issue: 11 suppl
  year: 2002
  ident: 10.1016/j.neurom.2023.04.475_bib2
  article-title: Spinal cord injury
  publication-title: Crit Care Med
  doi: 10.1097/00003246-200211001-00014
– volume: 38
  start-page: 978
  year: 2008
  ident: 10.1016/j.neurom.2023.04.475_bib14
  article-title: Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation
  publication-title: Muscle Nerve
  doi: 10.1002/mus.21007
– volume: 16
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib52
  article-title: Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: a methodological review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0260166
– volume: 25
  start-page: 121
  year: 2019
  ident: 10.1016/j.neurom.2023.04.475_bib32
  article-title: Interrater reliability of the pediatric neuromuscular recovery scale for spinal cord injury
  publication-title: Top Spinal Cord Inj Rehabil
  doi: 10.1310/sci2502-121
– volume: 29
  start-page: 16
  year: 2023
  ident: 10.1016/j.neurom.2023.04.475_bib60
  article-title: Transcutaneous spinal stimulation from adults to children: a review
  publication-title: Top Spinal Cord Inj Rehabil
  doi: 10.46292/sci21-00084
– volume: 15
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib55
  article-title: Simultaneous cervical and lumbar spinal cord stimulation induces facilitation of both spinal and corticospinal circuitry in humans
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.615103
– volume: 80
  start-page: 688
  year: 2000
  ident: 10.1016/j.neurom.2023.04.475_bib16
  article-title: Locomotor training after human spinal cord injury: a series of case studies
  publication-title: Phys Ther
  doi: 10.1093/ptj/80.7.688
– volume: 50
  start-page: 300
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib36
  article-title: A five-channel noninvasive electrical stimulator of the spinal cord for rehabilitation of patients with severe motor disorders
  publication-title: Biomed Eng
  doi: 10.1007/s10527-017-9642-6
– volume: 29
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib47
  article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha
  publication-title: Neurogastroenterol Motil
  doi: 10.1111/nmo.12999
– volume: 6
  year: 2019
  ident: 10.1016/j.neurom.2023.04.475_bib59
  article-title: An exploratory electrical stimulation protocol in the management of an infant with spina bifida: a case report
  publication-title: Child Neurol Open
  doi: 10.1177/2329048X19835656
– year: 2016
  ident: 10.1016/j.neurom.2023.04.475_bib38
– volume: 33
  start-page: 56
  year: 2011
  ident: 10.1016/j.neurom.2023.04.475_bib42
  article-title: Patient tolerance of neuromuscular electrical stimulation (NMES) in the presence of orthopaedic implants
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.09.003
– volume: 21
  start-page: 23
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib25
  article-title: Cerebral plasticity: windows of opportunity in the developing brain
  publication-title: Eur J Paediatr Neurol
  doi: 10.1016/j.ejpn.2016.07.007
– volume: 123
  start-page: 158
  year: 2020
  ident: 10.1016/j.neurom.2023.04.475_bib56
  article-title: Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00433.2019
– volume: 8
  start-page: 44
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib43
  article-title: Can direct current electrotherapy be used for patients with orthopedic implants?
  publication-title: Geriatr Orthop Surg Rehabil
  doi: 10.1177/2151458516681141
– volume: 29
  year: 2022
  ident: 10.1016/j.neurom.2023.04.475_bib4
  article-title: Spinal cord injury in adult and pediatric populations
  publication-title: Interdiscip Neurosurg
  doi: 10.1016/j.inat.2022.101594
– volume: 28
  start-page: 13
  year: 2022
  ident: 10.1016/j.neurom.2023.04.475_bib9
  article-title: A systematic review of the scientific literature for rehabilitation/habilitation among individuals with pediatric-onset spinal cord injury
  publication-title: Top Spinal Cord Inj Rehabil
  doi: 10.46292/sci21-00046
– volume: 27
  start-page: S54
  issue: suppl 1
  year: 2004
  ident: 10.1016/j.neurom.2023.04.475_bib44
  article-title: Prevalence and etiology of autonomic dysreflexia in children with spinal cord injuries
  publication-title: J Spinal Cord Med
  doi: 10.1080/10790268.2004.11753786
– volume: 88
  start-page: 580
  year: 2008
  ident: 10.1016/j.neurom.2023.04.475_bib26
  article-title: Locomotor training restores walking in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury
  publication-title: Phys Ther. May
  doi: 10.2522/ptj.20070315
– volume: 109
  start-page: 259
  year: 2012
  ident: 10.1016/j.neurom.2023.04.475_bib17
  article-title: Evidence-based therapy for recovery of function after spinal cord injury
  publication-title: Handb Clin Neurol
  doi: 10.1016/B978-0-444-52137-8.00016-4
– volume: 8
  year: 2020
  ident: 10.1016/j.neurom.2023.04.475_bib50
  article-title: The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration
  publication-title: Physiol Rep
  doi: 10.14814/phy2.14397
– volume: 11
  start-page: 1043
  year: 2022
  ident: 10.1016/j.neurom.2023.04.475_bib49
  article-title: Effect of cervical transcutaneous spinal cord stimulation on sensorimotor cortical activity during upper-limb movements in healthy individuals
  publication-title: J Clin Med
– volume: 35
  start-page: 102
  year: 2007
  ident: 10.1016/j.neurom.2023.04.475_bib15
  article-title: Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/jes.0b013e3180a0321b
– volume: 26
  start-page: 1272
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib20
  article-title: Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2834339
– year: 2014
  ident: 10.1016/j.neurom.2023.04.475_bib3
– volume: 15
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib51
  article-title: Restoring sensorimotor function through neuromodulation after spinal cord injury: progress and remaining challenges
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.749465
– volume: 29
  start-page: 310
  year: 2021
  ident: 10.1016/j.neurom.2023.04.475_bib53
  article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3049133
– volume: 639
  start-page: 192
  year: 2017
  ident: 10.1016/j.neurom.2023.04.475_bib58
  article-title: Effects of spinal cord stimulation on motor functions in children with cerebral palsy
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2017.01.003
– volume: 54
  start-page: 1138
  year: 2012
  ident: 10.1016/j.neurom.2023.04.475_bib5
  article-title: Spinal cord injuries in young children: a review of children injured at 5 years of age and younger
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2012.04411.x
– volume: 379
  start-page: 1244
  year: 2018
  ident: 10.1016/j.neurom.2023.04.475_bib18
  article-title: Recovery of over-ground walking after chronic motor complete spinal cord injury
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1803588
SSID ssj0017927
Score 2.3952575
Snippet In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 661
SubjectTerms Adolescent
Cervical Cord - injuries
Cervical Cord - physiology
Cervical spinal cord stimulation
Cervical Vertebrae
Child
Chronic Disease
Feasibility Studies
Female
Hand - physiology
Hand - physiopathology
hand grip
Hand Strength - physiology
Humans
Male
pediatric
Pilot Projects
safety and feasibility
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - therapy
spinal cord injury
Spinal Cord Stimulation - methods
Thoracic Vertebrae
Transcutaneous Electric Nerve Stimulation - methods
Treatment Outcome
Title Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury
URI https://dx.doi.org/10.1016/j.neurom.2023.04.475
https://www.ncbi.nlm.nih.gov/pubmed/37269282
https://www.proquest.com/docview/2822374452
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5tJLaZJ-bJuGKZTezHot2bKPi-mySUkO3YTmJmRbJg6NvbTew_6c_tM-yfJCoCXQi8GWZBvPeN4baTTD2Ceua5heHgeiygQOURboah4FlY6lqHVShcZODVxeJasbcXEb3x6wfNwLY8Mqve0fbLqz1v7KzH_N2aZpZus5PBMJNAaJBq6m8hk7jHiWxBN2uDj_urraLybIzFVutf0DO2DcQefCvFzaSLslPeI256mwAYd_R6h_MVCHRMuX7IWnkLQY3vKIHZj2mJ0sWrjPDzv6TC6o082Wn7Dfa12bfke6rQhsz8fC7qirKXdWAjeybdd3UIWyKclhV7kFZTTd9hetN7ZqFuVwUWndNw--2Bf1HQ3TEYZWdvxlB9-dlgBJ19y0lPtd4vS96e_I5-B9dL_z9h4CfcVull-u81XgqzIEpQjTPuBwmKKizkRagXsB7vFZa8F5Ae4i0iw0IZe64DouYYSNEUkBoNQaHQotizrlr9mk7VrzlpEAu4GcU7f-Op-bNBWGl1CTqoDfFodTxkdJqNKnLLeVM36oMTbtXg3yU1Z-KhQK8puyYD9qM6TseKK_HIWsHqmeAqo8MfLjqBMKf6Vdahmko2xwLpdCxNGUvRmUZf8uXEZJhg7v_vu579lznIkhYu2UTfqfW_MB3Kgvzrzun8E7-Bb9AWWiD9M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb5swED516cP2Mq3ttmZbu6s07Q2FYBPDY4QWkbXJS1Ktb5YBo1K1EHXkIT9n_3RnYyJV2lSpLzxgGyzuuO87-3wH8I2pkkwvCz1exJwuQeypYhx4hQoFL9Wk8LVZGlgsJ-k1_3kT3hxA0p-FMWGVzvZ3Nt1aa3dn5L7maFNVo9WYPBNBaEwkmnA1Eq_gkIfk7Q3gcDq_TJf7zQQR28qtpr9nBvQn6GyYl00baY6kB8zkPOUm4PDfCPU_BmqRaPYO3joKidNulkdwoOtjOJnW5D4_7PA72qBOu1p-An9WqtTtDlVdILE9Fwu7w6bExFoJepBpW9-SKuRVjha78i1RRt1sf-NqY6pmYUIuKq7a6sEV-8K2wW45QmNqxi8a8t1xRiBpm6saE3dKHH9V7S26HLxPnjev70ig7-F69mOdpJ6ryuDl3I9aj5HDFGRlzKOCuBfBPX3WkjOWEXfhUexrnwmVMRXmZIS15pOMgFIp6pApkZUR-wCDuqn1KSAndkNyjuz-63iso4hrlpOaFBn5baE_BNZLQuYuZbmpnHEv-9i0O9nJTxr5SZ9Lkt8QvP2oTZey45n-oheyfKJ6klDlmZEXvU5I-ivNVksnHWmCc5ngPAyG8LFTlv1cmAgmMXX49OL3foXX6XpxJa_my8vP8IZaeBe99gUG7eNWnxFParNz9x_8BeXZEdc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+and+Feasibility+of+Cervical+and+Thoracic+Transcutaneous+Spinal+Cord+Stimulation+to+Improve+Hand+Motor+Function+in+Children+With+Chronic+Spinal+Cord+Injury&rft.jtitle=Neuromodulation+%28Malden%2C+Mass.%29&rft.au=Singh%2C+Goutam&rft.au=Keller%2C+Anastasia&rft.au=Lucas%2C+Kathryn&rft.au=Borders%2C+Catherine&rft.date=2024-06-01&rft.eissn=1525-1403&rft.volume=27&rft.issue=4&rft.spage=661&rft_id=info:doi/10.1016%2Fj.neurom.2023.04.475&rft_id=info%3Apmid%2F37269282&rft.externalDocID=37269282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-7159&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-7159&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-7159&client=summon