Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization
Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cyto...
Saved in:
Published in | Biochimica et biophysica acta. Molecular cell research Vol. 1866; no. 6; pp. 1019 - 1033 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.
•It is generally believed that the main yeast sPPase Ipp1p is a cytoplasmic enzyme.•We provide evidence indicating that Ipp1p is a nucleocytoplasmic protein which undergoes nuclear proteasomal degradation.•Nucleocytoplasmic transport provides an added level of sPPase spatial regulation which should eventually control PPi pools of cell nucleus and cytosol. |
---|---|
AbstractList | Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite. Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite. Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite. •It is generally believed that the main yeast sPPase Ipp1p is a cytoplasmic enzyme.•We provide evidence indicating that Ipp1p is a nucleocytoplasmic protein which undergoes nuclear proteasomal degradation.•Nucleocytoplasmic transport provides an added level of sPPase spatial regulation which should eventually control PPi pools of cell nucleus and cytosol. |
Author | Hernández, Agustín Serrano-Bueno, Gloria Madroñal, Juan Manuel Pérez-Castiñeira, José Román Serrano, Aurelio Manzano-López, Javier Muñiz, Manuel |
Author_xml | – sequence: 1 givenname: Gloria surname: Serrano-Bueno fullname: Serrano-Bueno, Gloria organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain – sequence: 2 givenname: Juan Manuel orcidid: 0000-0002-6393-3970 surname: Madroñal fullname: Madroñal, Juan Manuel organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain – sequence: 3 givenname: Javier surname: Manzano-López fullname: Manzano-López, Javier organization: Departamento de Biología Celular, Universidad de Sevilla, 41012 Sevilla, Spain – sequence: 4 givenname: Manuel surname: Muñiz fullname: Muñiz, Manuel organization: Departamento de Biología Celular, Universidad de Sevilla, 41012 Sevilla, Spain – sequence: 5 givenname: José Román surname: Pérez-Castiñeira fullname: Pérez-Castiñeira, José Román organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain – sequence: 6 givenname: Agustín surname: Hernández fullname: Hernández, Agustín organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain – sequence: 7 givenname: Aurelio surname: Serrano fullname: Serrano, Aurelio email: aurelio@ibvf.csic.es organization: Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av. Américo Vespucio 49, 41092 Sevilla, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30826332$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0DISxZMsPPjJCyQUAVtpQoWwNq6ubnpeOTEwXaKhqfiEXE67YYFZJPNd849PueMnUxuIsZeSpFJIdXbfdZ1MKLPciHbTOSZkNUTtpFN3W7zqlUnbJOwels2TXvKzkLYi_SVdfWMnRaiyVVR5Bv2-_OClsDz2btIENwIlvd066GHaNzE3cC_AuIOvBsPSIEjebozwQBxMzl_C5NBPh-8m3cuzDuIEIhfz7Oc33Dg02rv8BDdbCGMK7oeMhP_mXDiIUJnrImHdHSmqQ883TQx8LB0SNYuNmWzDsGaX_eBnrOnA9hALx7-5-z7p4_fLq62N18ury8-3GyxFE3c5iRqhLYqK0ElDEpho0oSCgtUlZRKdG1XtGVeoOzqoRNYk6hSVUq0BSCI4py9PvqmvD8WClGPJqyJYCK3BJ2vRVelyuuEvnpAl26kXs_ejOAP-rHlBLw7AuhdCJ4GjSbevyZ6MFZLoddJ9V4fJ9XrpFrkOk2axOVf4kf__8jeH2WUSroz5HVAQxNSbzxh1L0z_zb4A9clwfE |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2024_150563 crossref_primary_10_1042_BCJ20200663 crossref_primary_10_3390_microorganisms12030625 crossref_primary_10_1016_j_imlet_2019_07_006 crossref_primary_10_1002_prot_26064 crossref_primary_10_1016_j_jbc_2021_100444 crossref_primary_10_3390_microorganisms13020226 |
Cites_doi | 10.1074/jbc.M206209200 10.1016/S0014-5793(99)00617-1 10.1016/0304-4157(95)00015-1 10.1093/nar/25.24.4876 10.1093/nar/gkt933 10.1038/ncomms7533 10.1038/nature02026 10.1126/science.aad9335 10.1042/BJ20091491 10.1074/jbc.M112.439349 10.1002/yea.1391 10.1007/978-1-4939-0799-1_17 10.1093/nar/30.2.598 10.1128/jb.172.10.5686-5689.1990 10.1002/pmic.201100166 10.1007/s00018-003-3070-3 10.1016/S0076-6879(02)50957-5 10.1016/S0014-5793(00)02400-5 10.1007/978-3-642-58444-2_7 10.1093/nar/22.25.5767 10.1007/s10123-001-0028-x 10.1101/gad.12.20.3206 10.1126/science.273.5282.1725 10.1016/S0021-9258(19)49845-1 10.1016/j.febslet.2011.09.003 10.1016/j.cell.2007.05.044 10.1016/j.dnarep.2007.04.010 10.1038/nmeth.2519 10.1016/S0014-5793(01)02390-0 10.15698/mic2016.12.546 10.1016/j.cell.2008.12.039 10.1038/sj.emboj.7600786 10.1042/BJ20051657 10.1038/nrm2468 10.1038/embor.2010.74 10.1074/jbc.M113.475905 10.1016/S0005-2736(00)00130-9 10.1091/mbc.10.6.1923 10.1038/nrm2114 10.1042/bj2240645 10.1007/978-1-4615-1433-6 10.1016/0968-0004(92)90406-Y 10.2144/000112389 10.1074/jbc.M806203200 10.1016/j.cmet.2012.06.002 10.1128/jb.170.12.5901-5907.1988 10.1038/embor.2011.226 10.1016/0003-2697(69)90198-5 10.1083/jcb.42.3.754 10.1128/JB.183.12.3791-3794.2001 10.1073/pnas.242625399 10.1074/jbc.M110.135863 10.1002/1097-0061(200008)16:11<1035::AID-YEA606>3.0.CO;2-P 10.1016/S1360-1385(01)01923-9 10.1038/sj.embor.7400394 10.1242/jcs.093567 10.1038/34542 10.1002/yea.1142 10.1016/S0021-9258(18)98875-7 10.1016/B978-0-12-417160-2.00014-X 10.1080/15216540701258132 10.1002/embj.201386822 10.1038/415180a 10.1128/MMBR.00003-13 10.1016/j.celrep.2014.10.065 10.1038/cr.2016.39 10.1074/jbc.M110.170175 10.1158/0008-5472.CAN-06-4274 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.bbamcr.2019.02.015 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-2596 |
EndPage | 1033 |
ExternalDocumentID | 30826332 10_1016_j_bbamcr_2019_02_015 S0167488918303938 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE IXB J1W KOM LX3 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ZE2 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c408t-2e07ca95450e4af66c864e06c3c651160b9b39423c1b7fb0c7e054886093aca03 |
IEDL.DBID | .~1 |
ISSN | 0167-4889 1879-2596 |
IngestDate | Fri Jul 11 01:06:20 EDT 2025 Thu Apr 03 07:09:52 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 02:45:17 EDT 2025 Fri Feb 23 02:34:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | NESHV Protein degradation Cell nucleus PPi sPPase GFP Inorganic pyrophosphatase NLS NLSe NLSSV HA Nucleocytoplasmic transport Ubiquitin-proteasome system NES |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-2e07ca95450e4af66c864e06c3c651160b9b39423c1b7fb0c7e054886093aca03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6393-3970 |
OpenAccessLink | http://hdl.handle.net/10261/220224 |
PMID | 30826332 |
PQID | 2187954627 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2187954627 pubmed_primary_30826332 crossref_citationtrail_10_1016_j_bbamcr_2019_02_015 crossref_primary_10_1016_j_bbamcr_2019_02_015 elsevier_sciencedirect_doi_10_1016_j_bbamcr_2019_02_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Molecular cell research |
PublicationTitleAlternate | Biochim Biophys Acta Mol Cell Res |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Thompson, Gibson, Plewniak, Jeanmougin, Higgins (bb0165) 1997; 25 Huh, Falvo, Gerke, Carroll, Howson, Weissman, O'Shea (bb0095) 2003; 42 Gdula, Sandaltzopoulos, Tsukiyama, Ossipow, Wu (bb0130) 1998; 12 Boutet, S.C., Disatnik, M.H., Chan, L.S., Iori, K. and Rando, T.A. (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell Swaney, Beltrao, Starita, Guo, Rush, Fields, Krogan, Villén (bb0270) 2013; 10 Vaisman, Ling, Woodgate, Yang (bb0115) 2005; 24 Liu, Yue, Chen, Hu, Lonial, Khuri, Sun (bb0150) 2007; 67 Maeshima (bb0025) 2000; 1465 Wright, Lioutas, Le Dily, Soronellas, Pohl, Bonet, Nacht, Samino, Font-Mateu, Vicent, Wierer, Trabado, Schelhorn, Carolis, Macias, Yanes, Oliva, Beato (bb0125) 2016; 352 Hiller, Finger, Schweiger, Wolf (bb0245) 1996; 273 Fiedler, Braberg, Mehta, Chechik (bb0340) 2009; 136 Drozdowicz, Rea (bb0040) 2001; 6 Zhang, Reese (bb0180) 2006; 313 Hernández, Jiang, Cubero, Nieto, Bressan, Hasegawa, Pardo (bb0185) 2009; 284 Chen, Brevet, Fromant, Lévêque, Schmitter, Blanquet, Plateau (bb0075) 1990; 172 Postnikoff, Harkness (bb0205) 2014; 1163 Ptak, Wozniak (bb0230) 2014; 122 Heinonen, J.K. (2001) Biological Role of Inorganic Pyrophosphate. Springer Science + Business Media New York. 250 pp. DOI Janke, Magiera, Rathfelder, Taxis, Reber, Maekawa, Moreno-Borchart, Doenges, Schwob, Schiebel, Knop (bb0175) 2004; 21 Cooperman, Baykov, Lahti (bb0015) 1992; 17 Watanabe, Funato, Venkataraman, Futerman, Riezman (bb0210) 2002; 277 Gallina, Colding, Henriksen, Beli, Nakamura, Offman, Mathiasen, Silva, Hoffmann, Groth, Choudhary, Lisby (bb0320) 2015; 6 Pérez-Castiñeira, Gómez-García, López-Marqués, Losada, Serrano (bb0020) 2001; 4 Longo, Shadel, Kaeberlein, Kennedy (bb0240) 2012; 16 Mao, Smerdon (bb0285) 2010; 285 12341-.12349. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2. Ed., 3. Vol., Cold Spring Harbor Laboratory Press, New York, 253 pp. Ossareh-Nazari, Bonizec, Cohen, Dokudovskaya, Delalande, Schaeffer, Van Dorsselaer, Dargemont (bb0290) 2010; 11 Swatek K.N. and Komander D. (2016) Ubiquitin modifications. Cell Res Baltscheffsky, Schultz, Baltscheffsky (bb0045) 1999; 452 Chen, Romero, Chuang, Tournier, Joshi, Lee, Kovvali, Madura (bb0250) 2011; 286 Stewart (bb0235) 2007; 8 Ravid, Hochstrasser (bb0260) 2008; 9 Kravtsova-Ivantsiv, Ciechanover (bb0280) 2012; 125 Libanati, Tandler (bb0305) 1969; 42 . Crespan, Maga, Hübscher (bb0120) 2012; 13 Bilsland, Hult, Bell, Sunnerhagen, Downs (bb0345) 2007; 6 Rozovskaya, Rechinsky, Bibilashvili, Karpeisky, Tarusova, Khomutov, Dixon (bb0295) 1984; 224 Perez-Castineira, Lopez-Marques, Losada, Serrano (bb0050) 2001; 496 Mitsuda, Enami, Nakata, Takeyasu, Sato (bb0055) 2001; 488 Guerriero, Weiberth, Brodsky (bb0335) 2013; 288 Breker, Gymrek, Moldavski, Schuldiner (bb0100) 2014; 42 Gomez-Garcia, Losada, Serrano (bb0200) 2006; 395 Baykov, Cooperman, Goldman, Lahti (bb0065) 1999; 23 Gietz, Woods (bb0145) 2002; 350 399-422. Starita, Lo, Eng, Von Haller, Fields (bb0265) 2012; 12 Liu, Sommer (bb0110) 2002; 30 Alkhatib, Landry (bb0135) 2011; 585 Olesen, Franke Johannesen, Hoffmann, Bech Sørensen, Gjermansen, Hansen (bb0225) 2000; 16 Yin, Pascual, Klionsky (bb0330) 2016; 3 Karniely, Pines (bb0085) 2005; 6 Rathbun, Betlach (bb0190) 1969; 28 Villalba, J.M., Palmgren, M.G., Berberián, G.E., Ferguson, C. and Serrano, R. (1992) Functional expression of plant plasma membrane H(+)-ATPase in yeast endoplasmic reticulum. J. Biol. Chem. Gaczynska, Osmulski (bb0255) 2005; 301 Christiano, Nagaraj, Fröhlich, Walther (bb0325) 2014; 9 Serrano, Perez-Castineira, Baltscheffsky, Baltscheffsky (bb0030) 2007; 59 Liu, Apodaca, Davis, Rao (bb0160) 2007; 42 Lichko, Kulakovskaya, Kulaev (bb0310) 2006; 23 349-362. Lahti, Pitkaranta, Valve, Ilta, Kukko-Kalske, Heinonen (bb0010) 1988; 170 Perez-Castineira, Lopez-Marques, Villalba, Losada, Serrano (bb0060) 2002; 99 Steitz (bb0105) 1998; 391 Rodrigues, van Hemert, Steensma, Côrte-Real, Leão (bb0155) 2001; 183 Marzioch, Henthorn, Herrmann, Wilson, Thomas, Bergeron, Solari, Rowley (bb0215) 1999; 10 Ho, Gruhler, Heilbut, Bader, Moore, Adams (bb0315) 2002; 415 Mumberg, Müller, Funk (bb0220) 1994; 22 Drake, Serrano, Pérez-Castiñeira (bb0140) 2010; 426 Baykov, Malinen, Luoto, Lahti (bb0035) 2013; 77 Öling, Eisele, Kvint, Nyström (bb0350) 2014; 33 Csermely, Schnaider, Szántó (bb0300) 1995; 1241 Serrano-Bueno, Hernandez, López-Lluch, Pérez-Castiñeira, Navas, Serrano (bb0080) 2013; 288 Fried, Kutay (bb0090) 2003; 60 Lundin, Baltscheffsky, Ronne (bb0070) 1991; 266 Perez-Castineira (10.1016/j.bbamcr.2019.02.015_bb0050) 2001; 496 Drake (10.1016/j.bbamcr.2019.02.015_bb0140) 2010; 426 Wright (10.1016/j.bbamcr.2019.02.015_bb0125) 2016; 352 10.1016/j.bbamcr.2019.02.015_bb0195 Lichko (10.1016/j.bbamcr.2019.02.015_bb0310) 2006; 23 Gomez-Garcia (10.1016/j.bbamcr.2019.02.015_bb0200) 2006; 395 Serrano-Bueno (10.1016/j.bbamcr.2019.02.015_bb0080) 2013; 288 Postnikoff (10.1016/j.bbamcr.2019.02.015_bb0205) 2014; 1163 Baykov (10.1016/j.bbamcr.2019.02.015_bb0065) 1999; 23 Ho (10.1016/j.bbamcr.2019.02.015_bb0315) 2002; 415 Marzioch (10.1016/j.bbamcr.2019.02.015_bb0215) 1999; 10 Ossareh-Nazari (10.1016/j.bbamcr.2019.02.015_bb0290) 2010; 11 Gaczynska (10.1016/j.bbamcr.2019.02.015_bb0255) 2005; 301 Lundin (10.1016/j.bbamcr.2019.02.015_bb0070) 1991; 266 Thompson (10.1016/j.bbamcr.2019.02.015_bb0165) 1997; 25 Chen (10.1016/j.bbamcr.2019.02.015_bb0250) 2011; 286 Swaney (10.1016/j.bbamcr.2019.02.015_bb0270) 2013; 10 Drozdowicz (10.1016/j.bbamcr.2019.02.015_bb0040) 2001; 6 Janke (10.1016/j.bbamcr.2019.02.015_bb0175) 2004; 21 Ravid (10.1016/j.bbamcr.2019.02.015_bb0260) 2008; 9 Yin (10.1016/j.bbamcr.2019.02.015_bb0330) 2016; 3 Breker (10.1016/j.bbamcr.2019.02.015_bb0100) 2014; 42 Csermely (10.1016/j.bbamcr.2019.02.015_bb0300) 1995; 1241 Mao (10.1016/j.bbamcr.2019.02.015_bb0285) 2010; 285 Pérez-Castiñeira (10.1016/j.bbamcr.2019.02.015_bb0020) 2001; 4 Alkhatib (10.1016/j.bbamcr.2019.02.015_bb0135) 2011; 585 10.1016/j.bbamcr.2019.02.015_bb0275 Libanati (10.1016/j.bbamcr.2019.02.015_bb0305) 1969; 42 Chen (10.1016/j.bbamcr.2019.02.015_bb0075) 1990; 172 Liu (10.1016/j.bbamcr.2019.02.015_bb0160) 2007; 42 10.1016/j.bbamcr.2019.02.015_bb0355 Vaisman (10.1016/j.bbamcr.2019.02.015_bb0115) 2005; 24 Guerriero (10.1016/j.bbamcr.2019.02.015_bb0335) 2013; 288 Fiedler (10.1016/j.bbamcr.2019.02.015_bb0340) 2009; 136 Huh (10.1016/j.bbamcr.2019.02.015_bb0095) 2003; 42 Christiano (10.1016/j.bbamcr.2019.02.015_bb0325) 2014; 9 Crespan (10.1016/j.bbamcr.2019.02.015_bb0120) 2012; 13 10.1016/j.bbamcr.2019.02.015_bb0170 Fried (10.1016/j.bbamcr.2019.02.015_bb0090) 2003; 60 Hernández (10.1016/j.bbamcr.2019.02.015_bb0185) 2009; 284 Olesen (10.1016/j.bbamcr.2019.02.015_bb0225) 2000; 16 Stewart (10.1016/j.bbamcr.2019.02.015_bb0235) 2007; 8 Gietz (10.1016/j.bbamcr.2019.02.015_bb0145) 2002; 350 Lahti (10.1016/j.bbamcr.2019.02.015_bb0010) 1988; 170 Gallina (10.1016/j.bbamcr.2019.02.015_bb0320) 2015; 6 Cooperman (10.1016/j.bbamcr.2019.02.015_bb0015) 1992; 17 10.1016/j.bbamcr.2019.02.015_bb0005 Watanabe (10.1016/j.bbamcr.2019.02.015_bb0210) 2002; 277 Bilsland (10.1016/j.bbamcr.2019.02.015_bb0345) 2007; 6 Baykov (10.1016/j.bbamcr.2019.02.015_bb0035) 2013; 77 Hiller (10.1016/j.bbamcr.2019.02.015_bb0245) 1996; 273 Gdula (10.1016/j.bbamcr.2019.02.015_bb0130) 1998; 12 Mitsuda (10.1016/j.bbamcr.2019.02.015_bb0055) 2001; 488 Longo (10.1016/j.bbamcr.2019.02.015_bb0240) 2012; 16 Rodrigues (10.1016/j.bbamcr.2019.02.015_bb0155) 2001; 183 Starita (10.1016/j.bbamcr.2019.02.015_bb0265) 2012; 12 Perez-Castineira (10.1016/j.bbamcr.2019.02.015_bb0060) 2002; 99 Liu (10.1016/j.bbamcr.2019.02.015_bb0150) 2007; 67 Rozovskaya (10.1016/j.bbamcr.2019.02.015_bb0295) 1984; 224 Serrano (10.1016/j.bbamcr.2019.02.015_bb0030) 2007; 59 Baltscheffsky (10.1016/j.bbamcr.2019.02.015_bb0045) 1999; 452 Steitz (10.1016/j.bbamcr.2019.02.015_bb0105) 1998; 391 Zhang (10.1016/j.bbamcr.2019.02.015_bb0180) 2006; 313 Mumberg (10.1016/j.bbamcr.2019.02.015_bb0220) 1994; 22 Ptak (10.1016/j.bbamcr.2019.02.015_bb0230) 2014; 122 Kravtsova-Ivantsiv (10.1016/j.bbamcr.2019.02.015_bb0280) 2012; 125 Liu (10.1016/j.bbamcr.2019.02.015_bb0110) 2002; 30 Maeshima (10.1016/j.bbamcr.2019.02.015_bb0025) 2000; 1465 Öling (10.1016/j.bbamcr.2019.02.015_bb0350) 2014; 33 Karniely (10.1016/j.bbamcr.2019.02.015_bb0085) 2005; 6 Rathbun (10.1016/j.bbamcr.2019.02.015_bb0190) 1969; 28 |
References_xml | – volume: 415 start-page: 180 year: 2002 end-page: 183 ident: bb0315 article-title: Systematic identification of protein complexes in publication-title: Nature – volume: 9 start-page: 679 year: 2008 end-page: 690 ident: bb0260 article-title: Diversity of degradation signals in the ubiquitin-proteasome system publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 1035 year: 2000 end-page: 1043 ident: bb0225 article-title: The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection publication-title: Yeast – volume: 16 start-page: 18 year: 2012 end-page: 31 ident: bb0240 article-title: Replicative and chronological aging in publication-title: Cell Metab. – volume: 42 start-page: 686 year: 2003 end-page: 691 ident: bb0095 article-title: Global analysis of protein localization in budding yeast publication-title: Nature – volume: 1241 start-page: 425 year: 1995 end-page: 451 ident: bb0300 article-title: Signalling and transport through the nuclear membrane publication-title: Biochim. Biophys. Acta – volume: 11 start-page: 548 year: 2010 end-page: 554 ident: bb0290 article-title: Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy publication-title: EMBO Rep. – volume: 25 start-page: 4876 year: 1997 end-page: 4882 ident: bb0165 article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools publication-title: Nucleic Acids Res. – volume: 286 start-page: 3104 year: 2011 end-page: 3118 ident: bb0250 article-title: Sts1 plays a key role in targeting proteasomes to the nucleus publication-title: J. Biol. Chem. – volume: 266 start-page: 12168 year: 1991 end-page: 12172 ident: bb0070 article-title: Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function publication-title: J. Biol. Chem. – volume: 60 start-page: 1659 year: 2003 end-page: 1688 ident: bb0090 article-title: Nucleocytoplasmic transport: taking an inventory publication-title: Cell. Mol. Life Sci. – volume: 6 start-page: 1471 year: 2007 end-page: 1484 ident: bb0345 article-title: The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage publication-title: DNA Repair (Amst) – volume: 12 start-page: 3206 year: 1998 end-page: 3216 ident: bb0130 article-title: Inorganic pyrophosphatase is a component of the publication-title: Genes Dev. – reference: , 12341-.12349. – volume: 28 start-page: 436 year: 1969 end-page: 445 ident: bb0190 article-title: Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate publication-title: Anal. Biochem. – volume: 10 start-page: 1923 year: 1999 end-page: 1938 ident: bb0215 article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex publication-title: Mol. Biol. Cell – reference: Villalba, J.M., Palmgren, M.G., Berberián, G.E., Ferguson, C. and Serrano, R. (1992) Functional expression of plant plasma membrane H(+)-ATPase in yeast endoplasmic reticulum. J. Biol. Chem. – volume: 284 start-page: 14276 year: 2009 end-page: 14285 ident: bb0185 article-title: Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity publication-title: J. Biol. Chem. – reference: Boutet, S.C., Disatnik, M.H., Chan, L.S., Iori, K. and Rando, T.A. (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell – volume: 8 start-page: 195 year: 2007 end-page: 218 ident: bb0235 article-title: Molecular mechanism of the nuclear protein import cycle publication-title: Nat Rev Mol Cell Biol – volume: 391 start-page: 231 year: 1998 end-page: 232 ident: bb0105 article-title: A mechanism for all polymerases publication-title: Nature – volume: 23 start-page: 127 year: 1999 end-page: 150 ident: bb0065 article-title: Cytoplasmic inorganic pyrophosphatase publication-title: Prog. Mol. Subcell. Biol. – volume: 172 start-page: 5686 year: 1990 end-page: 5689 ident: bb0075 article-title: Pyrophosphatase is essential for growth of publication-title: J. Bacteriol. – volume: 183 start-page: 3791 year: 2001 end-page: 3794 ident: bb0155 article-title: Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae publication-title: J. Bacteriol. – volume: 1465 start-page: 37 year: 2000 end-page: 51 ident: bb0025 article-title: Vacuolar H(+)-pyrophosphatase publication-title: Biochim. Biophys. Acta – volume: 350 start-page: 87 year: 2002 end-page: 96 ident: bb0145 article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method publication-title: Methods Enzymol. – volume: 9 start-page: 1959 year: 2014 end-page: 1965 ident: bb0325 article-title: Global proteome turnover analyses of the yeasts publication-title: Cell Rep. – volume: 10 start-page: 676 year: 2013 end-page: 682 ident: bb0270 article-title: Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation publication-title: Nat. Methods – volume: 6 start-page: 206 year: 2001 end-page: 211 ident: bb0040 article-title: Vacuolar H(+) pyrophosphatases: from the evolutionary backwaters into the mainstream publication-title: Trends Plant Sci. – volume: 352 start-page: 1221 year: 2016 end-page: 1225 ident: bb0125 article-title: ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodelling publication-title: Science – volume: 42 start-page: 754 year: 1969 end-page: 765 ident: bb0305 article-title: The distribution of the water-soluble inorganic orthophosphate ions within the cell: accumulation in the nucleus publication-title: J. Cell Biol. – volume: 426 start-page: 147 year: 2010 end-page: 157 ident: bb0140 article-title: N-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast publication-title: Biochem. J. – volume: 21 start-page: 947 year: 2004 end-page: 962 ident: bb0175 article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast – volume: 125 start-page: 539 year: 2012 end-page: 548 ident: bb0280 article-title: Non-canonical ubiquitin-based signals for proteasomal degradation publication-title: J. Cell Sci. – volume: 42 start-page: D726 year: 2014 end-page: D730 ident: bb0100 article-title: LoQAtE—localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast publication-title: Nucleic Acids Res. – volume: 224 start-page: 645 year: 1984 end-page: 650 ident: bb0295 article-title: The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity publication-title: Biochem. J. – volume: 42 start-page: 158 year: 2007 end-page: 162 ident: bb0160 article-title: Proteasome inhibition in wild-type yeast publication-title: Biotechniques – reference: Swatek K.N. and Komander D. (2016) Ubiquitin modifications. Cell Res – volume: 488 start-page: 29 year: 2001 end-page: 33 ident: bb0055 article-title: Novel type Arabidopsis thaliana H(+)-PPase is localized to the Golgi apparatus publication-title: FEBS Lett. – volume: 99 start-page: 15914 year: 2002 end-page: 15919 ident: bb0060 article-title: Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: , 349-362. – volume: 136 start-page: 952 year: 2009 end-page: 963 ident: bb0340 article-title: Functional organization of the publication-title: Cell – volume: 170 start-page: 5901 year: 1988 end-page: 5907 ident: bb0010 article-title: Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12 publication-title: J. Bacteriol. – volume: 23 start-page: 735 year: 2006 end-page: 740 ident: bb0310 article-title: Inorganic polyphosphate and exopolyphosphatase in the nuclei of publication-title: Yeast – volume: 288 start-page: 13082 year: 2013 end-page: 13092 ident: bb0080 article-title: Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+ depletion in fermenting yeast publication-title: J. Biol. Chem. – volume: 301 start-page: 3 year: 2005 end-page: 22 ident: bb0255 article-title: Small-molecule inhibitors of proteasome activity publication-title: Methods Mol. Biol. – volume: 277 start-page: 49538 year: 2002 end-page: 49544 ident: bb0210 article-title: Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast publication-title: J. Biol. Chem. – volume: 1163 start-page: 223 year: 2014 end-page: 227 ident: bb0205 article-title: Replicative and chronological life-span assays publication-title: Methods Mol. Biol. – volume: 13 start-page: 68 year: 2012 end-page: 74 ident: bb0120 article-title: A new proofreading mechanism for lesion bypass by DNA polymerase-λ publication-title: EMBO Rep. – volume: 30 start-page: 598 year: 2002 end-page: 604 ident: bb0110 article-title: Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures publication-title: Nucleic Acids Res. – volume: 12 start-page: 236 year: 2012 end-page: 240 ident: bb0265 article-title: Sites of ubiquitin attachment in publication-title: Proteomics – volume: 6 start-page: 420 year: 2005 end-page: 425 ident: bb0085 article-title: Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes publication-title: EMBO Rep. – volume: 395 start-page: 211 year: 2006 end-page: 221 ident: bb0200 article-title: A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes publication-title: Biochem. J. – volume: 585 start-page: 3197 year: 2011 end-page: 3207 ident: bb0135 article-title: The nucleosome remodeling factor publication-title: FEBS Lett. – volume: 33 start-page: 747 year: 2014 end-page: 761 ident: bb0350 article-title: Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance publication-title: EMBO J. – reference: , 399-422. – reference: Heinonen, J.K. (2001) Biological Role of Inorganic Pyrophosphate. Springer Science + Business Media New York. 250 pp. DOI – volume: 67 start-page: 4981 year: 2007 end-page: 4988 ident: bb0150 article-title: The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL- induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells publication-title: Cancer Res. – volume: 313 start-page: 245 year: 2006 end-page: 255 ident: bb0180 article-title: Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning publication-title: Methods Mol. Biol. – volume: 17 start-page: 262 year: 1992 end-page: 266 ident: bb0015 article-title: Evolutionary conservation of the active site of soluble inorganic pyrophosphatase publication-title: Trends Biochem. Sci. – volume: 6 start-page: 6533 year: 2015 ident: bb0320 article-title: Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control publication-title: Nat. Commun. – volume: 4 start-page: 135 year: 2001 end-page: 142 ident: bb0020 article-title: Enzymatic systems of inorganic pyrophosphate bioenergetics in photosyntetic and heterotrophic protists: remnants or metabolic cornerstones? publication-title: Int. Microbiol. – volume: 122 start-page: 311 year: 2014 end-page: 330 ident: bb0230 article-title: Assessing regulated nuclear transport in publication-title: Meth Cell Biol – volume: 288 start-page: 18506 year: 2013 end-page: 18520 ident: bb0335 article-title: Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase publication-title: J. Biol. Chem. – volume: 24 start-page: 2957 year: 2005 end-page: 2967 ident: bb0115 article-title: Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis publication-title: EMBO J. – volume: 3 start-page: 588 year: 2016 end-page: 596 ident: bb0330 article-title: Autophagy: machinery and regulation publication-title: Microb. Cell – reference: . – volume: 22 start-page: 5767 year: 1994 end-page: 5768 ident: bb0220 article-title: Regulatable promoters of publication-title: Nucl Ac Res – volume: 59 start-page: 76 year: 2007 end-page: 83 ident: bb0030 article-title: H+-PPases: yesterday, today and tomorrow publication-title: IUBMB Life – volume: 285 start-page: 37542 year: 2010 end-page: 37550 ident: bb0285 article-title: Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation publication-title: J. Biol. Chem. – volume: 452 start-page: 121 year: 1999 end-page: 127 ident: bb0045 article-title: H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family publication-title: FEBS Lett. – volume: 273 start-page: 1725 year: 1996 end-page: 1728 ident: bb0245 article-title: ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway publication-title: Science – volume: 77 start-page: 267 year: 2013 end-page: 276 ident: bb0035 article-title: Pyrophosphate-fueled Na+ and H+ transport in prokaryotes publication-title: Microbiol. Mol. Biol. Rev. – volume: 496 start-page: 6 year: 2001 end-page: 11 ident: bb0050 article-title: A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium publication-title: FEBS Lett. – reference: Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2. Ed., 3. Vol., Cold Spring Harbor Laboratory Press, New York, 253 pp. – volume: 277 start-page: 49538 year: 2002 ident: 10.1016/j.bbamcr.2019.02.015_bb0210 article-title: Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206209200 – volume: 452 start-page: 121 year: 1999 ident: 10.1016/j.bbamcr.2019.02.015_bb0045 article-title: H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00617-1 – volume: 1241 start-page: 425 year: 1995 ident: 10.1016/j.bbamcr.2019.02.015_bb0300 article-title: Signalling and transport through the nuclear membrane publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(95)00015-1 – volume: 25 start-page: 4876 year: 1997 ident: 10.1016/j.bbamcr.2019.02.015_bb0165 article-title: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.24.4876 – volume: 42 start-page: D726 issue: Database issue year: 2014 ident: 10.1016/j.bbamcr.2019.02.015_bb0100 article-title: LoQAtE—localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt933 – volume: 6 start-page: 6533 year: 2015 ident: 10.1016/j.bbamcr.2019.02.015_bb0320 article-title: Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control publication-title: Nat. Commun. doi: 10.1038/ncomms7533 – volume: 42 start-page: 686 year: 2003 ident: 10.1016/j.bbamcr.2019.02.015_bb0095 article-title: Global analysis of protein localization in budding yeast publication-title: Nature doi: 10.1038/nature02026 – volume: 301 start-page: 3 year: 2005 ident: 10.1016/j.bbamcr.2019.02.015_bb0255 article-title: Small-molecule inhibitors of proteasome activity publication-title: Methods Mol. Biol. – volume: 352 start-page: 1221 year: 2016 ident: 10.1016/j.bbamcr.2019.02.015_bb0125 article-title: ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodelling publication-title: Science doi: 10.1126/science.aad9335 – volume: 426 start-page: 147 year: 2010 ident: 10.1016/j.bbamcr.2019.02.015_bb0140 article-title: N-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast publication-title: Biochem. J. doi: 10.1042/BJ20091491 – volume: 288 start-page: 13082 year: 2013 ident: 10.1016/j.bbamcr.2019.02.015_bb0080 article-title: Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+ depletion in fermenting yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.439349 – volume: 23 start-page: 735 year: 2006 ident: 10.1016/j.bbamcr.2019.02.015_bb0310 article-title: Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes publication-title: Yeast doi: 10.1002/yea.1391 – volume: 1163 start-page: 223 year: 2014 ident: 10.1016/j.bbamcr.2019.02.015_bb0205 article-title: Replicative and chronological life-span assays publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0799-1_17 – volume: 30 start-page: 598 year: 2002 ident: 10.1016/j.bbamcr.2019.02.015_bb0110 article-title: Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.2.598 – volume: 172 start-page: 5686 year: 1990 ident: 10.1016/j.bbamcr.2019.02.015_bb0075 article-title: Pyrophosphatase is essential for growth of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/jb.172.10.5686-5689.1990 – volume: 12 start-page: 236 year: 2012 ident: 10.1016/j.bbamcr.2019.02.015_bb0265 article-title: Sites of ubiquitin attachment in Saccharomyces cerevisiae publication-title: Proteomics doi: 10.1002/pmic.201100166 – volume: 60 start-page: 1659 year: 2003 ident: 10.1016/j.bbamcr.2019.02.015_bb0090 article-title: Nucleocytoplasmic transport: taking an inventory publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-003-3070-3 – volume: 350 start-page: 87 year: 2002 ident: 10.1016/j.bbamcr.2019.02.015_bb0145 article-title: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)50957-5 – volume: 488 start-page: 29 year: 2001 ident: 10.1016/j.bbamcr.2019.02.015_bb0055 article-title: Novel type Arabidopsis thaliana H(+)-PPase is localized to the Golgi apparatus publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02400-5 – volume: 23 start-page: 127 year: 1999 ident: 10.1016/j.bbamcr.2019.02.015_bb0065 article-title: Cytoplasmic inorganic pyrophosphatase publication-title: Prog. Mol. Subcell. Biol. doi: 10.1007/978-3-642-58444-2_7 – volume: 22 start-page: 5767 year: 1994 ident: 10.1016/j.bbamcr.2019.02.015_bb0220 article-title: Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression publication-title: Nucl Ac Res doi: 10.1093/nar/22.25.5767 – volume: 4 start-page: 135 year: 2001 ident: 10.1016/j.bbamcr.2019.02.015_bb0020 article-title: Enzymatic systems of inorganic pyrophosphate bioenergetics in photosyntetic and heterotrophic protists: remnants or metabolic cornerstones? publication-title: Int. Microbiol. doi: 10.1007/s10123-001-0028-x – volume: 12 start-page: 3206 year: 1998 ident: 10.1016/j.bbamcr.2019.02.015_bb0130 article-title: Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodeling factor complex publication-title: Genes Dev. doi: 10.1101/gad.12.20.3206 – volume: 273 start-page: 1725 year: 1996 ident: 10.1016/j.bbamcr.2019.02.015_bb0245 article-title: ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway publication-title: Science doi: 10.1126/science.273.5282.1725 – ident: 10.1016/j.bbamcr.2019.02.015_bb0170 doi: 10.1016/S0021-9258(19)49845-1 – volume: 585 start-page: 3197 year: 2011 ident: 10.1016/j.bbamcr.2019.02.015_bb0135 article-title: The nucleosome remodeling factor publication-title: FEBS Lett. doi: 10.1016/j.febslet.2011.09.003 – ident: 10.1016/j.bbamcr.2019.02.015_bb0275 doi: 10.1016/j.cell.2007.05.044 – volume: 6 start-page: 1471 year: 2007 ident: 10.1016/j.bbamcr.2019.02.015_bb0345 article-title: The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2007.04.010 – volume: 10 start-page: 676 year: 2013 ident: 10.1016/j.bbamcr.2019.02.015_bb0270 article-title: Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation publication-title: Nat. Methods doi: 10.1038/nmeth.2519 – volume: 496 start-page: 6 year: 2001 ident: 10.1016/j.bbamcr.2019.02.015_bb0050 article-title: A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02390-0 – volume: 313 start-page: 245 year: 2006 ident: 10.1016/j.bbamcr.2019.02.015_bb0180 article-title: Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning publication-title: Methods Mol. Biol. – volume: 3 start-page: 588 year: 2016 ident: 10.1016/j.bbamcr.2019.02.015_bb0330 article-title: Autophagy: machinery and regulation publication-title: Microb. Cell doi: 10.15698/mic2016.12.546 – volume: 136 start-page: 952 year: 2009 ident: 10.1016/j.bbamcr.2019.02.015_bb0340 article-title: Functional organization of the S. cerevisiae phosphorylation network publication-title: Cell doi: 10.1016/j.cell.2008.12.039 – volume: 24 start-page: 2957 year: 2005 ident: 10.1016/j.bbamcr.2019.02.015_bb0115 article-title: Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis publication-title: EMBO J. doi: 10.1038/sj.emboj.7600786 – ident: 10.1016/j.bbamcr.2019.02.015_bb0195 – volume: 395 start-page: 211 year: 2006 ident: 10.1016/j.bbamcr.2019.02.015_bb0200 article-title: A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes publication-title: Biochem. J. doi: 10.1042/BJ20051657 – volume: 9 start-page: 679 year: 2008 ident: 10.1016/j.bbamcr.2019.02.015_bb0260 article-title: Diversity of degradation signals in the ubiquitin-proteasome system publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2468 – volume: 11 start-page: 548 year: 2010 ident: 10.1016/j.bbamcr.2019.02.015_bb0290 article-title: Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy publication-title: EMBO Rep. doi: 10.1038/embor.2010.74 – volume: 288 start-page: 18506 year: 2013 ident: 10.1016/j.bbamcr.2019.02.015_bb0335 article-title: Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.475905 – volume: 1465 start-page: 37 year: 2000 ident: 10.1016/j.bbamcr.2019.02.015_bb0025 article-title: Vacuolar H(+)-pyrophosphatase publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(00)00130-9 – volume: 10 start-page: 1923 year: 1999 ident: 10.1016/j.bbamcr.2019.02.015_bb0215 article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.6.1923 – volume: 8 start-page: 195 year: 2007 ident: 10.1016/j.bbamcr.2019.02.015_bb0235 article-title: Molecular mechanism of the nuclear protein import cycle publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2114 – volume: 224 start-page: 645 year: 1984 ident: 10.1016/j.bbamcr.2019.02.015_bb0295 article-title: The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity publication-title: Biochem. J. doi: 10.1042/bj2240645 – ident: 10.1016/j.bbamcr.2019.02.015_bb0005 doi: 10.1007/978-1-4615-1433-6 – volume: 17 start-page: 262 year: 1992 ident: 10.1016/j.bbamcr.2019.02.015_bb0015 article-title: Evolutionary conservation of the active site of soluble inorganic pyrophosphatase publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(92)90406-Y – volume: 42 start-page: 158 year: 2007 ident: 10.1016/j.bbamcr.2019.02.015_bb0160 article-title: Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells publication-title: Biotechniques doi: 10.2144/000112389 – volume: 284 start-page: 14276 year: 2009 ident: 10.1016/j.bbamcr.2019.02.015_bb0185 article-title: Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806203200 – volume: 16 start-page: 18 year: 2012 ident: 10.1016/j.bbamcr.2019.02.015_bb0240 article-title: Replicative and chronological aging in Saccharomyces cerevisiae publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.06.002 – volume: 170 start-page: 5901 year: 1988 ident: 10.1016/j.bbamcr.2019.02.015_bb0010 article-title: Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12 publication-title: J. Bacteriol. doi: 10.1128/jb.170.12.5901-5907.1988 – volume: 13 start-page: 68 year: 2012 ident: 10.1016/j.bbamcr.2019.02.015_bb0120 article-title: A new proofreading mechanism for lesion bypass by DNA polymerase-λ publication-title: EMBO Rep. doi: 10.1038/embor.2011.226 – volume: 28 start-page: 436 year: 1969 ident: 10.1016/j.bbamcr.2019.02.015_bb0190 article-title: Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate publication-title: Anal. Biochem. doi: 10.1016/0003-2697(69)90198-5 – volume: 42 start-page: 754 year: 1969 ident: 10.1016/j.bbamcr.2019.02.015_bb0305 article-title: The distribution of the water-soluble inorganic orthophosphate ions within the cell: accumulation in the nucleus publication-title: J. Cell Biol. doi: 10.1083/jcb.42.3.754 – volume: 183 start-page: 3791 year: 2001 ident: 10.1016/j.bbamcr.2019.02.015_bb0155 article-title: Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae publication-title: J. Bacteriol. doi: 10.1128/JB.183.12.3791-3794.2001 – volume: 99 start-page: 15914 year: 2002 ident: 10.1016/j.bbamcr.2019.02.015_bb0060 article-title: Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.242625399 – volume: 286 start-page: 3104 year: 2011 ident: 10.1016/j.bbamcr.2019.02.015_bb0250 article-title: Sts1 plays a key role in targeting proteasomes to the nucleus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.135863 – volume: 16 start-page: 1035 year: 2000 ident: 10.1016/j.bbamcr.2019.02.015_bb0225 article-title: The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection publication-title: Yeast doi: 10.1002/1097-0061(200008)16:11<1035::AID-YEA606>3.0.CO;2-P – volume: 6 start-page: 206 year: 2001 ident: 10.1016/j.bbamcr.2019.02.015_bb0040 article-title: Vacuolar H(+) pyrophosphatases: from the evolutionary backwaters into the mainstream publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)01923-9 – volume: 6 start-page: 420 year: 2005 ident: 10.1016/j.bbamcr.2019.02.015_bb0085 article-title: Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400394 – volume: 125 start-page: 539 year: 2012 ident: 10.1016/j.bbamcr.2019.02.015_bb0280 article-title: Non-canonical ubiquitin-based signals for proteasomal degradation publication-title: J. Cell Sci. doi: 10.1242/jcs.093567 – volume: 391 start-page: 231 year: 1998 ident: 10.1016/j.bbamcr.2019.02.015_bb0105 article-title: A mechanism for all polymerases publication-title: Nature doi: 10.1038/34542 – volume: 21 start-page: 947 year: 2004 ident: 10.1016/j.bbamcr.2019.02.015_bb0175 article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast doi: 10.1002/yea.1142 – volume: 266 start-page: 12168 year: 1991 ident: 10.1016/j.bbamcr.2019.02.015_bb0070 article-title: Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98875-7 – volume: 122 start-page: 311 year: 2014 ident: 10.1016/j.bbamcr.2019.02.015_bb0230 article-title: Assessing regulated nuclear transport in Saccharomyces cerevisiae publication-title: Meth Cell Biol doi: 10.1016/B978-0-12-417160-2.00014-X – volume: 59 start-page: 76 year: 2007 ident: 10.1016/j.bbamcr.2019.02.015_bb0030 article-title: H+-PPases: yesterday, today and tomorrow publication-title: IUBMB Life doi: 10.1080/15216540701258132 – volume: 33 start-page: 747 year: 2014 ident: 10.1016/j.bbamcr.2019.02.015_bb0350 article-title: Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance publication-title: EMBO J. doi: 10.1002/embj.201386822 – volume: 415 start-page: 180 year: 2002 ident: 10.1016/j.bbamcr.2019.02.015_bb0315 article-title: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry publication-title: Nature doi: 10.1038/415180a – volume: 77 start-page: 267 year: 2013 ident: 10.1016/j.bbamcr.2019.02.015_bb0035 article-title: Pyrophosphate-fueled Na+ and H+ transport in prokaryotes publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00003-13 – volume: 9 start-page: 1959 year: 2014 ident: 10.1016/j.bbamcr.2019.02.015_bb0325 article-title: Global proteome turnover analyses of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.065 – ident: 10.1016/j.bbamcr.2019.02.015_bb0355 doi: 10.1038/cr.2016.39 – volume: 285 start-page: 37542 year: 2010 ident: 10.1016/j.bbamcr.2019.02.015_bb0285 article-title: Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.170175 – volume: 67 start-page: 4981 year: 2007 ident: 10.1016/j.bbamcr.2019.02.015_bb0150 article-title: The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL- induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-4274 |
SSID | ssj0000475 |
Score | 2.3327003 |
Snippet | Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1019 |
SubjectTerms | Cell nucleus Inorganic pyrophosphatase Nucleocytoplasmic transport Protein degradation Ubiquitin-proteasome system |
Title | Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization |
URI | https://dx.doi.org/10.1016/j.bbamcr.2019.02.015 https://www.ncbi.nlm.nih.gov/pubmed/30826332 https://www.proquest.com/docview/2187954627 |
Volume | 1866 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVWixBcECxfXWBlJI6EurHrJMelYtWC6GVZqTfLnjrarGgSNalQL_ub-InMOEkREmgljonsOPJMPE_Km_cYezeNsSZIm0cACiKVxRBZq1w09VImzqVY1eiP7telnl-pz6vp6ojNhl4YolX2Z393pofTur8z7ndzXBfF-DIQ6NM0w6SkBlNq-FUqoSz_cPub5iFUMj3oe-PooX0ucLycsxsgVdBJFpQ7yRz37-XpX_AzlKGLx-xRjx_5efeKT9iRL0_Y_c5Rcn_CHswGA7en7OeStIrtlgctBttUG5y4JnGIzkeJVzm_tEB9V9Vmj-cFh0D6bQrreVF2fk_A6_22qq-rpr62LZY8vqjrSf2eW17S4yvYt1WNEHxDQ2mhouQ_cLjniDsD83bPO6fdhuOaRdvwZufofwERYHmopX0v6DN2dfHp22we9QYNESiRtlHsRQI2QxAmvLK51pBq5YUGCRqBnBYuczJDwAYTl-ROQOIRIaapFpm0YIV8zo7LqvQvGfdC5VhF1-skxlTxqdMihrXNLGjtVZ6OmBziYqBXLycTje9moKndmC6ahqJpRGwwmiMWHWbVnXrHHeOTIeTmjyw0WGDumPl2yBCDYaZdtKWvdo2Jg5-70nEyYi-61Dm8C2kFaSnj0_9e9xV7SFcdee01O263O_8GYVLrzsJ3cMbunS--zJd4tVh9_AX75xeq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKESoXBOVr-TQS3Ajrtb2Oc-CAClWXtntpK_VmbK-jBrFJtMmqyoXfhMQfZGwni5BAlZB6Tew48kxmXuQ38xB6PaWQE5jOE2u5TXhGbaI1N8nUMZYaIyGr-RPd47k4OOOfz6fnW-jnUAvjaZV97I8xPUTr_sq4381xXRTjk0CglzIDp_QFprJnVh667hL-25r3s49g5DeU7n863TtIemmBxHIi24Q6klqdAXwgjutcCCsFd0RYZgVAEEFMZlgGUMNOTJobYlMH2EZKQTKmrSYMnnsD3eQQLrxswrvvv3klhKfTTUNxeL2hXi-QyozRS-vbkE6y0CrUq_H-PR_-C--GvLd_F93pASv-EPfkHtpy5S66FSUsu120szcoxt1HP-a-ObJe4dD8QTfVEiYufDeKKNyEqxyfaOsLvaplBwEK28AybgrtcFFGgSmL625V1RdVU1_oFnIsntX1pH6LNS794yvbtVUNmH_ph_qFihJfwnCHAegGqm-Ho7Rvg2HNom1wszb-gMIzbnFI3n3x6QN0di1me4i2y6p0jxF2hOeQtheLlIJvOmkEoXahM22FcDyXI8QGuyjbt0v3qh3f1MCL-6qiNZW3piJUgTVHKNnMqmO7kCvGp4PJ1R9uryCjXTHz1eAhCszsd1GXrlo3igYBeS5oOkKPouts3sU3JxKM0Sf_ve5LtHNwenykjmbzw6fotr8TmXPP0Ha7WrvngNFa8yJ8Exh9ue6P8BdoL1DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+proteasomal+degradation+of+Saccharomyces+cerevisiae+inorganic+pyrophosphatase+Ipp1p%2C+a+nucleocytoplasmic+protein+whose+stability+depends+on+its+subcellular+localization&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Serrano-Bueno%2C+Gloria&rft.au=Madro%C3%B1al%2C+Juan+Manuel&rft.au=Manzano-L%C3%B3pez%2C+Javier&rft.au=Mu%C3%B1iz%2C+Manuel&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-4889&rft.eissn=1879-2596&rft.volume=1866&rft.issue=6&rft.spage=1019&rft.epage=1033&rft_id=info:doi/10.1016%2Fj.bbamcr.2019.02.015&rft.externalDocID=S0167488918303938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon |