Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury
In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing eve...
Saved in:
Published in | Neuromodulation (Malden, Mass.) Vol. 27; no. 4; pp. 661 - 671 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1094-7159 1525-1403 1525-1403 |
DOI | 10.1016/j.neurom.2023.04.475 |
Cover
Abstract | In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.
In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3–C4 and C6–C7) and thoracic (T10–T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.
All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20–70 mA and thoracic site = 25–190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.
We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.
The Clinicaltrials.gov registration number for the study is NCT04032990. |
---|---|
AbstractList | In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.
In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3–C4 and C6–C7) and thoracic (T10–T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.
All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20–70 mA and thoracic site = 25–190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.
We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.
The Clinicaltrials.gov registration number for the study is NCT04032990. In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.OBJECTIVEIn adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI.In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.MATERIALS AND METHODSIn this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks.All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.RESULTSAll seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS.We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.CONCLUSIONSWe indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS.The Clinicaltrials.gov registration number for the study is NCT04032990.CLINICAL TRIAL REGISTRATIONThe Clinicaltrials.gov registration number for the study is NCT04032990. |
Author | King, Molly Stout, Danielle Parikh, Parth D’Amico, Jessica M. Lucas, Kathryn Behrman, Andrea L. Borders, Catherine Stepp, Nicole Gerasimenko, Yury Singh, Goutam Keller, Anastasia Ugiliweneza, Beatrice |
Author_xml | – sequence: 1 givenname: Goutam orcidid: 0000-0002-3382-2321 surname: Singh fullname: Singh, Goutam email: goutam.singh@louisville.edu organization: Kosair Charities School of Physical Therapy, Spalding University, Louisville, KY, USA – sequence: 2 givenname: Anastasia surname: Keller fullname: Keller, Anastasia organization: University of California San Francisco, San Francisco, CA, USA – sequence: 3 givenname: Kathryn surname: Lucas fullname: Lucas, Kathryn organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 4 givenname: Catherine surname: Borders fullname: Borders, Catherine organization: University of Louisville Health, Louisville, KY, US – sequence: 5 givenname: Danielle surname: Stout fullname: Stout, Danielle organization: University of Louisville Health, Louisville, KY, US – sequence: 6 givenname: Molly surname: King fullname: King, Molly organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 7 givenname: Parth surname: Parikh fullname: Parikh, Parth organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 8 givenname: Nicole surname: Stepp fullname: Stepp, Nicole organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 9 givenname: Beatrice surname: Ugiliweneza fullname: Ugiliweneza, Beatrice organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 10 givenname: Jessica M. surname: D’Amico fullname: D’Amico, Jessica M. organization: Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada – sequence: 11 givenname: Yury surname: Gerasimenko fullname: Gerasimenko, Yury organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA – sequence: 12 givenname: Andrea L. surname: Behrman fullname: Behrman, Andrea L. organization: Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37269282$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEUhYOMOA_9ByJZuqkyr3q5EKSwnYYRF93iMqRSt-g0VUmbpBr658w_Nd01A-JCV0m43znknnOLrqyzgNBbSnJKaPlhn1uYvZtyRhjPichFVbxAN7RgRUYF4VfpThqRVbRortFtCHtCaNWw6hW65hUrG1azG_S4UQPEE1a2xytQwXRmNOntBtyCPxqtxstsu3NeaaPx1isb9ByVBTcHvDkYm5DW-R5vopnmUUXjLI4Or6eDd0fA92f9Nxedx6vZ6svYWNzuzNh7sPinibv08s4m-z_91nY_-9Nr9HJQY4A3T-cd-rH6sm3vs4fvX9ft54dMC1LHjLOiYd3QiLovSkrrIu0-CM67suSibggQXqmOq0JTUQKIsuOCKpWATlXdUPM79H7xTb_-NUOIcjJBwzgum8oUF-OVEAVL6LsndO4m6OXBm0n5k3yONQEfF0B7F4KHQWoTL8FEr8woKZHnDuVeLh3Kc4eSCJk6TGLxl_jZ_z-yT4sMUkhHA14GbcBq6I0HHWXvzL8NfgPtsrm_ |
CitedBy_id | crossref_primary_10_1097_BSD_0000000000001699 crossref_primary_10_3390_children11091116 crossref_primary_10_1089_neu_2023_0438 |
Cites_doi | 10.2522/ptj.20050212 10.1016/j.clinph.2019.11.056 10.1016/j.rehab.2015.05.003 10.1097/01.BRS.0000129026.03194.0F 10.1038/s41598-022-11306-5 10.1109/TNSRE.2020.3048592 10.1097/WCO.0000000000000382 10.17116/kurort2016523-27 10.1038/sj.sc.3101123 10.1038/s41598-018-33123-5 10.1016/0014-4886(92)90174-O 10.1097/00007632-200106010-00009 10.1371/journal.pone.0192013 10.1017/S0140525X00041613 10.1038/sc.2016.139 10.1089/neu.2017.5584 10.1187/cbe.13-04-0082 10.1038/s41467-021-26026-z 10.1016/j.pmr.2014.09.002 10.1097/NPT.0000000000000184 10.1016/S0166-4115(08)61281-9 10.1038/s41598-017-14003-w 10.1016/j.resp.2009.08.003 10.1089/neu.2017.5461 10.1016/S0003-9993(97)90425-1 10.1097/00003246-200211001-00014 10.1002/mus.21007 10.1371/journal.pone.0260166 10.1310/sci2502-121 10.46292/sci21-00084 10.3389/fnins.2021.615103 10.1093/ptj/80.7.688 10.1007/s10527-017-9642-6 10.1111/nmo.12999 10.1177/2329048X19835656 10.1016/j.medengphy.2010.09.003 10.1016/j.ejpn.2016.07.007 10.1152/jn.00433.2019 10.1177/2151458516681141 10.1016/j.inat.2022.101594 10.46292/sci21-00046 10.1080/10790268.2004.11753786 10.2522/ptj.20070315 10.1016/B978-0-444-52137-8.00016-4 10.14814/phy2.14397 10.1097/jes.0b013e3180a0321b 10.1109/TNSRE.2018.2834339 10.3389/fnins.2021.749465 10.1109/TNSRE.2021.3049133 10.1016/j.neulet.2017.01.003 10.1111/j.1469-8749.2012.04411.x 10.1056/NEJMoa1803588 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neurom.2023.04.475 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1525-1403 |
EndPage | 671 |
ExternalDocumentID | 37269282 10_1016_j_neurom_2023_04_475 S1094715923006487 |
Genre | Journal Article |
GrantInformation_xml | – fundername: University of Louisville – fundername: School of Medicine – fundername: Heritage – fundername: Ministry of Science and Higher Education of the Russian Federation |
GroupedDBID | --- .3N .GA .Y3 05W 10A 123 1OC 29N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 6I. 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFTH AAHHS AAONW AAQFI AAQQT AAXUO AAZKR ABCQN ABCUV ABDBF ABEML ABFNM ABJNI ACAHQ ACBWZ ACCFJ ACGFS ACMXC ACPOU ACPRK ACRLP ACSCC ACXME ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFXIZ AFZJQ AHMBA AIACR AIKHN AITUG AIURR AIWBW AJAOE AJBDE AKRWK ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMRAJ AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMXJE BNPGV BROTX BRXPI BY8 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBS EFJIC EJD EMK EST ESX EX3 F00 F01 F04 F5P FDB FEDTE FUBAC FYGXN G-S G.N GODZA H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SSH SUPJJ SV3 T5K TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI XG1 YFH ZZTAW ~IA ~WT 0R~ AALRI AANHP AATTM AAYWO AAYXX ACIEU ACRPL ACVFH ACYXJ ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION AAMMB ADPDF AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c408t-32592bf948d561185094f433b6634890e037ab3a5c146ee46b341aa33bba7bf83 |
IEDL.DBID | AIKHN |
ISSN | 1094-7159 1525-1403 |
IngestDate | Fri Sep 05 04:54:04 EDT 2025 Mon Jul 21 06:01:26 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 03:25:49 EDT 2025 Tue Jun 18 08:51:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | spinal cord injury safety and feasibility Cervical spinal cord stimulation hand grip pediatric |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-32592bf948d561185094f433b6634890e037ab3a5c146ee46b341aa33bba7bf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3382-2321 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1094715923006487 |
PMID | 37269282 |
PQID | 2822374452 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2822374452 pubmed_primary_37269282 crossref_citationtrail_10_1016_j_neurom_2023_04_475 crossref_primary_10_1016_j_neurom_2023_04_475 elsevier_sciencedirect_doi_10_1016_j_neurom_2023_04_475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-Jun 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuromodulation (Malden, Mass.) |
PublicationTitleAlternate | Neuromodulation |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Behrman, Nair, Bowden (bib26) 2008; 88 Krassioukov (bib45) 2009; 169 Hofstoetter, Freundl, Binder, Minassian (bib48) 2018; 13 Levin (bib8) 1996; 19 Mayr, Krenn, Dimitrijevic (bib23) 2016; 29 Wang, Hoh, Leary, Griffith, McComb (bib27) 2004; 29 Nikityuk, Moshonkina, Gerasimenko, Vissarionov, Baindurashvili (bib57) 2016; 93 Vogel (bib3) 2014 Mulcahey, Vogel, Sheikh (bib33) 2017; 55 Hagan, Feler, Sun (bib4) 2022; 29 Behrman, Ardolino, Harkema (bib12) 2017; 41 Behrman, Harkema (bib16) 2000; 80 Freyvert, Yong, Morikawa (bib22) 2018; 8 Wu, Levine, Wecht (bib46) 2020; 131 Proctor (bib2) 2002; 30 Behrman, Bowden, Nair (bib13) 2006; 86 Maher, Markey, Ebert-May (bib41) 2013; 12 Indrayan, Holt (bib38) 2016 Smith, Mulcahey, Betz (bib10) 2001; 39 Angeli, Boakye, Morton (bib18) 2018; 379 Inanici, Brighton, Samejima, Hofstetter, Moritz (bib53) 2021; 29 Wong, Wilson, Winkelstein (bib34) 2001 Powell, Davidson (bib6) 2015; 26 Kumru, Flores, Rodríguez-Cañón (bib37) 2021; 10 Parhizi, Barss, Mushahwar (bib55) 2021; 15 Ismail, Fatemi, Johnston (bib25) 2017; 21 Kunkel-Bagden, Dai, Bregman (bib28) 1992; 116 bib1 Hickey, Vogel, Willis, Anderson (bib44) 2004; 27 Schottler, Vogel, Sturm (bib5) 2012; 54 Keller, Singh, Sommerfeld (bib31) 2021; 12 Brock, Brock, Aziz (bib47) 2017; 29 McIntyre, Sadowsky, Behrman (bib9) 2022; 28 Dean, Yates, Collins (bib14) 2008; 38 Collins (bib15) 2007; 35 Zhang, Liu, Zhou, Wei, Liu (bib51) 2021; 15 Taylor, McHugh, Mockler, Minogue, Reilly, Fleming (bib52) 2021; 16 Rejc, Angeli, Atkinson, Harkema (bib19) 2017; 7 Gerasimenko, Gorodnichev, Moshonkina, Sayenko, Gad, Reggie Edgerton (bib24) 2015; 58 Grishin, Moshonkina, Solopova, Gorodnichev, Gerasimenko (bib36) 2017; 50 Broderick, Kennedy, Breen, Kearns, ÓLaighin (bib42) 2011; 33 Thaler, Toledo, Korte (bib43) 2017; 8 Mulcahey, Betz, Smith, Weiss, Davis (bib11) 1997; 78 Gad, Lee, Terrafranca (bib21) 2018; 35 McGeady, Alam, Zheng, Vučković (bib49) 2022; 11 Inanici, Samejima, Gad, Edgerton, Hofstetter, Moritz (bib20) 2018; 26 Sawilowsky (bib39) 2009; 8 Huang, Nikooyan, Moore (bib35) 2022; 12 Harkema, Behrman, Barbeau (bib17) 2012; 109 Rath, Vette, Ramasubramaniam (bib30) 2018; 35 Zhang, Momeni, Ramanujam (bib54) 2020; 28 Cohen (bib40) 1988 Manson, Calvert, Ling, Tychhon, Ali, Sayenko (bib50) 2020; 8 Solopova, Sukhotina, Zhvansky (bib58) 2017; 639 Singh, Lucas, Keller (bib60) 2023; 29 Behrman, Trimble, Argetsinger (bib32) 2019; 25 Motavalli, McElroy, Alon (bib59) 2019; 6 Wakabayashi, Komori, Kawa-Uchi (bib29) 2001; 26 Ada, Canning, Carr, Kilbreath, Shepherd (bib7) 1994 Barss, Parhizi, Mushahwar (bib56) 2020; 123 Hickey (10.1016/j.neurom.2023.04.475_bib44) 2004; 27 Cohen (10.1016/j.neurom.2023.04.475_bib40) 1988 Behrman (10.1016/j.neurom.2023.04.475_bib26) 2008; 88 Harkema (10.1016/j.neurom.2023.04.475_bib17) 2012; 109 Angeli (10.1016/j.neurom.2023.04.475_bib18) 2018; 379 Singh (10.1016/j.neurom.2023.04.475_bib60) 2023; 29 McGeady (10.1016/j.neurom.2023.04.475_bib49) 2022; 11 Brock (10.1016/j.neurom.2023.04.475_bib47) 2017; 29 Motavalli (10.1016/j.neurom.2023.04.475_bib59) 2019; 6 Wong (10.1016/j.neurom.2023.04.475_bib34) 2001 Mulcahey (10.1016/j.neurom.2023.04.475_bib33) 2017; 55 Parhizi (10.1016/j.neurom.2023.04.475_bib55) 2021; 15 Manson (10.1016/j.neurom.2023.04.475_bib50) 2020; 8 Zhang (10.1016/j.neurom.2023.04.475_bib54) 2020; 28 Mayr (10.1016/j.neurom.2023.04.475_bib23) 2016; 29 Behrman (10.1016/j.neurom.2023.04.475_bib32) 2019; 25 Zhang (10.1016/j.neurom.2023.04.475_bib51) 2021; 15 Powell (10.1016/j.neurom.2023.04.475_bib6) 2015; 26 Inanici (10.1016/j.neurom.2023.04.475_bib53) 2021; 29 Behrman (10.1016/j.neurom.2023.04.475_bib12) 2017; 41 Wu (10.1016/j.neurom.2023.04.475_bib46) 2020; 131 Collins (10.1016/j.neurom.2023.04.475_bib15) 2007; 35 Freyvert (10.1016/j.neurom.2023.04.475_bib22) 2018; 8 McIntyre (10.1016/j.neurom.2023.04.475_bib9) 2022; 28 Grishin (10.1016/j.neurom.2023.04.475_bib36) 2017; 50 Rejc (10.1016/j.neurom.2023.04.475_bib19) 2017; 7 Keller (10.1016/j.neurom.2023.04.475_bib31) 2021; 12 Ismail (10.1016/j.neurom.2023.04.475_bib25) 2017; 21 Solopova (10.1016/j.neurom.2023.04.475_bib58) 2017; 639 Hagan (10.1016/j.neurom.2023.04.475_bib4) 2022; 29 Smith (10.1016/j.neurom.2023.04.475_bib10) 2001; 39 Inanici (10.1016/j.neurom.2023.04.475_bib20) 2018; 26 Indrayan (10.1016/j.neurom.2023.04.475_bib38) 2016 Kumru (10.1016/j.neurom.2023.04.475_bib37) 2021; 10 Mulcahey (10.1016/j.neurom.2023.04.475_bib11) 1997; 78 Kunkel-Bagden (10.1016/j.neurom.2023.04.475_bib28) 1992; 116 Vogel (10.1016/j.neurom.2023.04.475_bib3) 2014 Gad (10.1016/j.neurom.2023.04.475_bib21) 2018; 35 Thaler (10.1016/j.neurom.2023.04.475_bib43) 2017; 8 Schottler (10.1016/j.neurom.2023.04.475_bib5) 2012; 54 Wakabayashi (10.1016/j.neurom.2023.04.475_bib29) 2001; 26 Maher (10.1016/j.neurom.2023.04.475_bib41) 2013; 12 Behrman (10.1016/j.neurom.2023.04.475_bib16) 2000; 80 Broderick (10.1016/j.neurom.2023.04.475_bib42) 2011; 33 Hofstoetter (10.1016/j.neurom.2023.04.475_bib48) 2018; 13 Taylor (10.1016/j.neurom.2023.04.475_bib52) 2021; 16 Wang (10.1016/j.neurom.2023.04.475_bib27) 2004; 29 Nikityuk (10.1016/j.neurom.2023.04.475_bib57) 2016; 93 Gerasimenko (10.1016/j.neurom.2023.04.475_bib24) 2015; 58 Dean (10.1016/j.neurom.2023.04.475_bib14) 2008; 38 Rath (10.1016/j.neurom.2023.04.475_bib30) 2018; 35 Krassioukov (10.1016/j.neurom.2023.04.475_bib45) 2009; 169 Huang (10.1016/j.neurom.2023.04.475_bib35) 2022; 12 Sawilowsky (10.1016/j.neurom.2023.04.475_bib39) 2009; 8 Levin (10.1016/j.neurom.2023.04.475_bib8) 1996; 19 Behrman (10.1016/j.neurom.2023.04.475_bib13) 2006; 86 Ada (10.1016/j.neurom.2023.04.475_bib7) 1994 Barss (10.1016/j.neurom.2023.04.475_bib56) 2020; 123 Proctor (10.1016/j.neurom.2023.04.475_bib2) 2002; 30 |
References_xml | – volume: 39 start-page: 118 year: 2001 end-page: 123 ident: bib10 article-title: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury publication-title: Spinal Cord – start-page: 239 year: 1994 end-page: 265 ident: bib7 article-title: Chapter 12. Task-specific training of reaching and manipulation publication-title: Advances in Psychology – volume: 28 start-page: 13 year: 2022 end-page: 90 ident: bib9 article-title: A systematic review of the scientific literature for rehabilitation/habilitation among individuals with pediatric-onset spinal cord injury publication-title: Top Spinal Cord Inj Rehabil – volume: 29 start-page: 310 year: 2021 end-page: 319 ident: bib53 article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 26 start-page: 1215 year: 2001 end-page: 1222 ident: bib29 article-title: Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy publication-title: Spine – volume: 639 start-page: 192 year: 2017 end-page: 198 ident: bib58 article-title: Effects of spinal cord stimulation on motor functions in children with cerebral palsy publication-title: Neurosci Lett – volume: 29 year: 2022 ident: bib4 article-title: Spinal cord injury in adult and pediatric populations publication-title: Interdiscip Neurosurg – volume: 93 start-page: 23 year: 2016 end-page: 27 ident: bib57 article-title: The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Article in Russian publication-title: Vopr Kurortol Fizioter Lech Fiz Kult – volume: 54 start-page: 1138 year: 2012 end-page: 1143 ident: bib5 article-title: Spinal cord injuries in young children: a review of children injured at 5 years of age and younger publication-title: Dev Med Child Neurol – volume: 169 start-page: 157 year: 2009 end-page: 164 ident: bib45 article-title: Autonomic function following cervical spinal cord injury publication-title: Respir Physiol Neurobiol – volume: 16 year: 2021 ident: bib52 article-title: Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: a methodological review publication-title: PLoS One – volume: 80 start-page: 688 year: 2000 end-page: 700 ident: bib16 article-title: Locomotor training after human spinal cord injury: a series of case studies publication-title: Phys Ther – volume: 116 start-page: 40 year: 1992 end-page: 51 ident: bib28 article-title: Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function publication-title: Exp Neurol – volume: 27 start-page: S54 year: 2004 end-page: S60 ident: bib44 article-title: Prevalence and etiology of autonomic dysreflexia in children with spinal cord injuries publication-title: J Spinal Cord Med – volume: 35 start-page: 2145 year: 2018 end-page: 2158 ident: bib21 article-title: Non-invasive activation of cervical spinal networks after severe paralysis publication-title: J Neurotrauma – year: 1988 ident: bib40 article-title: Statistical Power Analysis for the Behavioral Sciences – volume: 12 start-page: 7733 year: 2022 ident: bib35 article-title: Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury publication-title: Sci Rep – volume: 55 start-page: 331 year: 2017 end-page: 340 ident: bib33 article-title: Recommendations for the National Institute for Neurologic Disorders and Stroke spinal cord injury common data elements for children and youth with SCI publication-title: Spinal Cord – volume: 8 year: 2018 ident: bib22 article-title: Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients publication-title: Sci Rep – volume: 88 start-page: 580 year: 2008 end-page: 590 ident: bib26 article-title: Locomotor training restores walking in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury publication-title: Phys Ther. May – volume: 8 start-page: 26 year: 2009 ident: bib39 article-title: New effect size rules of thumb publication-title: J Mod App Stat Meth – volume: 41 start-page: S39 year: 2017 end-page: S45 ident: bib12 article-title: Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury publication-title: J Neurol Phys Ther – volume: 29 start-page: 721 year: 2016 end-page: 726 ident: bib23 article-title: Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury publication-title: Curr Opin Neurol – volume: 12 start-page: 5850 year: 2021 ident: bib31 article-title: Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury publication-title: Nat Commun – volume: 123 start-page: 158 year: 2020 end-page: 166 ident: bib56 article-title: Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks publication-title: J Neurophysiol – volume: 11 start-page: 1043 year: 2022 ident: bib49 article-title: Effect of cervical transcutaneous spinal cord stimulation on sensorimotor cortical activity during upper-limb movements in healthy individuals publication-title: J Clin Med – volume: 7 year: 2017 ident: bib19 article-title: Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic publication-title: Sci Rep – volume: 26 start-page: 1272 year: 2018 end-page: 1278 ident: bib20 article-title: Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia publication-title: IEEE Trans Neural Syst Rehabil Eng – year: 2014 ident: bib3 article-title: Spinal Cord Injury in the Child and Young Adult – volume: 78 start-page: 597 year: 1997 end-page: 607 ident: bib11 article-title: Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation publication-title: Arch Phys Med Rehabil – volume: 15 year: 2021 ident: bib51 article-title: Restoring sensorimotor function through neuromodulation after spinal cord injury: progress and remaining challenges publication-title: Front Neurosci – volume: 35 start-page: 102 year: 2007 end-page: 109 ident: bib15 article-title: Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation publication-title: Exerc Sport Sci Rev – volume: 8 start-page: 44 year: 2017 end-page: 48 ident: bib43 article-title: Can direct current electrotherapy be used for patients with orthopedic implants? publication-title: Geriatr Orthop Surg Rehabil – volume: 29 year: 2017 ident: bib47 article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha publication-title: Neurogastroenterol Motil – volume: 29 start-page: 16 year: 2023 end-page: 32 ident: bib60 article-title: Transcutaneous spinal stimulation from adults to children: a review publication-title: Top Spinal Cord Inj Rehabil – volume: 21 start-page: 23 year: 2017 end-page: 48 ident: bib25 article-title: Cerebral plasticity: windows of opportunity in the developing brain publication-title: Eur J Paediatr Neurol – start-page: 144 year: 2001 end-page: 184 ident: bib34 article-title: Pain Assessment and managment in children publication-title: Wong’s Essentials of Pediatric Nursing – volume: 58 start-page: 225 year: 2015 end-page: 231 ident: bib24 article-title: Transcutaneous electrical spinal-cord stimulation in humans publication-title: Ann Phys Rehabil Med – volume: 109 start-page: 259 year: 2012 end-page: 274 ident: bib17 article-title: Evidence-based therapy for recovery of function after spinal cord injury publication-title: Handb Clin Neurol – volume: 26 start-page: 109 year: 2015 end-page: 132 ident: bib6 article-title: Pediatric spinal cord injury: a review by organ system publication-title: Phys Med Rehabil Clin N Am – volume: 29 start-page: 1493 year: 2004 end-page: 1497 ident: bib27 article-title: High rates of neurological improvement following severe traumatic pediatric spinal cord injury publication-title: Spine – volume: 379 start-page: 1244 year: 2018 end-page: 1250 ident: bib18 article-title: Recovery of over-ground walking after chronic motor complete spinal cord injury publication-title: N Engl J Med – volume: 15 year: 2021 ident: bib55 article-title: Simultaneous cervical and lumbar spinal cord stimulation induces facilitation of both spinal and corticospinal circuitry in humans publication-title: Front Neurosci – volume: 131 start-page: 451 year: 2020 end-page: 460 ident: bib46 article-title: Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots publication-title: Clin Neurophysiol – volume: 6 year: 2019 ident: bib59 article-title: An exploratory electrical stimulation protocol in the management of an infant with spina bifida: a case report publication-title: Child Neurol Open – volume: 50 start-page: 300 year: 2017 end-page: 304 ident: bib36 article-title: A five-channel noninvasive electrical stimulator of the spinal cord for rehabilitation of patients with severe motor disorders publication-title: Biomed Eng – volume: 30 start-page: S489 year: 2002 end-page: S499 ident: bib2 article-title: Spinal cord injury publication-title: Crit Care Med – volume: 86 start-page: 1406 year: 2006 end-page: 1425 ident: bib13 article-title: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery publication-title: Phys Ther – volume: 25 start-page: 121 year: 2019 end-page: 131 ident: bib32 article-title: Interrater reliability of the pediatric neuromuscular recovery scale for spinal cord injury publication-title: Top Spinal Cord Inj Rehabil – volume: 33 start-page: 56 year: 2011 end-page: 61 ident: bib42 article-title: Patient tolerance of neuromuscular electrical stimulation (NMES) in the presence of orthopaedic implants publication-title: Med Eng Phys – volume: 35 start-page: 2540 year: 2018 end-page: 2553 ident: bib30 article-title: Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury publication-title: J Neurotrauma – volume: 10 start-page: 195 year: 2021 ident: bib37 article-title: Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention publication-title: J Clin Med – volume: 12 start-page: 345 year: 2013 end-page: 351 ident: bib41 article-title: The other half of the story: effect size analysis in quantitative research publication-title: CBE Life Sci Educ – volume: 8 year: 2020 ident: bib50 article-title: The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration publication-title: Physiol Rep – volume: 38 start-page: 978 year: 2008 end-page: 986 ident: bib14 article-title: Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation publication-title: Muscle Nerve – ident: bib1 article-title: Spinal cord injury facts and figures at a glance. Center NSCIS – volume: 28 start-page: 3167 year: 2020 end-page: 3174 ident: bib54 article-title: Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study publication-title: IEEE Trans Neural Syst Rehabil Eng – year: 2016 ident: bib38 article-title: Concise Encyclopedia of Biostatistics for Medical Professionals by Abhaya Indrayan and Martin Holt – volume: 19 start-page: 79 year: 1996 end-page: 80 ident: bib8 article-title: Should stereotypic movement synergies in hemiparetic patients be considered adaptive? publication-title: Behav Brain Sci – volume: 13 year: 2018 ident: bib48 article-title: Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes publication-title: PLoS One – volume: 86 start-page: 1406 year: 2006 ident: 10.1016/j.neurom.2023.04.475_bib13 article-title: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery publication-title: Phys Ther doi: 10.2522/ptj.20050212 – volume: 131 start-page: 451 year: 2020 ident: 10.1016/j.neurom.2023.04.475_bib46 article-title: Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2019.11.056 – year: 1988 ident: 10.1016/j.neurom.2023.04.475_bib40 – volume: 58 start-page: 225 year: 2015 ident: 10.1016/j.neurom.2023.04.475_bib24 article-title: Transcutaneous electrical spinal-cord stimulation in humans publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2015.05.003 – volume: 29 start-page: 1493 year: 2004 ident: 10.1016/j.neurom.2023.04.475_bib27 article-title: High rates of neurological improvement following severe traumatic pediatric spinal cord injury publication-title: Spine doi: 10.1097/01.BRS.0000129026.03194.0F – volume: 12 start-page: 7733 year: 2022 ident: 10.1016/j.neurom.2023.04.475_bib35 article-title: Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury publication-title: Sci Rep doi: 10.1038/s41598-022-11306-5 – volume: 28 start-page: 3167 year: 2020 ident: 10.1016/j.neurom.2023.04.475_bib54 article-title: Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3048592 – volume: 29 start-page: 721 year: 2016 ident: 10.1016/j.neurom.2023.04.475_bib23 article-title: Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000382 – volume: 93 start-page: 23 year: 2016 ident: 10.1016/j.neurom.2023.04.475_bib57 article-title: The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Article in Russian publication-title: Vopr Kurortol Fizioter Lech Fiz Kult doi: 10.17116/kurort2016523-27 – volume: 39 start-page: 118 year: 2001 ident: 10.1016/j.neurom.2023.04.475_bib10 article-title: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury publication-title: Spinal Cord doi: 10.1038/sj.sc.3101123 – volume: 8 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib22 article-title: Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients publication-title: Sci Rep doi: 10.1038/s41598-018-33123-5 – volume: 116 start-page: 40 year: 1992 ident: 10.1016/j.neurom.2023.04.475_bib28 article-title: Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function publication-title: Exp Neurol doi: 10.1016/0014-4886(92)90174-O – volume: 26 start-page: 1215 year: 2001 ident: 10.1016/j.neurom.2023.04.475_bib29 article-title: Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy publication-title: Spine doi: 10.1097/00007632-200106010-00009 – volume: 13 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib48 article-title: Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes publication-title: PLoS One doi: 10.1371/journal.pone.0192013 – volume: 19 start-page: 79 year: 1996 ident: 10.1016/j.neurom.2023.04.475_bib8 article-title: Should stereotypic movement synergies in hemiparetic patients be considered adaptive? publication-title: Behav Brain Sci doi: 10.1017/S0140525X00041613 – volume: 55 start-page: 331 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib33 article-title: Recommendations for the National Institute for Neurologic Disorders and Stroke spinal cord injury common data elements for children and youth with SCI publication-title: Spinal Cord doi: 10.1038/sc.2016.139 – volume: 35 start-page: 2540 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib30 article-title: Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury publication-title: J Neurotrauma doi: 10.1089/neu.2017.5584 – volume: 12 start-page: 345 year: 2013 ident: 10.1016/j.neurom.2023.04.475_bib41 article-title: The other half of the story: effect size analysis in quantitative research publication-title: CBE Life Sci Educ doi: 10.1187/cbe.13-04-0082 – volume: 8 start-page: 26 year: 2009 ident: 10.1016/j.neurom.2023.04.475_bib39 article-title: New effect size rules of thumb publication-title: J Mod App Stat Meth – volume: 12 start-page: 5850 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib31 article-title: Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury publication-title: Nat Commun doi: 10.1038/s41467-021-26026-z – volume: 26 start-page: 109 year: 2015 ident: 10.1016/j.neurom.2023.04.475_bib6 article-title: Pediatric spinal cord injury: a review by organ system publication-title: Phys Med Rehabil Clin N Am doi: 10.1016/j.pmr.2014.09.002 – volume: 41 start-page: S39 issue: suppl 3 Suppl 3 IV STEP Spec Iss year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib12 article-title: Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury publication-title: J Neurol Phys Ther doi: 10.1097/NPT.0000000000000184 – start-page: 239 year: 1994 ident: 10.1016/j.neurom.2023.04.475_bib7 article-title: Chapter 12. Task-specific training of reaching and manipulation doi: 10.1016/S0166-4115(08)61281-9 – volume: 7 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib19 article-title: Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic publication-title: Sci Rep doi: 10.1038/s41598-017-14003-w – volume: 169 start-page: 157 year: 2009 ident: 10.1016/j.neurom.2023.04.475_bib45 article-title: Autonomic function following cervical spinal cord injury publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2009.08.003 – volume: 35 start-page: 2145 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib21 article-title: Non-invasive activation of cervical spinal networks after severe paralysis publication-title: J Neurotrauma doi: 10.1089/neu.2017.5461 – volume: 10 start-page: 195 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib37 article-title: Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention publication-title: J Clin Med – volume: 78 start-page: 597 year: 1997 ident: 10.1016/j.neurom.2023.04.475_bib11 article-title: Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(97)90425-1 – start-page: 144 year: 2001 ident: 10.1016/j.neurom.2023.04.475_bib34 article-title: Pain Assessment and managment in children – volume: 30 start-page: S489 issue: 11 suppl year: 2002 ident: 10.1016/j.neurom.2023.04.475_bib2 article-title: Spinal cord injury publication-title: Crit Care Med doi: 10.1097/00003246-200211001-00014 – volume: 38 start-page: 978 year: 2008 ident: 10.1016/j.neurom.2023.04.475_bib14 article-title: Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation publication-title: Muscle Nerve doi: 10.1002/mus.21007 – volume: 16 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib52 article-title: Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: a methodological review publication-title: PLoS One doi: 10.1371/journal.pone.0260166 – volume: 25 start-page: 121 year: 2019 ident: 10.1016/j.neurom.2023.04.475_bib32 article-title: Interrater reliability of the pediatric neuromuscular recovery scale for spinal cord injury publication-title: Top Spinal Cord Inj Rehabil doi: 10.1310/sci2502-121 – volume: 29 start-page: 16 year: 2023 ident: 10.1016/j.neurom.2023.04.475_bib60 article-title: Transcutaneous spinal stimulation from adults to children: a review publication-title: Top Spinal Cord Inj Rehabil doi: 10.46292/sci21-00084 – volume: 15 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib55 article-title: Simultaneous cervical and lumbar spinal cord stimulation induces facilitation of both spinal and corticospinal circuitry in humans publication-title: Front Neurosci doi: 10.3389/fnins.2021.615103 – volume: 80 start-page: 688 year: 2000 ident: 10.1016/j.neurom.2023.04.475_bib16 article-title: Locomotor training after human spinal cord injury: a series of case studies publication-title: Phys Ther doi: 10.1093/ptj/80.7.688 – volume: 50 start-page: 300 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib36 article-title: A five-channel noninvasive electrical stimulator of the spinal cord for rehabilitation of patients with severe motor disorders publication-title: Biomed Eng doi: 10.1007/s10527-017-9642-6 – volume: 29 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib47 article-title: Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha publication-title: Neurogastroenterol Motil doi: 10.1111/nmo.12999 – volume: 6 year: 2019 ident: 10.1016/j.neurom.2023.04.475_bib59 article-title: An exploratory electrical stimulation protocol in the management of an infant with spina bifida: a case report publication-title: Child Neurol Open doi: 10.1177/2329048X19835656 – year: 2016 ident: 10.1016/j.neurom.2023.04.475_bib38 – volume: 33 start-page: 56 year: 2011 ident: 10.1016/j.neurom.2023.04.475_bib42 article-title: Patient tolerance of neuromuscular electrical stimulation (NMES) in the presence of orthopaedic implants publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.09.003 – volume: 21 start-page: 23 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib25 article-title: Cerebral plasticity: windows of opportunity in the developing brain publication-title: Eur J Paediatr Neurol doi: 10.1016/j.ejpn.2016.07.007 – volume: 123 start-page: 158 year: 2020 ident: 10.1016/j.neurom.2023.04.475_bib56 article-title: Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks publication-title: J Neurophysiol doi: 10.1152/jn.00433.2019 – volume: 8 start-page: 44 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib43 article-title: Can direct current electrotherapy be used for patients with orthopedic implants? publication-title: Geriatr Orthop Surg Rehabil doi: 10.1177/2151458516681141 – volume: 29 year: 2022 ident: 10.1016/j.neurom.2023.04.475_bib4 article-title: Spinal cord injury in adult and pediatric populations publication-title: Interdiscip Neurosurg doi: 10.1016/j.inat.2022.101594 – volume: 28 start-page: 13 year: 2022 ident: 10.1016/j.neurom.2023.04.475_bib9 article-title: A systematic review of the scientific literature for rehabilitation/habilitation among individuals with pediatric-onset spinal cord injury publication-title: Top Spinal Cord Inj Rehabil doi: 10.46292/sci21-00046 – volume: 27 start-page: S54 issue: suppl 1 year: 2004 ident: 10.1016/j.neurom.2023.04.475_bib44 article-title: Prevalence and etiology of autonomic dysreflexia in children with spinal cord injuries publication-title: J Spinal Cord Med doi: 10.1080/10790268.2004.11753786 – volume: 88 start-page: 580 year: 2008 ident: 10.1016/j.neurom.2023.04.475_bib26 article-title: Locomotor training restores walking in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury publication-title: Phys Ther. May doi: 10.2522/ptj.20070315 – volume: 109 start-page: 259 year: 2012 ident: 10.1016/j.neurom.2023.04.475_bib17 article-title: Evidence-based therapy for recovery of function after spinal cord injury publication-title: Handb Clin Neurol doi: 10.1016/B978-0-444-52137-8.00016-4 – volume: 8 year: 2020 ident: 10.1016/j.neurom.2023.04.475_bib50 article-title: The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration publication-title: Physiol Rep doi: 10.14814/phy2.14397 – volume: 11 start-page: 1043 year: 2022 ident: 10.1016/j.neurom.2023.04.475_bib49 article-title: Effect of cervical transcutaneous spinal cord stimulation on sensorimotor cortical activity during upper-limb movements in healthy individuals publication-title: J Clin Med – volume: 35 start-page: 102 year: 2007 ident: 10.1016/j.neurom.2023.04.475_bib15 article-title: Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation publication-title: Exerc Sport Sci Rev doi: 10.1097/jes.0b013e3180a0321b – volume: 26 start-page: 1272 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib20 article-title: Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2834339 – year: 2014 ident: 10.1016/j.neurom.2023.04.475_bib3 – volume: 15 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib51 article-title: Restoring sensorimotor function through neuromodulation after spinal cord injury: progress and remaining challenges publication-title: Front Neurosci doi: 10.3389/fnins.2021.749465 – volume: 29 start-page: 310 year: 2021 ident: 10.1016/j.neurom.2023.04.475_bib53 article-title: Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3049133 – volume: 639 start-page: 192 year: 2017 ident: 10.1016/j.neurom.2023.04.475_bib58 article-title: Effects of spinal cord stimulation on motor functions in children with cerebral palsy publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.01.003 – volume: 54 start-page: 1138 year: 2012 ident: 10.1016/j.neurom.2023.04.475_bib5 article-title: Spinal cord injuries in young children: a review of children injured at 5 years of age and younger publication-title: Dev Med Child Neurol doi: 10.1111/j.1469-8749.2012.04411.x – volume: 379 start-page: 1244 year: 2018 ident: 10.1016/j.neurom.2023.04.475_bib18 article-title: Recovery of over-ground walking after chronic motor complete spinal cord injury publication-title: N Engl J Med doi: 10.1056/NEJMoa1803588 |
SSID | ssj0017927 |
Score | 2.3952575 |
Snippet | In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 661 |
SubjectTerms | Adolescent Cervical Cord - injuries Cervical Cord - physiology Cervical spinal cord stimulation Cervical Vertebrae Child Chronic Disease Feasibility Studies Female Hand - physiology Hand - physiopathology hand grip Hand Strength - physiology Humans Male pediatric Pilot Projects safety and feasibility Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy spinal cord injury Spinal Cord Stimulation - methods Thoracic Vertebrae Transcutaneous Electric Nerve Stimulation - methods Treatment Outcome |
Title | Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury |
URI | https://dx.doi.org/10.1016/j.neurom.2023.04.475 https://www.ncbi.nlm.nih.gov/pubmed/37269282 https://www.proquest.com/docview/2822374452 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXp5tJLaZJ-bJuGKZTezHot2bKPi-mySUkO3YTmJmRbJg6NvbTew_6c_tM-yfJCoCXQi8GWZBvPeN4baTTD2Ceua5heHgeiygQOURboah4FlY6lqHVShcZODVxeJasbcXEb3x6wfNwLY8Mqve0fbLqz1v7KzH_N2aZpZus5PBMJNAaJBq6m8hk7jHiWxBN2uDj_urraLybIzFVutf0DO2DcQefCvFzaSLslPeI256mwAYd_R6h_MVCHRMuX7IWnkLQY3vKIHZj2mJ0sWrjPDzv6TC6o082Wn7Dfa12bfke6rQhsz8fC7qirKXdWAjeybdd3UIWyKclhV7kFZTTd9hetN7ZqFuVwUWndNw--2Bf1HQ3TEYZWdvxlB9-dlgBJ19y0lPtd4vS96e_I5-B9dL_z9h4CfcVull-u81XgqzIEpQjTPuBwmKKizkRagXsB7vFZa8F5Ae4i0iw0IZe64DouYYSNEUkBoNQaHQotizrlr9mk7VrzlpEAu4GcU7f-Op-bNBWGl1CTqoDfFodTxkdJqNKnLLeVM36oMTbtXg3yU1Z-KhQK8puyYD9qM6TseKK_HIWsHqmeAqo8MfLjqBMKf6Vdahmko2xwLpdCxNGUvRmUZf8uXEZJhg7v_vu579lznIkhYu2UTfqfW_MB3Kgvzrzun8E7-Bb9AWWiD9M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb5swED516cP2Mq3ttmZbu6s07Q2FYBPDY4QWkbXJS1Ktb5YBo1K1EHXkIT9n_3RnYyJV2lSpLzxgGyzuuO87-3wH8I2pkkwvCz1exJwuQeypYhx4hQoFL9Wk8LVZGlgsJ-k1_3kT3hxA0p-FMWGVzvZ3Nt1aa3dn5L7maFNVo9WYPBNBaEwkmnA1Eq_gkIfk7Q3gcDq_TJf7zQQR28qtpr9nBvQn6GyYl00baY6kB8zkPOUm4PDfCPU_BmqRaPYO3joKidNulkdwoOtjOJnW5D4_7PA72qBOu1p-An9WqtTtDlVdILE9Fwu7w6bExFoJepBpW9-SKuRVjha78i1RRt1sf-NqY6pmYUIuKq7a6sEV-8K2wW45QmNqxi8a8t1xRiBpm6saE3dKHH9V7S26HLxPnjev70ig7-F69mOdpJ6ryuDl3I9aj5HDFGRlzKOCuBfBPX3WkjOWEXfhUexrnwmVMRXmZIS15pOMgFIp6pApkZUR-wCDuqn1KSAndkNyjuz-63iso4hrlpOaFBn5baE_BNZLQuYuZbmpnHEv-9i0O9nJTxr5SZ9Lkt8QvP2oTZey45n-oheyfKJ6klDlmZEXvU5I-ivNVksnHWmCc5ngPAyG8LFTlv1cmAgmMXX49OL3foXX6XpxJa_my8vP8IZaeBe99gUG7eNWnxFParNz9x_8BeXZEdc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+and+Feasibility+of+Cervical+and+Thoracic+Transcutaneous+Spinal+Cord+Stimulation+to+Improve+Hand+Motor+Function+in+Children+With+Chronic+Spinal+Cord+Injury&rft.jtitle=Neuromodulation+%28Malden%2C+Mass.%29&rft.au=Singh%2C+Goutam&rft.au=Keller%2C+Anastasia&rft.au=Lucas%2C+Kathryn&rft.au=Borders%2C+Catherine&rft.date=2024-06-01&rft.eissn=1525-1403&rft.volume=27&rft.issue=4&rft.spage=661&rft_id=info:doi/10.1016%2Fj.neurom.2023.04.475&rft_id=info%3Apmid%2F37269282&rft.externalDocID=37269282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-7159&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-7159&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-7159&client=summon |