Efficient Floating Point Arithmetic for Quantum Computers

One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 72400 - 72415
Main Authors Seidel, Raphael, Tcholtchev, Nikolay, Bock, Sebastian, Becker, Colin Kai-Uwe, Hauswirth, Manfred
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3188251

Cover

Loading…
Abstract One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions, which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}/2^{n}\mathbb {Z} </tex-math></inline-formula> ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.
AbstractList One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions, which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic <tex-math notation="LaTeX">$\mathbb {Z}/2^{n}\mathbb {Z}$ </tex-math> ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.
One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions, which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic [Formula Omitted] ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.
One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions, which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}/2^{n}\mathbb {Z} </tex-math></inline-formula> ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.
Author Hauswirth, Manfred
Seidel, Raphael
Bock, Sebastian
Becker, Colin Kai-Uwe
Tcholtchev, Nikolay
Author_xml – sequence: 1
  givenname: Raphael
  orcidid: 0000-0003-3560-9556
  surname: Seidel
  fullname: Seidel, Raphael
  email: raphael.seidel@fokus.fraunhofer.de
  organization: Fraunhofer Institute for Open Communication Systems, Berlin, Germany
– sequence: 2
  givenname: Nikolay
  surname: Tcholtchev
  fullname: Tcholtchev, Nikolay
  organization: Fraunhofer Institute for Open Communication Systems, Berlin, Germany
– sequence: 3
  givenname: Sebastian
  orcidid: 0000-0001-8362-8458
  surname: Bock
  fullname: Bock, Sebastian
  organization: Fraunhofer Institute for Open Communication Systems, Berlin, Germany
– sequence: 4
  givenname: Colin Kai-Uwe
  orcidid: 0000-0003-1487-8669
  surname: Becker
  fullname: Becker, Colin Kai-Uwe
  organization: Fraunhofer Institute for Open Communication Systems, Berlin, Germany
– sequence: 5
  givenname: Manfred
  surname: Hauswirth
  fullname: Hauswirth, Manfred
  organization: Fraunhofer Institute for Open Communication Systems, Berlin, Germany
BookMark eNqFkU1PAjEQhhuDiYj8Ai6beAb7ybZHsgElIVGDnpvSbbFkd4vd7sF_b3EJMV7sZdrJvO9Mn7kFg8Y3BoAJgjOEoHhYFMVyu51hiPGMIM4xQ1dgiNFcTAkj88Gv-w0Yt-0BpsNTiuVDIJbWOu1ME7NV5VV0zT578S49F8HFj9pEpzPrQ_baqSZ2dVb4-thFE9o7cG1V1ZrxOY7A-2r5VjxNN8-P62KxmWoKeZxiY6CiWnEBsd7hUpNcEGit5aTMFWWWc4UoR2YndI4YZXPItNUlNEilvxAyAuvet_TqII_B1Sp8Sa-c_En4sJcqpCkrI3OGuKEikSCQljlUJSWUclEKrkWyT173vdcx-M_OtFEefBeaNL7Ecy44zBkVqYr0VTr4tg3GXroiKE_IZY9cnpDLM_KkEn9U2sUE1DcxKFf9o530WmeMuXQTHDGY1vYNK3iOvQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1140_epjqt_s40507_024_00241_1
crossref_primary_10_1098_rsta_2023_0392
crossref_primary_10_1016_j_procs_2024_05_190
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1109_MNANO_2024_3378488
crossref_primary_10_1088_2058_9565_ada6f8
crossref_primary_10_1007_s11128_023_04254_0
Cites_doi 10.1109/TCAD.2005.855930
10.1103/physrevlett.95.110502
10.1007/s11128-017-1603-1
10.1017/cbo9780511976667
10.1103/physrevlett.82.1835
10.22331/q-2021-04-08-428
10.1038/s42254-021-00348-9
10.1109/TETC.2019.2910870
10.1088/2058-9565/acaf9d
10.1145/2491682
10.1038/nature25737
10.1088/1367-2630/aaa398
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3188251
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 72415
ExternalDocumentID oai_doaj_org_article_7518e49202304d70ad434489d98c99c7
10_1109_ACCESS_2022_3188251
9815035
Genre orig-research
GrantInformation_xml – fundername: German Federal Ministry of Economic Affairs and Climate Action (BMWK) within the Funding Program “Quantum Computing–Applications for Industry” via the Joint Project QOMPILER
  grantid: 01MQ22005A
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2ee0a4ca8902cb2dc37930fff83d7a45f88a1481eb9c71545605cfcd0e1a88233
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:14 EDT 2025
Mon Jun 30 05:20:30 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 04:21:17 EDT 2025
Wed Aug 27 02:25:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2ee0a4ca8902cb2dc37930fff83d7a45f88a1481eb9c71545605cfcd0e1a88233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1487-8669
0000-0003-3560-9556
0000-0001-8362-8458
OpenAccessLink https://doaj.org/article/7518e49202304d70ad434489d98c99c7
PQID 2689807549
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3188251
doaj_primary_oai_doaj_org_article_7518e49202304d70ad434489d98c99c7
crossref_primary_10_1109_ACCESS_2022_3188251
ieee_primary_9815035
proquest_journals_2689807549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Anis (ref18) 2021
ref15
ref14
ref10
ref2
Oliveira (ref11) 2007; 7
ref1
ref16
ref8
ref7
Cuccaro (ref3) 2004
ref4
ref6
ref5
Borowski (ref12) 1989
Karatsuba (ref17) 1962; 145
Draper (ref9) 2000
References_xml – ident: ref5
  doi: 10.1109/TCAD.2005.855930
– year: 2021
  ident: ref18
  article-title: Qiskit: An open-source framework for quantum computing
– ident: ref16
  doi: 10.1103/physrevlett.95.110502
– ident: ref10
  doi: 10.1007/s11128-017-1603-1
– ident: ref8
  doi: 10.1017/cbo9780511976667
– start-page: 48
  volume-title: Collins Dictionary of Mathematics
  year: 1989
  ident: ref12
– ident: ref14
  doi: 10.1103/physrevlett.82.1835
– ident: ref7
  doi: 10.22331/q-2021-04-08-428
– ident: ref1
  doi: 10.1038/s42254-021-00348-9
– volume-title: arXiv:0410184
  year: 2004
  ident: ref3
  article-title: A new quantum ripple-carry addition circuit
– ident: ref6
  doi: 10.1109/TETC.2019.2910870
– volume-title: arXiv:0008033
  year: 2000
  ident: ref9
  article-title: Addition on a quantum computer
– ident: ref13
  doi: 10.1088/2058-9565/acaf9d
– volume: 145
  start-page: 293
  year: 1962
  ident: ref17
  article-title: Multiplication of many-digital numbers by automatic computers
  publication-title: Dokl. Akad. Nauk SSSR
– ident: ref4
  doi: 10.1145/2491682
– ident: ref2
  doi: 10.1038/nature25737
– volume: 7
  start-page: 17
  issue: 1
  year: 2007
  ident: ref11
  article-title: Quantum bit string comparator: Circuits and applications
  publication-title: Quantum Comput. Comput.
– ident: ref15
  doi: 10.1088/1367-2630/aaa398
SSID ssj0000816957
Score 2.2756095
Snippet One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72400
SubjectTerms Adders
Algorithms
Arithmetic
Boolean
Boolean algebra
Coders
Computers
Data points
Data processing
Floating point arithmetic
Gates (circuits)
Integers
Logic gates
Mathematical analysis
Multiplication
Polynomials
Quantum arithmetic
Quantum computers
Quantum computing
Qubit
Qubits (quantum computing)
Registers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcEBKAWxUKocemy2Xsfe2Mdl1VWFVFQkKvVmJfZYVLS7VZtc-PXMON6ILyFuSRRHY48nnmfPvAE4ll5qIxpdIoGTUtmoSxskxzSgsAG1V8i5wxef5udX6uO1vt6BkzEXBhFT8BlO-TKd5YeN73mr7NQacl8qvQu7BNyGXK1xP4ULSFhdZ2KhmbCni-WS-kAQUEpCpoZzNH9ZfBJHfy6q8sefOC0vq-dwsRVsiCr5Nu27duq__8bZ-L-Sv4Bn2c8sFsPE2IcdXL-Epz-xDx6APUv0EdSwWN1uGo5_Li43N3S7eLjpvt5xemNBPm3xuafh7--KbQWIx1dwtTr7sjwvcyWF0ithulIiikb5hg8VfSuDr8gsRYzRVKFulI7GNISLZthaXyenSmgffRA4a2jgquo17K03a3wDRVSGLLWlVV4FhbG2ca6tqQ2THAapqgnI7RA7n2nGudrFrUtwQ1g36MWxXlzWywROxkb3A8vGv1__wLobX2WK7PSAxtxli3N8noQkFYMsFWrRBFURFrXBGm-pmxM4YD2NH8kqmsDhdia4bM6PTs6NZdZmZd_-vdU7eMICDnszh7DXPfT4nryVrj1K0_QH5Y3j7A
  priority: 102
  providerName: IEEE
Title Efficient Floating Point Arithmetic for Quantum Computers
URI https://ieeexplore.ieee.org/document/9815035
https://www.proquest.com/docview/2689807549
https://doaj.org/article/7518e49202304d70ad434489d98c99c7
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx5ErWK1lj14dGmaTbqZYy0tRVAULPQWtnmg0IfY9v87k92WiqAXj7tkH_lmk5lvk_mGsVthhdK8UKlHcpJKCCoFJ2hPg-fgvLLSU-7w41N3NJYPEzXZK_VFe8JKeeASuDYtC3gJVOWbS5fzwskMKQU40BbAxjxy9Hl7ZCrOwbrTBZVXMkMdDu1ev489QkIoBPJUTRmb31xRVOyvSqz8mJejsxmesOMqSkx65dudsgO_OGNHe9qBdQaDKP6APiMZzpYF7V5OnpfveNhDvv82p-TEBCPS5GWD4G3mybZ-w-qcjYeD1_4oreogpFZyvU6F97yQtqAlQTsVzmY4qHgIQWcuL6QKWhfIajp-injEkIgrG6zjvlNgR7PsgtUWy4W_ZEmQGsfZFH20dNKHHEJXgc41SRQ6IbMGE1tIjK1EwqlWxcxEssDBlDgawtFUODbY3e6ij1Ij4_fm94T1rikJXMcTaHZTmd38ZfYGq5OldjcBjZFtphqsubWcqQbjyoiuBtJclnD1H4--ZofUnfI_TJPV1p8bf4ORyXraih9hKyYRfgHygtnR
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh76IuibkvbHDiSxevYG_u4XbHaAotAAomblfghELBbQXLpr--M441aWlW9JVEcjT2eeD575huAXW65VKySuUdwkgsdZK4dp5gGz7Tz0gpPucOLk_H8QhxeyssN2OtzYbz3MfjMD-kynuW7lW1pq2xfK3RfCvkEnkpKxu2ytfodFSohoWWZqIVGTO9PplPsBYJAzhGbKsrS_G35iSz9qazKH__iuMDMXsFiLVoXV3IzbJt6aH88Ym38X9lfw8vkaWaTbmq8gQ2_fAsvfuEf3AJ9EAkksGE2u11VFAGdna6u8XZyf91c3VGCY4ZebXbWogLau2xdA-LhHVzMDs6n8zzVUsitYKrJufesEraiY0Vbc2cLNEwWQlCFKyshg1IVIqORr7Uto1vFpA3WMT-qcOCKYhs2l6ulfw9ZEApttcZ1XjjhQ6nDWGpVKqI5dFwUA-DrITY2EY1TvYtbEwEH06bTiyG9mKSXAez1jb53PBv_fv0r6a5_lUiy4wMcc5NsztCJkkepCGYJV7LKiQLRqHZaWY3dHMAW6an_SFLRAHbWM8Ekg34wfKw08TYL_eHvrb7As_n54tgcfzs5-gjPSdhup2YHNpv71n9C36WpP8cp-xPwNuc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Floating+Point+Arithmetic+for+Quantum+Computers&rft.jtitle=IEEE+access&rft.au=Seidel%2C+Raphael&rft.au=Tcholtchev%2C+Nikolay&rft.au=Bock%2C+Sebastian&rft.au=Becker%2C+Colin+Kai-Uwe&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=72400&rft.epage=72415&rft_id=info:doi/10.1109%2FACCESS.2022.3188251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3188251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon