Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization

Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cyto...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Molecular cell research Vol. 1866; no. 6; pp. 1019 - 1033
Main Authors Serrano-Bueno, Gloria, Madroñal, Juan Manuel, Manzano-López, Javier, Muñiz, Manuel, Pérez-Castiñeira, José Román, Hernández, Agustín, Serrano, Aurelio
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite. •It is generally believed that the main yeast sPPase Ipp1p is a cytoplasmic enzyme.•We provide evidence indicating that Ipp1p is a nucleocytoplasmic protein which undergoes nuclear proteasomal degradation.•Nucleocytoplasmic transport provides an added level of sPPase spatial regulation which should eventually control PPi pools of cell nucleus and cytosol.
AbstractList Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.
Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.
Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite. •It is generally believed that the main yeast sPPase Ipp1p is a cytoplasmic enzyme.•We provide evidence indicating that Ipp1p is a nucleocytoplasmic protein which undergoes nuclear proteasomal degradation.•Nucleocytoplasmic transport provides an added level of sPPase spatial regulation which should eventually control PPi pools of cell nucleus and cytosol.
Author Hernández, Agustín
Serrano-Bueno, Gloria
Madroñal, Juan Manuel
Pérez-Castiñeira, José Román
Serrano, Aurelio
Manzano-López, Javier
Muñiz, Manuel
Author_xml – sequence: 1
  givenname: Gloria
  surname: Serrano-Bueno
  fullname: Serrano-Bueno, Gloria
  organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain
– sequence: 2
  givenname: Juan Manuel
  orcidid: 0000-0002-6393-3970
  surname: Madroñal
  fullname: Madroñal, Juan Manuel
  organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain
– sequence: 3
  givenname: Javier
  surname: Manzano-López
  fullname: Manzano-López, Javier
  organization: Departamento de Biología Celular, Universidad de Sevilla, 41012 Sevilla, Spain
– sequence: 4
  givenname: Manuel
  surname: Muñiz
  fullname: Muñiz, Manuel
  organization: Departamento de Biología Celular, Universidad de Sevilla, 41012 Sevilla, Spain
– sequence: 5
  givenname: José Román
  surname: Pérez-Castiñeira
  fullname: Pérez-Castiñeira, José Román
  organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain
– sequence: 6
  givenname: Agustín
  surname: Hernández
  fullname: Hernández, Agustín
  organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain
– sequence: 7
  givenname: Aurelio
  surname: Serrano
  fullname: Serrano, Aurelio
  email: aurelio@ibvf.csic.es
  organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30826332$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0DISxZMsPPjJCyQUAVtpQoWwNq6ubnpeOTEwXaKhqfiEXE67YYFZJPNd849PueMnUxuIsZeSpFJIdXbfdZ1MKLPciHbTOSZkNUTtpFN3W7zqlUnbJOwels2TXvKzkLYi_SVdfWMnRaiyVVR5Bv2-_OClsDz2btIENwIlvd066GHaNzE3cC_AuIOvBsPSIEjebozwQBxMzl_C5NBPh-8m3cuzDuIEIhfz7Oc33Dg02rv8BDdbCGMK7oeMhP_mXDiIUJnrImHdHSmqQ883TQx8LB0SNYuNmWzDsGaX_eBnrOnA9hALx7-5-z7p4_fLq62N18ury8-3GyxFE3c5iRqhLYqK0ElDEpho0oSCgtUlZRKdG1XtGVeoOzqoRNYk6hSVUq0BSCI4py9PvqmvD8WClGPJqyJYCK3BJ2vRVelyuuEvnpAl26kXs_ejOAP-rHlBLw7AuhdCJ4GjSbevyZ6MFZLoddJ9V4fJ9XrpFrkOk2axOVf4kf__8jeH2WUSroz5HVAQxNSbzxh1L0z_zb4A9clwfE
CitedBy_id crossref_primary_10_1016_j_bbrc_2024_150563
crossref_primary_10_1042_BCJ20200663
crossref_primary_10_3390_microorganisms12030625
crossref_primary_10_1016_j_imlet_2019_07_006
crossref_primary_10_1002_prot_26064
crossref_primary_10_1016_j_jbc_2021_100444
crossref_primary_10_3390_microorganisms13020226
Cites_doi 10.1074/jbc.M206209200
10.1016/S0014-5793(99)00617-1
10.1016/0304-4157(95)00015-1
10.1093/nar/25.24.4876
10.1093/nar/gkt933
10.1038/ncomms7533
10.1038/nature02026
10.1126/science.aad9335
10.1042/BJ20091491
10.1074/jbc.M112.439349
10.1002/yea.1391
10.1007/978-1-4939-0799-1_17
10.1093/nar/30.2.598
10.1128/jb.172.10.5686-5689.1990
10.1002/pmic.201100166
10.1007/s00018-003-3070-3
10.1016/S0076-6879(02)50957-5
10.1016/S0014-5793(00)02400-5
10.1007/978-3-642-58444-2_7
10.1093/nar/22.25.5767
10.1007/s10123-001-0028-x
10.1101/gad.12.20.3206
10.1126/science.273.5282.1725
10.1016/S0021-9258(19)49845-1
10.1016/j.febslet.2011.09.003
10.1016/j.cell.2007.05.044
10.1016/j.dnarep.2007.04.010
10.1038/nmeth.2519
10.1016/S0014-5793(01)02390-0
10.15698/mic2016.12.546
10.1016/j.cell.2008.12.039
10.1038/sj.emboj.7600786
10.1042/BJ20051657
10.1038/nrm2468
10.1038/embor.2010.74
10.1074/jbc.M113.475905
10.1016/S0005-2736(00)00130-9
10.1091/mbc.10.6.1923
10.1038/nrm2114
10.1042/bj2240645
10.1007/978-1-4615-1433-6
10.1016/0968-0004(92)90406-Y
10.2144/000112389
10.1074/jbc.M806203200
10.1016/j.cmet.2012.06.002
10.1128/jb.170.12.5901-5907.1988
10.1038/embor.2011.226
10.1016/0003-2697(69)90198-5
10.1083/jcb.42.3.754
10.1128/JB.183.12.3791-3794.2001
10.1073/pnas.242625399
10.1074/jbc.M110.135863
10.1002/1097-0061(200008)16:11<1035::AID-YEA606>3.0.CO;2-P
10.1016/S1360-1385(01)01923-9
10.1038/sj.embor.7400394
10.1242/jcs.093567
10.1038/34542
10.1002/yea.1142
10.1016/S0021-9258(18)98875-7
10.1016/B978-0-12-417160-2.00014-X
10.1080/15216540701258132
10.1002/embj.201386822
10.1038/415180a
10.1128/MMBR.00003-13
10.1016/j.celrep.2014.10.065
10.1038/cr.2016.39
10.1074/jbc.M110.170175
10.1158/0008-5472.CAN-06-4274
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.bbamcr.2019.02.015
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-2596
EndPage 1033
ExternalDocumentID 30826332
10_1016_j_bbamcr_2019_02_015
S0167488918303938
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
ZE2
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c408t-2e07ca95450e4af66c864e06c3c651160b9b39423c1b7fb0c7e054886093aca03
IEDL.DBID .~1
ISSN 0167-4889
1879-2596
IngestDate Fri Jul 11 01:06:20 EDT 2025
Thu Apr 03 07:09:52 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Tue Jul 01 02:45:17 EDT 2025
Fri Feb 23 02:34:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords NESHV
Protein degradation
Cell nucleus
PPi
sPPase
GFP
Inorganic pyrophosphatase
NLS
NLSe
NLSSV
HA
Nucleocytoplasmic transport
Ubiquitin-proteasome system
NES
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2e07ca95450e4af66c864e06c3c651160b9b39423c1b7fb0c7e054886093aca03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6393-3970
OpenAccessLink http://hdl.handle.net/10261/220224
PMID 30826332
PQID 2187954627
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2187954627
pubmed_primary_30826332
crossref_citationtrail_10_1016_j_bbamcr_2019_02_015
crossref_primary_10_1016_j_bbamcr_2019_02_015
elsevier_sciencedirect_doi_10_1016_j_bbamcr_2019_02_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Molecular cell research
PublicationTitleAlternate Biochim Biophys Acta Mol Cell Res
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Thompson, Gibson, Plewniak, Jeanmougin, Higgins (bb0165) 1997; 25
Huh, Falvo, Gerke, Carroll, Howson, Weissman, O'Shea (bb0095) 2003; 42
Gdula, Sandaltzopoulos, Tsukiyama, Ossipow, Wu (bb0130) 1998; 12
Boutet, S.C., Disatnik, M.H., Chan, L.S., Iori, K. and Rando, T.A. (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell
Swaney, Beltrao, Starita, Guo, Rush, Fields, Krogan, Villén (bb0270) 2013; 10
Vaisman, Ling, Woodgate, Yang (bb0115) 2005; 24
Liu, Yue, Chen, Hu, Lonial, Khuri, Sun (bb0150) 2007; 67
Maeshima (bb0025) 2000; 1465
Wright, Lioutas, Le Dily, Soronellas, Pohl, Bonet, Nacht, Samino, Font-Mateu, Vicent, Wierer, Trabado, Schelhorn, Carolis, Macias, Yanes, Oliva, Beato (bb0125) 2016; 352
Hiller, Finger, Schweiger, Wolf (bb0245) 1996; 273
Fiedler, Braberg, Mehta, Chechik (bb0340) 2009; 136
Drozdowicz, Rea (bb0040) 2001; 6
Zhang, Reese (bb0180) 2006; 313
Hernández, Jiang, Cubero, Nieto, Bressan, Hasegawa, Pardo (bb0185) 2009; 284
Chen, Brevet, Fromant, Lévêque, Schmitter, Blanquet, Plateau (bb0075) 1990; 172
Postnikoff, Harkness (bb0205) 2014; 1163
Ptak, Wozniak (bb0230) 2014; 122
Heinonen, J.K. (2001) Biological Role of Inorganic Pyrophosphate. Springer Science + Business Media New York. 250 pp. DOI
Janke, Magiera, Rathfelder, Taxis, Reber, Maekawa, Moreno-Borchart, Doenges, Schwob, Schiebel, Knop (bb0175) 2004; 21
Cooperman, Baykov, Lahti (bb0015) 1992; 17
Watanabe, Funato, Venkataraman, Futerman, Riezman (bb0210) 2002; 277
Gallina, Colding, Henriksen, Beli, Nakamura, Offman, Mathiasen, Silva, Hoffmann, Groth, Choudhary, Lisby (bb0320) 2015; 6
Pérez-Castiñeira, Gómez-García, López-Marqués, Losada, Serrano (bb0020) 2001; 4
Longo, Shadel, Kaeberlein, Kennedy (bb0240) 2012; 16
Mao, Smerdon (bb0285) 2010; 285
12341-.12349.
Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2. Ed., 3. Vol., Cold Spring Harbor Laboratory Press, New York, 253 pp.
Ossareh-Nazari, Bonizec, Cohen, Dokudovskaya, Delalande, Schaeffer, Van Dorsselaer, Dargemont (bb0290) 2010; 11
Swatek K.N. and Komander D. (2016) Ubiquitin modifications. Cell Res
Baltscheffsky, Schultz, Baltscheffsky (bb0045) 1999; 452
Chen, Romero, Chuang, Tournier, Joshi, Lee, Kovvali, Madura (bb0250) 2011; 286
Stewart (bb0235) 2007; 8
Ravid, Hochstrasser (bb0260) 2008; 9
Kravtsova-Ivantsiv, Ciechanover (bb0280) 2012; 125
Libanati, Tandler (bb0305) 1969; 42
.
Crespan, Maga, Hübscher (bb0120) 2012; 13
Bilsland, Hult, Bell, Sunnerhagen, Downs (bb0345) 2007; 6
Rozovskaya, Rechinsky, Bibilashvili, Karpeisky, Tarusova, Khomutov, Dixon (bb0295) 1984; 224
Perez-Castineira, Lopez-Marques, Losada, Serrano (bb0050) 2001; 496
Mitsuda, Enami, Nakata, Takeyasu, Sato (bb0055) 2001; 488
Guerriero, Weiberth, Brodsky (bb0335) 2013; 288
Breker, Gymrek, Moldavski, Schuldiner (bb0100) 2014; 42
Gomez-Garcia, Losada, Serrano (bb0200) 2006; 395
Baykov, Cooperman, Goldman, Lahti (bb0065) 1999; 23
Gietz, Woods (bb0145) 2002; 350
399-422.
Starita, Lo, Eng, Von Haller, Fields (bb0265) 2012; 12
Liu, Sommer (bb0110) 2002; 30
Alkhatib, Landry (bb0135) 2011; 585
Olesen, Franke Johannesen, Hoffmann, Bech Sørensen, Gjermansen, Hansen (bb0225) 2000; 16
Yin, Pascual, Klionsky (bb0330) 2016; 3
Karniely, Pines (bb0085) 2005; 6
Rathbun, Betlach (bb0190) 1969; 28
Villalba, J.M., Palmgren, M.G., Berberián, G.E., Ferguson, C. and Serrano, R. (1992) Functional expression of plant plasma membrane H(+)-ATPase in yeast endoplasmic reticulum. J. Biol. Chem.
Gaczynska, Osmulski (bb0255) 2005; 301
Christiano, Nagaraj, Fröhlich, Walther (bb0325) 2014; 9
Serrano, Perez-Castineira, Baltscheffsky, Baltscheffsky (bb0030) 2007; 59
Liu, Apodaca, Davis, Rao (bb0160) 2007; 42
Lichko, Kulakovskaya, Kulaev (bb0310) 2006; 23
349-362.
Lahti, Pitkaranta, Valve, Ilta, Kukko-Kalske, Heinonen (bb0010) 1988; 170
Perez-Castineira, Lopez-Marques, Villalba, Losada, Serrano (bb0060) 2002; 99
Steitz (bb0105) 1998; 391
Rodrigues, van Hemert, Steensma, Côrte-Real, Leão (bb0155) 2001; 183
Marzioch, Henthorn, Herrmann, Wilson, Thomas, Bergeron, Solari, Rowley (bb0215) 1999; 10
Ho, Gruhler, Heilbut, Bader, Moore, Adams (bb0315) 2002; 415
Mumberg, Müller, Funk (bb0220) 1994; 22
Drake, Serrano, Pérez-Castiñeira (bb0140) 2010; 426
Baykov, Malinen, Luoto, Lahti (bb0035) 2013; 77
Öling, Eisele, Kvint, Nyström (bb0350) 2014; 33
Csermely, Schnaider, Szántó (bb0300) 1995; 1241
Serrano-Bueno, Hernandez, López-Lluch, Pérez-Castiñeira, Navas, Serrano (bb0080) 2013; 288
Fried, Kutay (bb0090) 2003; 60
Lundin, Baltscheffsky, Ronne (bb0070) 1991; 266
Perez-Castineira (10.1016/j.bbamcr.2019.02.015_bb0050) 2001; 496
Drake (10.1016/j.bbamcr.2019.02.015_bb0140) 2010; 426
Wright (10.1016/j.bbamcr.2019.02.015_bb0125) 2016; 352
10.1016/j.bbamcr.2019.02.015_bb0195
Lichko (10.1016/j.bbamcr.2019.02.015_bb0310) 2006; 23
Gomez-Garcia (10.1016/j.bbamcr.2019.02.015_bb0200) 2006; 395
Serrano-Bueno (10.1016/j.bbamcr.2019.02.015_bb0080) 2013; 288
Postnikoff (10.1016/j.bbamcr.2019.02.015_bb0205) 2014; 1163
Baykov (10.1016/j.bbamcr.2019.02.015_bb0065) 1999; 23
Ho (10.1016/j.bbamcr.2019.02.015_bb0315) 2002; 415
Marzioch (10.1016/j.bbamcr.2019.02.015_bb0215) 1999; 10
Ossareh-Nazari (10.1016/j.bbamcr.2019.02.015_bb0290) 2010; 11
Gaczynska (10.1016/j.bbamcr.2019.02.015_bb0255) 2005; 301
Lundin (10.1016/j.bbamcr.2019.02.015_bb0070) 1991; 266
Thompson (10.1016/j.bbamcr.2019.02.015_bb0165) 1997; 25
Chen (10.1016/j.bbamcr.2019.02.015_bb0250) 2011; 286
Swaney (10.1016/j.bbamcr.2019.02.015_bb0270) 2013; 10
Drozdowicz (10.1016/j.bbamcr.2019.02.015_bb0040) 2001; 6
Janke (10.1016/j.bbamcr.2019.02.015_bb0175) 2004; 21
Ravid (10.1016/j.bbamcr.2019.02.015_bb0260) 2008; 9
Yin (10.1016/j.bbamcr.2019.02.015_bb0330) 2016; 3
Breker (10.1016/j.bbamcr.2019.02.015_bb0100) 2014; 42
Csermely (10.1016/j.bbamcr.2019.02.015_bb0300) 1995; 1241
Mao (10.1016/j.bbamcr.2019.02.015_bb0285) 2010; 285
Pérez-Castiñeira (10.1016/j.bbamcr.2019.02.015_bb0020) 2001; 4
Alkhatib (10.1016/j.bbamcr.2019.02.015_bb0135) 2011; 585
10.1016/j.bbamcr.2019.02.015_bb0275
Libanati (10.1016/j.bbamcr.2019.02.015_bb0305) 1969; 42
Chen (10.1016/j.bbamcr.2019.02.015_bb0075) 1990; 172
Liu (10.1016/j.bbamcr.2019.02.015_bb0160) 2007; 42
10.1016/j.bbamcr.2019.02.015_bb0355
Vaisman (10.1016/j.bbamcr.2019.02.015_bb0115) 2005; 24
Guerriero (10.1016/j.bbamcr.2019.02.015_bb0335) 2013; 288
Fiedler (10.1016/j.bbamcr.2019.02.015_bb0340) 2009; 136
Huh (10.1016/j.bbamcr.2019.02.015_bb0095) 2003; 42
Christiano (10.1016/j.bbamcr.2019.02.015_bb0325) 2014; 9
Crespan (10.1016/j.bbamcr.2019.02.015_bb0120) 2012; 13
10.1016/j.bbamcr.2019.02.015_bb0170
Fried (10.1016/j.bbamcr.2019.02.015_bb0090) 2003; 60
Hernández (10.1016/j.bbamcr.2019.02.015_bb0185) 2009; 284
Olesen (10.1016/j.bbamcr.2019.02.015_bb0225) 2000; 16
Stewart (10.1016/j.bbamcr.2019.02.015_bb0235) 2007; 8
Gietz (10.1016/j.bbamcr.2019.02.015_bb0145) 2002; 350
Lahti (10.1016/j.bbamcr.2019.02.015_bb0010) 1988; 170
Gallina (10.1016/j.bbamcr.2019.02.015_bb0320) 2015; 6
Cooperman (10.1016/j.bbamcr.2019.02.015_bb0015) 1992; 17
10.1016/j.bbamcr.2019.02.015_bb0005
Watanabe (10.1016/j.bbamcr.2019.02.015_bb0210) 2002; 277
Bilsland (10.1016/j.bbamcr.2019.02.015_bb0345) 2007; 6
Baykov (10.1016/j.bbamcr.2019.02.015_bb0035) 2013; 77
Hiller (10.1016/j.bbamcr.2019.02.015_bb0245) 1996; 273
Gdula (10.1016/j.bbamcr.2019.02.015_bb0130) 1998; 12
Mitsuda (10.1016/j.bbamcr.2019.02.015_bb0055) 2001; 488
Longo (10.1016/j.bbamcr.2019.02.015_bb0240) 2012; 16
Rodrigues (10.1016/j.bbamcr.2019.02.015_bb0155) 2001; 183
Starita (10.1016/j.bbamcr.2019.02.015_bb0265) 2012; 12
Perez-Castineira (10.1016/j.bbamcr.2019.02.015_bb0060) 2002; 99
Liu (10.1016/j.bbamcr.2019.02.015_bb0150) 2007; 67
Rozovskaya (10.1016/j.bbamcr.2019.02.015_bb0295) 1984; 224
Serrano (10.1016/j.bbamcr.2019.02.015_bb0030) 2007; 59
Baltscheffsky (10.1016/j.bbamcr.2019.02.015_bb0045) 1999; 452
Steitz (10.1016/j.bbamcr.2019.02.015_bb0105) 1998; 391
Zhang (10.1016/j.bbamcr.2019.02.015_bb0180) 2006; 313
Mumberg (10.1016/j.bbamcr.2019.02.015_bb0220) 1994; 22
Ptak (10.1016/j.bbamcr.2019.02.015_bb0230) 2014; 122
Kravtsova-Ivantsiv (10.1016/j.bbamcr.2019.02.015_bb0280) 2012; 125
Liu (10.1016/j.bbamcr.2019.02.015_bb0110) 2002; 30
Maeshima (10.1016/j.bbamcr.2019.02.015_bb0025) 2000; 1465
Öling (10.1016/j.bbamcr.2019.02.015_bb0350) 2014; 33
Karniely (10.1016/j.bbamcr.2019.02.015_bb0085) 2005; 6
Rathbun (10.1016/j.bbamcr.2019.02.015_bb0190) 1969; 28
References_xml – volume: 415
  start-page: 180
  year: 2002
  end-page: 183
  ident: bb0315
  article-title: Systematic identification of protein complexes in
  publication-title: Nature
– volume: 9
  start-page: 679
  year: 2008
  end-page: 690
  ident: bb0260
  article-title: Diversity of degradation signals in the ubiquitin-proteasome system
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 1035
  year: 2000
  end-page: 1043
  ident: bb0225
  article-title: The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection
  publication-title: Yeast
– volume: 16
  start-page: 18
  year: 2012
  end-page: 31
  ident: bb0240
  article-title: Replicative and chronological aging in
  publication-title: Cell Metab.
– volume: 42
  start-page: 686
  year: 2003
  end-page: 691
  ident: bb0095
  article-title: Global analysis of protein localization in budding yeast
  publication-title: Nature
– volume: 1241
  start-page: 425
  year: 1995
  end-page: 451
  ident: bb0300
  article-title: Signalling and transport through the nuclear membrane
  publication-title: Biochim. Biophys. Acta
– volume: 11
  start-page: 548
  year: 2010
  end-page: 554
  ident: bb0290
  article-title: Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy
  publication-title: EMBO Rep.
– volume: 25
  start-page: 4876
  year: 1997
  end-page: 4882
  ident: bb0165
  article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Res.
– volume: 286
  start-page: 3104
  year: 2011
  end-page: 3118
  ident: bb0250
  article-title: Sts1 plays a key role in targeting proteasomes to the nucleus
  publication-title: J. Biol. Chem.
– volume: 266
  start-page: 12168
  year: 1991
  end-page: 12172
  ident: bb0070
  article-title: Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 1659
  year: 2003
  end-page: 1688
  ident: bb0090
  article-title: Nucleocytoplasmic transport: taking an inventory
  publication-title: Cell. Mol. Life Sci.
– volume: 6
  start-page: 1471
  year: 2007
  end-page: 1484
  ident: bb0345
  article-title: The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage
  publication-title: DNA Repair (Amst)
– volume: 12
  start-page: 3206
  year: 1998
  end-page: 3216
  ident: bb0130
  article-title: Inorganic pyrophosphatase is a component of the
  publication-title: Genes Dev.
– reference: , 12341-.12349.
– volume: 28
  start-page: 436
  year: 1969
  end-page: 445
  ident: bb0190
  article-title: Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate
  publication-title: Anal. Biochem.
– volume: 10
  start-page: 1923
  year: 1999
  end-page: 1938
  ident: bb0215
  article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex
  publication-title: Mol. Biol. Cell
– reference: Villalba, J.M., Palmgren, M.G., Berberián, G.E., Ferguson, C. and Serrano, R. (1992) Functional expression of plant plasma membrane H(+)-ATPase in yeast endoplasmic reticulum. J. Biol. Chem.
– volume: 284
  start-page: 14276
  year: 2009
  end-page: 14285
  ident: bb0185
  article-title: Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity
  publication-title: J. Biol. Chem.
– reference: Boutet, S.C., Disatnik, M.H., Chan, L.S., Iori, K. and Rando, T.A. (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell
– volume: 8
  start-page: 195
  year: 2007
  end-page: 218
  ident: bb0235
  article-title: Molecular mechanism of the nuclear protein import cycle
  publication-title: Nat Rev Mol Cell Biol
– volume: 391
  start-page: 231
  year: 1998
  end-page: 232
  ident: bb0105
  article-title: A mechanism for all polymerases
  publication-title: Nature
– volume: 23
  start-page: 127
  year: 1999
  end-page: 150
  ident: bb0065
  article-title: Cytoplasmic inorganic pyrophosphatase
  publication-title: Prog. Mol. Subcell. Biol.
– volume: 172
  start-page: 5686
  year: 1990
  end-page: 5689
  ident: bb0075
  article-title: Pyrophosphatase is essential for growth of
  publication-title: J. Bacteriol.
– volume: 183
  start-page: 3791
  year: 2001
  end-page: 3794
  ident: bb0155
  article-title: Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae
  publication-title: J. Bacteriol.
– volume: 1465
  start-page: 37
  year: 2000
  end-page: 51
  ident: bb0025
  article-title: Vacuolar H(+)-pyrophosphatase
  publication-title: Biochim. Biophys. Acta
– volume: 350
  start-page: 87
  year: 2002
  end-page: 96
  ident: bb0145
  article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
  publication-title: Methods Enzymol.
– volume: 9
  start-page: 1959
  year: 2014
  end-page: 1965
  ident: bb0325
  article-title: Global proteome turnover analyses of the yeasts
  publication-title: Cell Rep.
– volume: 10
  start-page: 676
  year: 2013
  end-page: 682
  ident: bb0270
  article-title: Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
  publication-title: Nat. Methods
– volume: 6
  start-page: 206
  year: 2001
  end-page: 211
  ident: bb0040
  article-title: Vacuolar H(+) pyrophosphatases: from the evolutionary backwaters into the mainstream
  publication-title: Trends Plant Sci.
– volume: 352
  start-page: 1221
  year: 2016
  end-page: 1225
  ident: bb0125
  article-title: ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodelling
  publication-title: Science
– volume: 42
  start-page: 754
  year: 1969
  end-page: 765
  ident: bb0305
  article-title: The distribution of the water-soluble inorganic orthophosphate ions within the cell: accumulation in the nucleus
  publication-title: J. Cell Biol.
– volume: 426
  start-page: 147
  year: 2010
  end-page: 157
  ident: bb0140
  article-title: N-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast
  publication-title: Biochem. J.
– volume: 21
  start-page: 947
  year: 2004
  end-page: 962
  ident: bb0175
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
– volume: 125
  start-page: 539
  year: 2012
  end-page: 548
  ident: bb0280
  article-title: Non-canonical ubiquitin-based signals for proteasomal degradation
  publication-title: J. Cell Sci.
– volume: 42
  start-page: D726
  year: 2014
  end-page: D730
  ident: bb0100
  article-title: LoQAtE—localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast
  publication-title: Nucleic Acids Res.
– volume: 224
  start-page: 645
  year: 1984
  end-page: 650
  ident: bb0295
  article-title: The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity
  publication-title: Biochem. J.
– volume: 42
  start-page: 158
  year: 2007
  end-page: 162
  ident: bb0160
  article-title: Proteasome inhibition in wild-type yeast
  publication-title: Biotechniques
– reference: Swatek K.N. and Komander D. (2016) Ubiquitin modifications. Cell Res
– volume: 488
  start-page: 29
  year: 2001
  end-page: 33
  ident: bb0055
  article-title: Novel type Arabidopsis thaliana H(+)-PPase is localized to the Golgi apparatus
  publication-title: FEBS Lett.
– volume: 99
  start-page: 15914
  year: 2002
  end-page: 15919
  ident: bb0060
  article-title: Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– reference: , 349-362.
– volume: 136
  start-page: 952
  year: 2009
  end-page: 963
  ident: bb0340
  article-title: Functional organization of the
  publication-title: Cell
– volume: 170
  start-page: 5901
  year: 1988
  end-page: 5907
  ident: bb0010
  article-title: Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12
  publication-title: J. Bacteriol.
– volume: 23
  start-page: 735
  year: 2006
  end-page: 740
  ident: bb0310
  article-title: Inorganic polyphosphate and exopolyphosphatase in the nuclei of
  publication-title: Yeast
– volume: 288
  start-page: 13082
  year: 2013
  end-page: 13092
  ident: bb0080
  article-title: Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+ depletion in fermenting yeast
  publication-title: J. Biol. Chem.
– volume: 301
  start-page: 3
  year: 2005
  end-page: 22
  ident: bb0255
  article-title: Small-molecule inhibitors of proteasome activity
  publication-title: Methods Mol. Biol.
– volume: 277
  start-page: 49538
  year: 2002
  end-page: 49544
  ident: bb0210
  article-title: Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast
  publication-title: J. Biol. Chem.
– volume: 1163
  start-page: 223
  year: 2014
  end-page: 227
  ident: bb0205
  article-title: Replicative and chronological life-span assays
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 68
  year: 2012
  end-page: 74
  ident: bb0120
  article-title: A new proofreading mechanism for lesion bypass by DNA polymerase-λ
  publication-title: EMBO Rep.
– volume: 30
  start-page: 598
  year: 2002
  end-page: 604
  ident: bb0110
  article-title: Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 236
  year: 2012
  end-page: 240
  ident: bb0265
  article-title: Sites of ubiquitin attachment in
  publication-title: Proteomics
– volume: 6
  start-page: 420
  year: 2005
  end-page: 425
  ident: bb0085
  article-title: Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes
  publication-title: EMBO Rep.
– volume: 395
  start-page: 211
  year: 2006
  end-page: 221
  ident: bb0200
  article-title: A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes
  publication-title: Biochem. J.
– volume: 585
  start-page: 3197
  year: 2011
  end-page: 3207
  ident: bb0135
  article-title: The nucleosome remodeling factor
  publication-title: FEBS Lett.
– volume: 33
  start-page: 747
  year: 2014
  end-page: 761
  ident: bb0350
  article-title: Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance
  publication-title: EMBO J.
– reference: , 399-422.
– reference: Heinonen, J.K. (2001) Biological Role of Inorganic Pyrophosphate. Springer Science + Business Media New York. 250 pp. DOI
– volume: 67
  start-page: 4981
  year: 2007
  end-page: 4988
  ident: bb0150
  article-title: The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL- induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells
  publication-title: Cancer Res.
– volume: 313
  start-page: 245
  year: 2006
  end-page: 255
  ident: bb0180
  article-title: Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning
  publication-title: Methods Mol. Biol.
– volume: 17
  start-page: 262
  year: 1992
  end-page: 266
  ident: bb0015
  article-title: Evolutionary conservation of the active site of soluble inorganic pyrophosphatase
  publication-title: Trends Biochem. Sci.
– volume: 6
  start-page: 6533
  year: 2015
  ident: bb0320
  article-title: Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control
  publication-title: Nat. Commun.
– volume: 4
  start-page: 135
  year: 2001
  end-page: 142
  ident: bb0020
  article-title: Enzymatic systems of inorganic pyrophosphate bioenergetics in photosyntetic and heterotrophic protists: remnants or metabolic cornerstones?
  publication-title: Int. Microbiol.
– volume: 122
  start-page: 311
  year: 2014
  end-page: 330
  ident: bb0230
  article-title: Assessing regulated nuclear transport in
  publication-title: Meth Cell Biol
– volume: 288
  start-page: 18506
  year: 2013
  end-page: 18520
  ident: bb0335
  article-title: Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 2957
  year: 2005
  end-page: 2967
  ident: bb0115
  article-title: Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis
  publication-title: EMBO J.
– volume: 3
  start-page: 588
  year: 2016
  end-page: 596
  ident: bb0330
  article-title: Autophagy: machinery and regulation
  publication-title: Microb. Cell
– reference: .
– volume: 22
  start-page: 5767
  year: 1994
  end-page: 5768
  ident: bb0220
  article-title: Regulatable promoters of
  publication-title: Nucl Ac Res
– volume: 59
  start-page: 76
  year: 2007
  end-page: 83
  ident: bb0030
  article-title: H+-PPases: yesterday, today and tomorrow
  publication-title: IUBMB Life
– volume: 285
  start-page: 37542
  year: 2010
  end-page: 37550
  ident: bb0285
  article-title: Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation
  publication-title: J. Biol. Chem.
– volume: 452
  start-page: 121
  year: 1999
  end-page: 127
  ident: bb0045
  article-title: H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family
  publication-title: FEBS Lett.
– volume: 273
  start-page: 1725
  year: 1996
  end-page: 1728
  ident: bb0245
  article-title: ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway
  publication-title: Science
– volume: 77
  start-page: 267
  year: 2013
  end-page: 276
  ident: bb0035
  article-title: Pyrophosphate-fueled Na+ and H+ transport in prokaryotes
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 496
  start-page: 6
  year: 2001
  end-page: 11
  ident: bb0050
  article-title: A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium
  publication-title: FEBS Lett.
– reference: Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2. Ed., 3. Vol., Cold Spring Harbor Laboratory Press, New York, 253 pp.
– volume: 277
  start-page: 49538
  year: 2002
  ident: 10.1016/j.bbamcr.2019.02.015_bb0210
  article-title: Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206209200
– volume: 452
  start-page: 121
  year: 1999
  ident: 10.1016/j.bbamcr.2019.02.015_bb0045
  article-title: H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00617-1
– volume: 1241
  start-page: 425
  year: 1995
  ident: 10.1016/j.bbamcr.2019.02.015_bb0300
  article-title: Signalling and transport through the nuclear membrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(95)00015-1
– volume: 25
  start-page: 4876
  year: 1997
  ident: 10.1016/j.bbamcr.2019.02.015_bb0165
  article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.24.4876
– volume: 42
  start-page: D726
  issue: Database issue
  year: 2014
  ident: 10.1016/j.bbamcr.2019.02.015_bb0100
  article-title: LoQAtE—localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt933
– volume: 6
  start-page: 6533
  year: 2015
  ident: 10.1016/j.bbamcr.2019.02.015_bb0320
  article-title: Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7533
– volume: 42
  start-page: 686
  year: 2003
  ident: 10.1016/j.bbamcr.2019.02.015_bb0095
  article-title: Global analysis of protein localization in budding yeast
  publication-title: Nature
  doi: 10.1038/nature02026
– volume: 301
  start-page: 3
  year: 2005
  ident: 10.1016/j.bbamcr.2019.02.015_bb0255
  article-title: Small-molecule inhibitors of proteasome activity
  publication-title: Methods Mol. Biol.
– volume: 352
  start-page: 1221
  year: 2016
  ident: 10.1016/j.bbamcr.2019.02.015_bb0125
  article-title: ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodelling
  publication-title: Science
  doi: 10.1126/science.aad9335
– volume: 426
  start-page: 147
  year: 2010
  ident: 10.1016/j.bbamcr.2019.02.015_bb0140
  article-title: N-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091491
– volume: 288
  start-page: 13082
  year: 2013
  ident: 10.1016/j.bbamcr.2019.02.015_bb0080
  article-title: Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+ depletion in fermenting yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.439349
– volume: 23
  start-page: 735
  year: 2006
  ident: 10.1016/j.bbamcr.2019.02.015_bb0310
  article-title: Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes
  publication-title: Yeast
  doi: 10.1002/yea.1391
– volume: 1163
  start-page: 223
  year: 2014
  ident: 10.1016/j.bbamcr.2019.02.015_bb0205
  article-title: Replicative and chronological life-span assays
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-0799-1_17
– volume: 30
  start-page: 598
  year: 2002
  ident: 10.1016/j.bbamcr.2019.02.015_bb0110
  article-title: Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.2.598
– volume: 172
  start-page: 5686
  year: 1990
  ident: 10.1016/j.bbamcr.2019.02.015_bb0075
  article-title: Pyrophosphatase is essential for growth of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.10.5686-5689.1990
– volume: 12
  start-page: 236
  year: 2012
  ident: 10.1016/j.bbamcr.2019.02.015_bb0265
  article-title: Sites of ubiquitin attachment in Saccharomyces cerevisiae
  publication-title: Proteomics
  doi: 10.1002/pmic.201100166
– volume: 60
  start-page: 1659
  year: 2003
  ident: 10.1016/j.bbamcr.2019.02.015_bb0090
  article-title: Nucleocytoplasmic transport: taking an inventory
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-003-3070-3
– volume: 350
  start-page: 87
  year: 2002
  ident: 10.1016/j.bbamcr.2019.02.015_bb0145
  article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(02)50957-5
– volume: 488
  start-page: 29
  year: 2001
  ident: 10.1016/j.bbamcr.2019.02.015_bb0055
  article-title: Novel type Arabidopsis thaliana H(+)-PPase is localized to the Golgi apparatus
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)02400-5
– volume: 23
  start-page: 127
  year: 1999
  ident: 10.1016/j.bbamcr.2019.02.015_bb0065
  article-title: Cytoplasmic inorganic pyrophosphatase
  publication-title: Prog. Mol. Subcell. Biol.
  doi: 10.1007/978-3-642-58444-2_7
– volume: 22
  start-page: 5767
  year: 1994
  ident: 10.1016/j.bbamcr.2019.02.015_bb0220
  article-title: Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression
  publication-title: Nucl Ac Res
  doi: 10.1093/nar/22.25.5767
– volume: 4
  start-page: 135
  year: 2001
  ident: 10.1016/j.bbamcr.2019.02.015_bb0020
  article-title: Enzymatic systems of inorganic pyrophosphate bioenergetics in photosyntetic and heterotrophic protists: remnants or metabolic cornerstones?
  publication-title: Int. Microbiol.
  doi: 10.1007/s10123-001-0028-x
– volume: 12
  start-page: 3206
  year: 1998
  ident: 10.1016/j.bbamcr.2019.02.015_bb0130
  article-title: Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodeling factor complex
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.20.3206
– volume: 273
  start-page: 1725
  year: 1996
  ident: 10.1016/j.bbamcr.2019.02.015_bb0245
  article-title: ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway
  publication-title: Science
  doi: 10.1126/science.273.5282.1725
– ident: 10.1016/j.bbamcr.2019.02.015_bb0170
  doi: 10.1016/S0021-9258(19)49845-1
– volume: 585
  start-page: 3197
  year: 2011
  ident: 10.1016/j.bbamcr.2019.02.015_bb0135
  article-title: The nucleosome remodeling factor
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.09.003
– ident: 10.1016/j.bbamcr.2019.02.015_bb0275
  doi: 10.1016/j.cell.2007.05.044
– volume: 6
  start-page: 1471
  year: 2007
  ident: 10.1016/j.bbamcr.2019.02.015_bb0345
  article-title: The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2007.04.010
– volume: 10
  start-page: 676
  year: 2013
  ident: 10.1016/j.bbamcr.2019.02.015_bb0270
  article-title: Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2519
– volume: 496
  start-page: 6
  year: 2001
  ident: 10.1016/j.bbamcr.2019.02.015_bb0050
  article-title: A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02390-0
– volume: 313
  start-page: 245
  year: 2006
  ident: 10.1016/j.bbamcr.2019.02.015_bb0180
  article-title: Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning
  publication-title: Methods Mol. Biol.
– volume: 3
  start-page: 588
  year: 2016
  ident: 10.1016/j.bbamcr.2019.02.015_bb0330
  article-title: Autophagy: machinery and regulation
  publication-title: Microb. Cell
  doi: 10.15698/mic2016.12.546
– volume: 136
  start-page: 952
  year: 2009
  ident: 10.1016/j.bbamcr.2019.02.015_bb0340
  article-title: Functional organization of the S. cerevisiae phosphorylation network
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.039
– volume: 24
  start-page: 2957
  year: 2005
  ident: 10.1016/j.bbamcr.2019.02.015_bb0115
  article-title: Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600786
– ident: 10.1016/j.bbamcr.2019.02.015_bb0195
– volume: 395
  start-page: 211
  year: 2006
  ident: 10.1016/j.bbamcr.2019.02.015_bb0200
  article-title: A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes
  publication-title: Biochem. J.
  doi: 10.1042/BJ20051657
– volume: 9
  start-page: 679
  year: 2008
  ident: 10.1016/j.bbamcr.2019.02.015_bb0260
  article-title: Diversity of degradation signals in the ubiquitin-proteasome system
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2468
– volume: 11
  start-page: 548
  year: 2010
  ident: 10.1016/j.bbamcr.2019.02.015_bb0290
  article-title: Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.74
– volume: 288
  start-page: 18506
  year: 2013
  ident: 10.1016/j.bbamcr.2019.02.015_bb0335
  article-title: Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.475905
– volume: 1465
  start-page: 37
  year: 2000
  ident: 10.1016/j.bbamcr.2019.02.015_bb0025
  article-title: Vacuolar H(+)-pyrophosphatase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(00)00130-9
– volume: 10
  start-page: 1923
  year: 1999
  ident: 10.1016/j.bbamcr.2019.02.015_bb0215
  article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.6.1923
– volume: 8
  start-page: 195
  year: 2007
  ident: 10.1016/j.bbamcr.2019.02.015_bb0235
  article-title: Molecular mechanism of the nuclear protein import cycle
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2114
– volume: 224
  start-page: 645
  year: 1984
  ident: 10.1016/j.bbamcr.2019.02.015_bb0295
  article-title: The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity
  publication-title: Biochem. J.
  doi: 10.1042/bj2240645
– ident: 10.1016/j.bbamcr.2019.02.015_bb0005
  doi: 10.1007/978-1-4615-1433-6
– volume: 17
  start-page: 262
  year: 1992
  ident: 10.1016/j.bbamcr.2019.02.015_bb0015
  article-title: Evolutionary conservation of the active site of soluble inorganic pyrophosphatase
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(92)90406-Y
– volume: 42
  start-page: 158
  year: 2007
  ident: 10.1016/j.bbamcr.2019.02.015_bb0160
  article-title: Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells
  publication-title: Biotechniques
  doi: 10.2144/000112389
– volume: 284
  start-page: 14276
  year: 2009
  ident: 10.1016/j.bbamcr.2019.02.015_bb0185
  article-title: Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806203200
– volume: 16
  start-page: 18
  year: 2012
  ident: 10.1016/j.bbamcr.2019.02.015_bb0240
  article-title: Replicative and chronological aging in Saccharomyces cerevisiae
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.06.002
– volume: 170
  start-page: 5901
  year: 1988
  ident: 10.1016/j.bbamcr.2019.02.015_bb0010
  article-title: Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.170.12.5901-5907.1988
– volume: 13
  start-page: 68
  year: 2012
  ident: 10.1016/j.bbamcr.2019.02.015_bb0120
  article-title: A new proofreading mechanism for lesion bypass by DNA polymerase-λ
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.226
– volume: 28
  start-page: 436
  year: 1969
  ident: 10.1016/j.bbamcr.2019.02.015_bb0190
  article-title: Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(69)90198-5
– volume: 42
  start-page: 754
  year: 1969
  ident: 10.1016/j.bbamcr.2019.02.015_bb0305
  article-title: The distribution of the water-soluble inorganic orthophosphate ions within the cell: accumulation in the nucleus
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.42.3.754
– volume: 183
  start-page: 3791
  year: 2001
  ident: 10.1016/j.bbamcr.2019.02.015_bb0155
  article-title: Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.12.3791-3794.2001
– volume: 99
  start-page: 15914
  year: 2002
  ident: 10.1016/j.bbamcr.2019.02.015_bb0060
  article-title: Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.242625399
– volume: 286
  start-page: 3104
  year: 2011
  ident: 10.1016/j.bbamcr.2019.02.015_bb0250
  article-title: Sts1 plays a key role in targeting proteasomes to the nucleus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.135863
– volume: 16
  start-page: 1035
  year: 2000
  ident: 10.1016/j.bbamcr.2019.02.015_bb0225
  article-title: The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection
  publication-title: Yeast
  doi: 10.1002/1097-0061(200008)16:11<1035::AID-YEA606>3.0.CO;2-P
– volume: 6
  start-page: 206
  year: 2001
  ident: 10.1016/j.bbamcr.2019.02.015_bb0040
  article-title: Vacuolar H(+) pyrophosphatases: from the evolutionary backwaters into the mainstream
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)01923-9
– volume: 6
  start-page: 420
  year: 2005
  ident: 10.1016/j.bbamcr.2019.02.015_bb0085
  article-title: Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400394
– volume: 125
  start-page: 539
  year: 2012
  ident: 10.1016/j.bbamcr.2019.02.015_bb0280
  article-title: Non-canonical ubiquitin-based signals for proteasomal degradation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.093567
– volume: 391
  start-page: 231
  year: 1998
  ident: 10.1016/j.bbamcr.2019.02.015_bb0105
  article-title: A mechanism for all polymerases
  publication-title: Nature
  doi: 10.1038/34542
– volume: 21
  start-page: 947
  year: 2004
  ident: 10.1016/j.bbamcr.2019.02.015_bb0175
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
  doi: 10.1002/yea.1142
– volume: 266
  start-page: 12168
  year: 1991
  ident: 10.1016/j.bbamcr.2019.02.015_bb0070
  article-title: Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98875-7
– volume: 122
  start-page: 311
  year: 2014
  ident: 10.1016/j.bbamcr.2019.02.015_bb0230
  article-title: Assessing regulated nuclear transport in Saccharomyces cerevisiae
  publication-title: Meth Cell Biol
  doi: 10.1016/B978-0-12-417160-2.00014-X
– volume: 59
  start-page: 76
  year: 2007
  ident: 10.1016/j.bbamcr.2019.02.015_bb0030
  article-title: H+-PPases: yesterday, today and tomorrow
  publication-title: IUBMB Life
  doi: 10.1080/15216540701258132
– volume: 33
  start-page: 747
  year: 2014
  ident: 10.1016/j.bbamcr.2019.02.015_bb0350
  article-title: Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance
  publication-title: EMBO J.
  doi: 10.1002/embj.201386822
– volume: 415
  start-page: 180
  year: 2002
  ident: 10.1016/j.bbamcr.2019.02.015_bb0315
  article-title: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
  publication-title: Nature
  doi: 10.1038/415180a
– volume: 77
  start-page: 267
  year: 2013
  ident: 10.1016/j.bbamcr.2019.02.015_bb0035
  article-title: Pyrophosphate-fueled Na+ and H+ transport in prokaryotes
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00003-13
– volume: 9
  start-page: 1959
  year: 2014
  ident: 10.1016/j.bbamcr.2019.02.015_bb0325
  article-title: Global proteome turnover analyses of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.065
– ident: 10.1016/j.bbamcr.2019.02.015_bb0355
  doi: 10.1038/cr.2016.39
– volume: 285
  start-page: 37542
  year: 2010
  ident: 10.1016/j.bbamcr.2019.02.015_bb0285
  article-title: Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.170175
– volume: 67
  start-page: 4981
  year: 2007
  ident: 10.1016/j.bbamcr.2019.02.015_bb0150
  article-title: The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL- induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4274
SSID ssj0000475
Score 2.3327003
Snippet Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1019
SubjectTerms Cell nucleus
Inorganic pyrophosphatase
Nucleocytoplasmic transport
Protein degradation
Ubiquitin-proteasome system
Title Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization
URI https://dx.doi.org/10.1016/j.bbamcr.2019.02.015
https://www.ncbi.nlm.nih.gov/pubmed/30826332
https://www.proquest.com/docview/2187954627
Volume 1866
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVWixBcECxfXWBlJI6EurHrJMelYtWC6GVZqTfLnjrarGgSNalQL_ub-InMOEkREmgljonsOPJMPE_Km_cYezeNsSZIm0cACiKVxRBZq1w09VImzqVY1eiP7telnl-pz6vp6ojNhl4YolX2Z393pofTur8z7ndzXBfF-DIQ6NM0w6SkBlNq-FUqoSz_cPub5iFUMj3oe-PooX0ucLycsxsgVdBJFpQ7yRz37-XpX_AzlKGLx-xRjx_5efeKT9iRL0_Y_c5Rcn_CHswGA7en7OeStIrtlgctBttUG5y4JnGIzkeJVzm_tEB9V9Vmj-cFh0D6bQrreVF2fk_A6_22qq-rpr62LZY8vqjrSf2eW17S4yvYt1WNEHxDQ2mhouQ_cLjniDsD83bPO6fdhuOaRdvwZufofwERYHmopX0v6DN2dfHp22we9QYNESiRtlHsRQI2QxAmvLK51pBq5YUGCRqBnBYuczJDwAYTl-ROQOIRIaapFpm0YIV8zo7LqvQvGfdC5VhF1-skxlTxqdMihrXNLGjtVZ6OmBziYqBXLycTje9moKndmC6ahqJpRGwwmiMWHWbVnXrHHeOTIeTmjyw0WGDumPl2yBCDYaZdtKWvdo2Jg5-70nEyYi-61Dm8C2kFaSnj0_9e9xV7SFcdee01O263O_8GYVLrzsJ3cMbunS--zJd4tVh9_AX75xeq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKESoXBOVr-TQS3Ajrtb2Oc-CAClWXtntpK_VmbK-jBrFJtMmqyoXfhMQfZGwni5BAlZB6Tew48kxmXuQ38xB6PaWQE5jOE2u5TXhGbaI1N8nUMZYaIyGr-RPd47k4OOOfz6fnW-jnUAvjaZV97I8xPUTr_sq4381xXRTjk0CglzIDp_QFprJnVh667hL-25r3s49g5DeU7n863TtIemmBxHIi24Q6klqdAXwgjutcCCsFd0RYZgVAEEFMZlgGUMNOTJobYlMH2EZKQTKmrSYMnnsD3eQQLrxswrvvv3klhKfTTUNxeL2hXi-QyozRS-vbkE6y0CrUq_H-PR_-C--GvLd_F93pASv-EPfkHtpy5S66FSUsu120szcoxt1HP-a-ObJe4dD8QTfVEiYufDeKKNyEqxyfaOsLvaplBwEK28AybgrtcFFGgSmL625V1RdVU1_oFnIsntX1pH6LNS794yvbtVUNmH_ph_qFihJfwnCHAegGqm-Ho7Rvg2HNom1wszb-gMIzbnFI3n3x6QN0di1me4i2y6p0jxF2hOeQtheLlIJvOmkEoXahM22FcDyXI8QGuyjbt0v3qh3f1MCL-6qiNZW3piJUgTVHKNnMqmO7kCvGp4PJ1R9uryCjXTHz1eAhCszsd1GXrlo3igYBeS5oOkKPouts3sU3JxKM0Sf_ve5LtHNwenykjmbzw6fotr8TmXPP0Ha7WrvngNFa8yJ8Exh9ue6P8BdoL1DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+proteasomal+degradation+of+Saccharomyces+cerevisiae+inorganic+pyrophosphatase+Ipp1p%2C+a+nucleocytoplasmic+protein+whose+stability+depends+on+its+subcellular+localization&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Serrano-Bueno%2C+Gloria&rft.au=Madro%C3%B1al%2C+Juan+Manuel&rft.au=Manzano-L%C3%B3pez%2C+Javier&rft.au=Mu%C3%B1iz%2C+Manuel&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-4889&rft.eissn=1879-2596&rft.volume=1866&rft.issue=6&rft.spage=1019&rft.epage=1033&rft_id=info:doi/10.1016%2Fj.bbamcr.2019.02.015&rft.externalDocID=S0167488918303938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon