Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes
In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration rat...
Saved in:
Published in | Drying technology Vol. 39; no. 3; pp. 418 - 431 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
16.09.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (D
eff
) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10
−9
, 1.18 × 10
−9
, and 0.90 × 10
−9
m
2
/s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale. |
---|---|
AbstractList | In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (Dₑff) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10⁻⁹, 1.18 × 10⁻⁹, and 0.90 × 10⁻⁹ m²/s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale. In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (Deff) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10−9, 1.18 × 10−9, and 0.90 × 10−9 m2/s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale. In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (D eff ) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10 −9 , 1.18 × 10 −9 , and 0.90 × 10 −9 m 2 /s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale. |
Author | Xiao, Hong-Wei Gao, Lei Liu, Zi-Liang Wang, Hui Vidyarthi, Sriram K. Wei, Qing Wang, Qing-Hui Li, Bo-Rui Liu, Yan-Hong |
Author_xml | – sequence: 1 givenname: Hui surname: Wang fullname: Wang, Hui organization: College of Engineering, China Agricultural University – sequence: 2 givenname: Zi-Liang surname: Liu fullname: Liu, Zi-Liang organization: College of Engineering, China Agricultural University – sequence: 3 givenname: Sriram K. surname: Vidyarthi fullname: Vidyarthi, Sriram K. organization: Department of Biological and Agricultural Engineering, University of California – sequence: 4 givenname: Qing-Hui surname: Wang fullname: Wang, Qing-Hui organization: Xinjiang Academy of Agricultural Sciences, Agricultural Mechanization Institute – sequence: 5 givenname: Lei surname: Gao fullname: Gao, Lei organization: College of Engineering, China Agricultural University – sequence: 6 givenname: Bo-Rui surname: Li fullname: Li, Bo-Rui organization: College of Engineering, China Agricultural University – sequence: 7 givenname: Qing surname: Wei fullname: Wei, Qing organization: College of Engineering, China Agricultural University – sequence: 8 givenname: Yan-Hong surname: Liu fullname: Liu, Yan-Hong organization: College of Engineering, China Agricultural University – sequence: 9 givenname: Hong-Wei surname: Xiao fullname: Xiao, Hong-Wei organization: College of Engineering, China Agricultural University |
BookMark | eNqFUU1v1DAQtVCR2BZ-ApIlLkVqlrEdb7LiQlWVD2klDsDZcpxx1yWxg-0I5efwT3G07aUHOHn85r3nGb9zcuaDR0JeM9gyaOEdNKIRe9FsOfACtazlsn5GNkwKXnEBcEY2K6daSS_IeUr3ANCyvdyQP7fWosmJBkt7V-qIPtM-Ls7f0RHzMfSl5x-Rn85jdiZd0em4JGeCOeLojB7oFMOEMTssvYLEkHKcTZ4jXlHte4oe491CTfBpHqfsimd5cgpZ50Avv4VB-3mkee6wSEt12L6lptzSS_Lc6iHhq4fzgvz4ePv95nN1-Prpy831oTI1tLnihgkwTKIAZq3ed6JrdkbLesf2vZC9xZpD22kmDPZtX3dCo5QNtx20jTCduCCXJ9-yya8ZU1ajSwaHMhiGOSm-E7taNnVTF-qbJ9T7MEdfplNcghA7gEYW1vsTa_2MFNEq48q2ZfMctRsUA7XGpx7jU2t86iG-opZP1FN0o47Lf3UfTjrnbYij_h3i0KuslyFEG7U3Linxb4u_7-e2wQ |
CitedBy_id | crossref_primary_10_31466_kfbd_1228407 crossref_primary_10_3390_foods14050851 crossref_primary_10_3390_foods13223633 crossref_primary_10_3390_foods13020272 crossref_primary_10_1080_07373937_2021_1955375 crossref_primary_10_3390_app12041771 crossref_primary_10_1016_j_lwt_2022_113827 crossref_primary_10_3390_agriculture14020190 crossref_primary_10_1016_j_ifset_2023_103368 crossref_primary_10_1155_2022_8432478 crossref_primary_10_1080_07373937_2024_2438359 crossref_primary_10_1111_jfpp_16312 crossref_primary_10_1016_j_afres_2024_100423 crossref_primary_10_1080_07373937_2024_2356177 crossref_primary_10_1111_jfpe_14196 crossref_primary_10_1016_j_lwt_2023_115000 crossref_primary_10_1111_jfpp_16836 crossref_primary_10_1016_j_indcrop_2024_118266 crossref_primary_10_1080_07373937_2022_2078347 crossref_primary_10_3390_foods13030434 crossref_primary_10_1007_s10098_023_02514_2 crossref_primary_10_3390_foods12163048 crossref_primary_10_1016_j_ifset_2022_102948 crossref_primary_10_3390_foods11193086 crossref_primary_10_1007_s43153_024_00472_w crossref_primary_10_1002_pca_3269 crossref_primary_10_3390_foods12071441 crossref_primary_10_3390_foods10050992 crossref_primary_10_1007_s11694_025_03134_8 crossref_primary_10_3389_fsufs_2024_1434121 crossref_primary_10_3390_app14051808 crossref_primary_10_3390_agriculture14050743 crossref_primary_10_3390_foods10020284 crossref_primary_10_3390_foods12122299 crossref_primary_10_1007_s11947_024_03394_0 crossref_primary_10_1016_j_chemosphere_2024_141746 crossref_primary_10_1007_s11540_023_09663_3 crossref_primary_10_1016_j_foodcont_2022_109062 crossref_primary_10_3390_pr11103027 crossref_primary_10_1016_j_inpa_2022_04_004 crossref_primary_10_1016_j_indcrop_2023_117350 crossref_primary_10_1016_j_lwt_2024_115742 crossref_primary_10_1016_j_seta_2024_103878 crossref_primary_10_3390_foods13091295 crossref_primary_10_1051_e3sconf_202346101057 crossref_primary_10_1016_j_fochx_2023_100715 crossref_primary_10_1111_1750_3841_16890 crossref_primary_10_1080_07373937_2024_2303580 crossref_primary_10_3390_foods13091377 crossref_primary_10_48084_etasr_9183 crossref_primary_10_1016_j_inpa_2021_10_003 crossref_primary_10_3390_app12073392 crossref_primary_10_1016_j_matpr_2022_02_130 crossref_primary_10_1016_j_fochx_2024_102052 crossref_primary_10_1016_j_lwt_2024_116872 crossref_primary_10_1016_j_lwt_2023_115383 crossref_primary_10_1080_07373937_2023_2234473 crossref_primary_10_1016_j_lwt_2023_115455 crossref_primary_10_3390_foods12061314 crossref_primary_10_1016_j_foodres_2024_114828 crossref_primary_10_1016_j_ultsonch_2024_106786 crossref_primary_10_1007_s11947_022_02941_x crossref_primary_10_3390_plants12061372 crossref_primary_10_1111_1541_4337_13430 crossref_primary_10_3390_foods13142294 crossref_primary_10_1016_j_ifset_2024_103648 crossref_primary_10_1080_25765299_2023_2191955 crossref_primary_10_1007_s11540_024_09839_5 crossref_primary_10_1080_07373937_2022_2137197 crossref_primary_10_1016_j_fbp_2024_07_011 crossref_primary_10_1016_j_jarmap_2023_100470 crossref_primary_10_1016_j_fochx_2023_100987 crossref_primary_10_1080_07373937_2021_1907590 crossref_primary_10_1088_1755_1315_1246_1_012057 crossref_primary_10_1016_j_indcrop_2023_117463 crossref_primary_10_1016_j_foodchem_2024_141401 crossref_primary_10_1016_j_ultsonch_2024_107191 |
Cites_doi | 10.1108/09615530210413154 10.1007/s11947-009-0300-1 10.1016/j.biosystemseng.2017.12.001 10.1080/07373937.2018.1494185 10.1002/9781119223931 10.1016/i 10.1016/j.fbp.2018.06.002 10.1080/07373937.2015 10.1002/hyp.8278 10.1007/s11947-012-0867-9 10.1016/j.jfoodeng.2006.10.028 10.1007/s13197-013-0941-y 10.1016/j.ijheatmasstransfer.2019.119231 10.1007/s13197-014-1347-1 10.1016/j.foodcont.2019.107050 10.1016/j.carbpol.2018.04.023 10.1007/s11947-013-1245-y 10.1016/S2095-3119(19)62654-7 10.1111/j.1745-4530.2008.00314.x 10.1016/j.biosystemseng.2006.07.009 10.1080/07373937.2014.951124 10.1080/07373937.2013.808659 10.1080/07373937.2017.1361439 10.1080/07373937.2014.954667 10.1080/07373937.2019.1686476 10.1111/jfpe.12308 10.1515/ijfe-2015-0002 10.1080/10942912.2010.489209 10.1016/j.jfoodeng.2007.04.019 10.1111/jfpp.12930 10.1016/j.jfoodeng.2020.110043 10.1016/j.foodchem.2020.127799 10.1016/j.energy.2017.12.094 10.1016/j.ijhydene.2017.01.012 10.1016/j.fbp.2014.08.008 10.1080/07373930802458911 10.1080/07373937.2019.1607873 10.1016/j.enconman 10.1080/07373937.2017.1423325 10.1007/s11947-009-0280-1 10.1016/j.ifset.2012.09.005 10.1016/j.biosystemseng.2009.11.001 10.1111/j.1745-4530.2010.00594.x 10.1017/S00071145 10.1080/07373937.2015.1052082 10.1016/j.fbp.2014.03.005 10.1111/j.1365-2672.1990.tb02561.x 10.1016/j.ifset.2016.10.015 10.1080/07373937.2013.834928 10.1016/j.compag.2007.05.003 10.1016/j.ifset.2013.08.011 10.1016/S0168-1605(02)00308-2 10.1016/j.jfoodeng.2018.05.030 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1080/07373937.2020.1818254 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1532-2300 |
EndPage | 431 |
ExternalDocumentID | 10_1080_07373937_2020_1818254 1818254 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5VS A8Z AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EMK EPL EST ESTFP ESX E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 Y6R ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-2c130c15e301ffa9b3b76ca54619d35dfe4208ba13ced8d4b3ae5572fb0873cb3 |
ISSN | 0737-3937 1532-2300 |
IngestDate | Wed Jul 02 04:41:35 EDT 2025 Wed Aug 13 04:31:24 EDT 2025 Tue Jul 01 01:11:47 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Wed Dec 25 09:06:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-2c130c15e301ffa9b3b76ca54619d35dfe4208ba13ced8d4b3ae5572fb0873cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2503360075 |
PQPubID | 53191 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1080_07373937_2020_1818254 informaworld_taylorfrancis_310_1080_07373937_2020_1818254 proquest_miscellaneous_2636457474 proquest_journals_2503360075 crossref_primary_10_1080_07373937_2020_1818254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-16 |
PublicationDateYYYYMMDD | 2020-09-16 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Drying technology |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 AOAC (CIT0025) 1990 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0013 doi: 10.1108/09615530210413154 – ident: CIT0027 doi: 10.1007/s11947-009-0300-1 – ident: CIT0038 – ident: CIT0004 doi: 10.1016/j.biosystemseng.2017.12.001 – ident: CIT0020 doi: 10.1080/07373937.2018.1494185 – ident: CIT0032 doi: 10.1002/9781119223931 – ident: CIT0017 doi: 10.1016/i – ident: CIT0015 doi: 10.1016/j.fbp.2018.06.002 – ident: CIT0053 doi: 10.1080/07373937.2015 – ident: CIT0055 doi: 10.1002/hyp.8278 – ident: CIT0045 doi: 10.1007/s11947-012-0867-9 – ident: CIT0002 – ident: CIT0007 doi: 10.1016/j.jfoodeng.2006.10.028 – ident: CIT0024 doi: 10.1007/s13197-013-0941-y – ident: CIT0012 doi: 10.1016/j.ijheatmasstransfer.2019.119231 – ident: CIT0043 doi: 10.1007/s13197-014-1347-1 – ident: CIT0031 doi: 10.1016/j.foodcont.2019.107050 – ident: CIT0041 doi: 10.1016/j.carbpol.2018.04.023 – ident: CIT0018 doi: 10.1007/s11947-013-1245-y – ident: CIT0001 doi: 10.1016/S2095-3119(19)62654-7 – volume-title: Official Methods of Analysis year: 1990 ident: CIT0025 – ident: CIT0042 doi: 10.1111/j.1745-4530.2008.00314.x – ident: CIT0022 doi: 10.1016/j.biosystemseng.2006.07.009 – ident: CIT0044 doi: 10.1080/07373937.2014.951124 – ident: CIT0039 doi: 10.1080/07373937.2013.808659 – ident: CIT0005 doi: 10.1080/07373937.2017.1361439 – ident: CIT0014 doi: 10.1080/07373937.2014.954667 – ident: CIT0052 doi: 10.1080/07373937.2019.1686476 – ident: CIT0019 doi: 10.1111/jfpe.12308 – ident: CIT0009 doi: 10.1515/ijfe-2015-0002 – ident: CIT0047 doi: 10.1080/10942912.2010.489209 – ident: CIT0056 doi: 10.1016/j.jfoodeng.2007.04.019 – ident: CIT0049 doi: 10.1111/jfpp.12930 – ident: CIT0016 doi: 10.1016/j.jfoodeng.2020.110043 – ident: CIT0029 doi: 10.1016/j.foodchem.2020.127799 – ident: CIT0034 doi: 10.1016/j.energy.2017.12.094 – ident: CIT0023 doi: 10.1016/j.ijhydene.2017.01.012 – ident: CIT0048 doi: 10.1016/j.fbp.2014.08.008 – ident: CIT0051 doi: 10.1080/07373930802458911 – ident: CIT0008 doi: 10.1080/07373937.2019.1607873 – ident: CIT0033 doi: 10.1016/j.enconman – ident: CIT0054 doi: 10.1080/07373937.2017.1423325 – ident: CIT0026 doi: 10.1007/s11947-009-0280-1 – ident: CIT0030 doi: 10.1016/j.ifset.2012.09.005 – ident: CIT0010 doi: 10.1016/j.biosystemseng.2009.11.001 – ident: CIT0028 doi: 10.1111/j.1745-4530.2010.00594.x – ident: CIT0050 doi: 10.1017/S00071145 – ident: CIT0006 doi: 10.1080/07373937.2015.1052082 – ident: CIT0035 doi: 10.1016/j.fbp.2014.03.005 – ident: CIT0036 doi: 10.1111/j.1365-2672.1990.tb02561.x – ident: CIT0040 doi: 10.1016/j.ifset.2016.10.015 – ident: CIT0046 doi: 10.1080/07373937.2013.834928 – ident: CIT0021 doi: 10.1016/j.compag.2007.05.003 – ident: CIT0011 doi: 10.1016/j.ifset.2013.08.011 – ident: CIT0037 doi: 10.1016/S0168-1605(02)00308-2 – ident: CIT0003 doi: 10.1016/j.jfoodeng.2018.05.030 |
SSID | ssj0008195 |
Score | 2.5368578 |
Snippet | In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD)... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 418 |
SubjectTerms | air Air drying artificial neural network (ANN) Artificial neural networks Ascorbic acid Color Cubes Drying Drying agents drying kinetics energy Energy consumption hot air drying based on temperature and humidity control (TH-HAD) humidity Humidity control Kinetics Microstructure Moisture control moisture diffusivity neural networks Physicochemical properties Potato cubes Potatoes rehydration Solanum tuberosum specific energy temperature Topology Vegetables |
Title | Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes |
URI | https://www.tandfonline.com/doi/abs/10.1080/07373937.2020.1818254 https://www.proquest.com/docview/2503360075 https://www.proquest.com/docview/2636457474 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdK9wA8IBggBgMZiQdQmqiJnaR9nLahCioktA0mXqLYcVAES6oueYCPwyfjo3AX22naVYzxErVO_Ce9X-_O9s93hLzKwQtgIsSZaiBc7uch6EGm3ImI8jxNMylUS5D9EM3O-Lvz8Hww-N1jLTW18OTPredK_keqUAZyxVOyN5Bs1ygUwGeQL1xBwnD9Jxkfr8gYNtFJ7WTL9uSSTg3dbgaYkm_gUNaGF6QXNDBblg4XsMA1-SUGV8W7F8jS05FlG71GjcvrSh8TlO2hzYX1NBdVjeljwFF1TmCajMT6ukEWCjzkzPEUlyPh-2XfCz7SA6q3LOtr1TNrio4pVDTtBkrhzgHJX23xpyL7Ab9Im5LYOVkWy_TCee9ttvMRunFtY2ZtAyaymJsh6qnAmIEKnOqwMJ6yKjpwYeI07utwHRDJYJX1FDI32l3bdq4tzhWzYXiW0Bt25uFQPHB9cPa8spOWG7BhPjtSo2-jrZpmEmwmMc3cIjsBTGSCIdk5mB19-dx5C7iP2YaKNW9qT5lh_Pdt41nzn9ai617xJloX6fQ-uWfmNvRAA_UBGahyl9w-tCkFd8ndXvTLh-SXgS-tctrBl2qwUgNfWpW2xMJ3RDfAS1fgHdF16I4oAJdq4NIecLFLDVz6mhrY0g62dO69oS1oH5Gzt8enhzPXpAxxJR9PajeQ4JNJP1Rgt0DXTAUTcSTTkEf-NGNhliukk4jUZ1Jlk4wLlqowjINcjCcxk4I9JsOyKtUT5PyBTxIFPI4jMHQBE1GWxlEIyisbc6HCPcKtIBJp4uljWpfvyV-BsEe8rtpCB5S5rsK0L-Wkblfycp12J2HX1N23kEiM3rpMAmQuYFoKeIWX3W1AAm4VpqWqGngmQnpCzGP-9KbjfUburP7K-2QIElfPwXGvxQuD_T_xuenv |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbW7tDusK2PYd2yVQN6aIE4i62Hk-NQrMjaLJe1QG-CJUuXtnaQ2Jf9m_3TkZIVJCuGHnq0JNoWRJGiSH4k5MTBKYBpgZZqphOeOgFykNlkpKVzRVEabX2A7ExObvjlrbhdy4XBsEq0oV0AivCyGjc3XkbHkLivwJYeyA3MuwyaQOeAmbNFXoqxzLGKARvOVtIY_UQeipPBZgKamMXzv9ds6KcN9NJH0tqroIs3xMSfD5End4O20QPz-x9cx-fN7i153Z1Q6bfAUnvkha32yc55LAy3T16tYRgekD8B_3hJa0djtZWGlgtMn6KhPjX0VbHlDigRGbpPw50KFuzyiAV0jm6BBeK79ukDhgkGaNt2YfsUJkOtz1KkxueMekGHn5zXcFqu6ekvMNGr9oE2LUbAwAg6HZxRA0_LQ3Jz8f36fJJ0dR8Sw4ejJskMKFaTCgvCBxhmrJnOpSkEB2OvZKJ0FmMCdJEyY8tRyTUrrBB55vRwlDOj2TuyXdWVfY-BW6BYZMbzXIK0ypiWZZFLARxYDrm24ojwuNrKdKDoWJvjXqURO7VbDYWrobrVOCKDFdk8oII8RTBeZyXV-OsYF2qnKPYEbS_yneoEzFJl6H7G2gIwhS-rbmAE9PcUla1bGCPRxwz2Iv_wjM8fk53J9c-pmv6YXX0ku9iF8TKp7JFt4AP7CQ5ljf7sd91fm0orbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkKA9QJtSNVDoVuLQSnEae73r5IgCUYEqQoJKva28r0upHSX2hX_DP-3MrjdqQaiHHuP1xF7N7Dw8M98Q8sGBF8AUx0g1U0meOg56kNlkooRzZWm0sr5AdiHOL_OvVzxWE667skqMoV0AivC6Gg_30rhYEXcGUulx3CC6y-ASmByIcp6SZwLBw7GLY7zYKGNME3kkTgZnCWhiE8___uaeeboHXvqPsvYWaP6KqPjuofDketQ2aqR__wXr-KjN7ZCXnX9KPwaB2iVPbNUnL2ZxLFyfbN9BMNwjfwL68ZrWjsZZKw01K2yeomE6NaxV8co1UCIu9JCGLyo4rsvjFdAlJgVWiO46pDdYJBiAbduVHVLYC7W-R5Fq3zHq1Rw-clmDr1zTkx8QoFftDW1arH-BO-jF6JRq-LV-TS7nn3_OzpNu6kOi8_GkSTINZlWn3ILqAXGZKqYKoUsOvJ0axo2zWBGgypRpayYmV6y0nBeZU-NJwbRi-6RX1ZU9wLItMCsiy4sCRAOcEyVMWQgO8mfGubJ8QPLIbKk7SHSczPFLphE5teOGRG7IjhsDMtqQLQMmyEME07uSJBv_McaFySmSPUB7GMVOduplLTNMPuNkAdjC8WYZBAGzPWVl6xbuEZhhhmgxf_OIxx-R598_zeXFl8W3t2QLV7BYJhWHpAdiYN-BR9ao9_7M3QLFUSoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+drying+methods+on+drying+kinetics%2C+physicochemical+properties%2C+microstructure%2C+and+energy+consumption+of+potato+%28+Solanum+tuberosum+L.%29+cubes&rft.jtitle=Drying+technology&rft.au=Wang%2C+Hui&rft.au=Liu%2C+Zi-Liang&rft.au=Vidyarthi%2C+Sriram+K.&rft.au=Wang%2C+Qing-Hui&rft.date=2020-09-16&rft.issn=0737-3937&rft.eissn=1532-2300&rft.volume=39&rft.issue=3&rft.spage=418&rft.epage=431&rft_id=info:doi/10.1080%2F07373937.2020.1818254&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07373937_2020_1818254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-3937&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-3937&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-3937&client=summon |