Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes

In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration rat...

Full description

Saved in:
Bibliographic Details
Published inDrying technology Vol. 39; no. 3; pp. 418 - 431
Main Authors Wang, Hui, Liu, Zi-Liang, Vidyarthi, Sriram K., Wang, Qing-Hui, Gao, Lei, Li, Bo-Rui, Wei, Qing, Liu, Yan-Hong, Xiao, Hong-Wei
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 16.09.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (D eff ) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10 −9 , 1.18 × 10 −9 , and 0.90 × 10 −9 m 2 /s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale.
AbstractList In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (Dₑff) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10⁻⁹, 1.18 × 10⁻⁹, and 0.90 × 10⁻⁹ m²/s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale.
In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (Deff) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10−9, 1.18 × 10−9, and 0.90 × 10−9 m2/s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale.
In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD) drying technologies were employed to drying potato cubes and their effects on drying kinetics, color, ascorbic acid content, rehydration ratio, microstructure, and specific energy consumption (SEC) were explored. Besides, artificial neural network (ANN) was used to predict changes in moisture ratio during the drying process. Results indicated that TH-HAD had the shortest drying time, followed by IR-HAD and AID. The effective moisture diffusivity (D eff ) of potato under TH-HAD, IR-HAD and AID were 1.35 × 10 −9 , 1.18 × 10 −9 , and 0.90 × 10 −9 m 2 /s, respectively. TH-HAD contributed to excellent physicochemical properties of dried potato when compared to samples dried by IR-HAD and AID. Overall, TH-HAD provided higher ascorbic acid content, better rehydration ability, brighter color, and had lower specific energy consumption (SEC). The microstructure well explained the difference of rehydration ratio and drying kinetics under different drying methods. The ANN models with the optimal topology could predict the moisture ratio under different drying methods with satisfactory accuracy. The current findings indicate that TH-HAD is a promising drying technology for potato cubes and has the potential to be applied in commercial scale.
Author Xiao, Hong-Wei
Gao, Lei
Liu, Zi-Liang
Wang, Hui
Vidyarthi, Sriram K.
Wei, Qing
Wang, Qing-Hui
Li, Bo-Rui
Liu, Yan-Hong
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: College of Engineering, China Agricultural University
– sequence: 2
  givenname: Zi-Liang
  surname: Liu
  fullname: Liu, Zi-Liang
  organization: College of Engineering, China Agricultural University
– sequence: 3
  givenname: Sriram K.
  surname: Vidyarthi
  fullname: Vidyarthi, Sriram K.
  organization: Department of Biological and Agricultural Engineering, University of California
– sequence: 4
  givenname: Qing-Hui
  surname: Wang
  fullname: Wang, Qing-Hui
  organization: Xinjiang Academy of Agricultural Sciences, Agricultural Mechanization Institute
– sequence: 5
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: College of Engineering, China Agricultural University
– sequence: 6
  givenname: Bo-Rui
  surname: Li
  fullname: Li, Bo-Rui
  organization: College of Engineering, China Agricultural University
– sequence: 7
  givenname: Qing
  surname: Wei
  fullname: Wei, Qing
  organization: College of Engineering, China Agricultural University
– sequence: 8
  givenname: Yan-Hong
  surname: Liu
  fullname: Liu, Yan-Hong
  organization: College of Engineering, China Agricultural University
– sequence: 9
  givenname: Hong-Wei
  surname: Xiao
  fullname: Xiao, Hong-Wei
  organization: College of Engineering, China Agricultural University
BookMark eNqFUU1v1DAQtVCR2BZ-ApIlLkVqlrEdb7LiQlWVD2klDsDZcpxx1yWxg-0I5efwT3G07aUHOHn85r3nGb9zcuaDR0JeM9gyaOEdNKIRe9FsOfACtazlsn5GNkwKXnEBcEY2K6daSS_IeUr3ANCyvdyQP7fWosmJBkt7V-qIPtM-Ls7f0RHzMfSl5x-Rn85jdiZd0em4JGeCOeLojB7oFMOEMTssvYLEkHKcTZ4jXlHte4oe491CTfBpHqfsimd5cgpZ50Avv4VB-3mkee6wSEt12L6lptzSS_Lc6iHhq4fzgvz4ePv95nN1-Prpy831oTI1tLnihgkwTKIAZq3ed6JrdkbLesf2vZC9xZpD22kmDPZtX3dCo5QNtx20jTCduCCXJ9-yya8ZU1ajSwaHMhiGOSm-E7taNnVTF-qbJ9T7MEdfplNcghA7gEYW1vsTa_2MFNEq48q2ZfMctRsUA7XGpx7jU2t86iG-opZP1FN0o47Lf3UfTjrnbYij_h3i0KuslyFEG7U3Linxb4u_7-e2wQ
CitedBy_id crossref_primary_10_31466_kfbd_1228407
crossref_primary_10_3390_foods14050851
crossref_primary_10_3390_foods13223633
crossref_primary_10_3390_foods13020272
crossref_primary_10_1080_07373937_2021_1955375
crossref_primary_10_3390_app12041771
crossref_primary_10_1016_j_lwt_2022_113827
crossref_primary_10_3390_agriculture14020190
crossref_primary_10_1016_j_ifset_2023_103368
crossref_primary_10_1155_2022_8432478
crossref_primary_10_1080_07373937_2024_2438359
crossref_primary_10_1111_jfpp_16312
crossref_primary_10_1016_j_afres_2024_100423
crossref_primary_10_1080_07373937_2024_2356177
crossref_primary_10_1111_jfpe_14196
crossref_primary_10_1016_j_lwt_2023_115000
crossref_primary_10_1111_jfpp_16836
crossref_primary_10_1016_j_indcrop_2024_118266
crossref_primary_10_1080_07373937_2022_2078347
crossref_primary_10_3390_foods13030434
crossref_primary_10_1007_s10098_023_02514_2
crossref_primary_10_3390_foods12163048
crossref_primary_10_1016_j_ifset_2022_102948
crossref_primary_10_3390_foods11193086
crossref_primary_10_1007_s43153_024_00472_w
crossref_primary_10_1002_pca_3269
crossref_primary_10_3390_foods12071441
crossref_primary_10_3390_foods10050992
crossref_primary_10_1007_s11694_025_03134_8
crossref_primary_10_3389_fsufs_2024_1434121
crossref_primary_10_3390_app14051808
crossref_primary_10_3390_agriculture14050743
crossref_primary_10_3390_foods10020284
crossref_primary_10_3390_foods12122299
crossref_primary_10_1007_s11947_024_03394_0
crossref_primary_10_1016_j_chemosphere_2024_141746
crossref_primary_10_1007_s11540_023_09663_3
crossref_primary_10_1016_j_foodcont_2022_109062
crossref_primary_10_3390_pr11103027
crossref_primary_10_1016_j_inpa_2022_04_004
crossref_primary_10_1016_j_indcrop_2023_117350
crossref_primary_10_1016_j_lwt_2024_115742
crossref_primary_10_1016_j_seta_2024_103878
crossref_primary_10_3390_foods13091295
crossref_primary_10_1051_e3sconf_202346101057
crossref_primary_10_1016_j_fochx_2023_100715
crossref_primary_10_1111_1750_3841_16890
crossref_primary_10_1080_07373937_2024_2303580
crossref_primary_10_3390_foods13091377
crossref_primary_10_48084_etasr_9183
crossref_primary_10_1016_j_inpa_2021_10_003
crossref_primary_10_3390_app12073392
crossref_primary_10_1016_j_matpr_2022_02_130
crossref_primary_10_1016_j_fochx_2024_102052
crossref_primary_10_1016_j_lwt_2024_116872
crossref_primary_10_1016_j_lwt_2023_115383
crossref_primary_10_1080_07373937_2023_2234473
crossref_primary_10_1016_j_lwt_2023_115455
crossref_primary_10_3390_foods12061314
crossref_primary_10_1016_j_foodres_2024_114828
crossref_primary_10_1016_j_ultsonch_2024_106786
crossref_primary_10_1007_s11947_022_02941_x
crossref_primary_10_3390_plants12061372
crossref_primary_10_1111_1541_4337_13430
crossref_primary_10_3390_foods13142294
crossref_primary_10_1016_j_ifset_2024_103648
crossref_primary_10_1080_25765299_2023_2191955
crossref_primary_10_1007_s11540_024_09839_5
crossref_primary_10_1080_07373937_2022_2137197
crossref_primary_10_1016_j_fbp_2024_07_011
crossref_primary_10_1016_j_jarmap_2023_100470
crossref_primary_10_1016_j_fochx_2023_100987
crossref_primary_10_1080_07373937_2021_1907590
crossref_primary_10_1088_1755_1315_1246_1_012057
crossref_primary_10_1016_j_indcrop_2023_117463
crossref_primary_10_1016_j_foodchem_2024_141401
crossref_primary_10_1016_j_ultsonch_2024_107191
Cites_doi 10.1108/09615530210413154
10.1007/s11947-009-0300-1
10.1016/j.biosystemseng.2017.12.001
10.1080/07373937.2018.1494185
10.1002/9781119223931
10.1016/i
10.1016/j.fbp.2018.06.002
10.1080/07373937.2015
10.1002/hyp.8278
10.1007/s11947-012-0867-9
10.1016/j.jfoodeng.2006.10.028
10.1007/s13197-013-0941-y
10.1016/j.ijheatmasstransfer.2019.119231
10.1007/s13197-014-1347-1
10.1016/j.foodcont.2019.107050
10.1016/j.carbpol.2018.04.023
10.1007/s11947-013-1245-y
10.1016/S2095-3119(19)62654-7
10.1111/j.1745-4530.2008.00314.x
10.1016/j.biosystemseng.2006.07.009
10.1080/07373937.2014.951124
10.1080/07373937.2013.808659
10.1080/07373937.2017.1361439
10.1080/07373937.2014.954667
10.1080/07373937.2019.1686476
10.1111/jfpe.12308
10.1515/ijfe-2015-0002
10.1080/10942912.2010.489209
10.1016/j.jfoodeng.2007.04.019
10.1111/jfpp.12930
10.1016/j.jfoodeng.2020.110043
10.1016/j.foodchem.2020.127799
10.1016/j.energy.2017.12.094
10.1016/j.ijhydene.2017.01.012
10.1016/j.fbp.2014.08.008
10.1080/07373930802458911
10.1080/07373937.2019.1607873
10.1016/j.enconman
10.1080/07373937.2017.1423325
10.1007/s11947-009-0280-1
10.1016/j.ifset.2012.09.005
10.1016/j.biosystemseng.2009.11.001
10.1111/j.1745-4530.2010.00594.x
10.1017/S00071145
10.1080/07373937.2015.1052082
10.1016/j.fbp.2014.03.005
10.1111/j.1365-2672.1990.tb02561.x
10.1016/j.ifset.2016.10.015
10.1080/07373937.2013.834928
10.1016/j.compag.2007.05.003
10.1016/j.ifset.2013.08.011
10.1016/S0168-1605(02)00308-2
10.1016/j.jfoodeng.2018.05.030
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1080/07373937.2020.1818254
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1532-2300
EndPage 431
ExternalDocumentID 10_1080_07373937_2020_1818254
1818254
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5VS
A8Z
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EMK
EPL
EST
ESTFP
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
Y6R
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
TASJS
7S9
L.6
ID FETCH-LOGICAL-c408t-2c130c15e301ffa9b3b76ca54619d35dfe4208ba13ced8d4b3ae5572fb0873cb3
ISSN 0737-3937
1532-2300
IngestDate Wed Jul 02 04:41:35 EDT 2025
Wed Aug 13 04:31:24 EDT 2025
Tue Jul 01 01:11:47 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Wed Dec 25 09:06:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-2c130c15e301ffa9b3b76ca54619d35dfe4208ba13ced8d4b3ae5572fb0873cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2503360075
PQPubID 53191
PageCount 14
ParticipantIDs crossref_citationtrail_10_1080_07373937_2020_1818254
informaworld_taylorfrancis_310_1080_07373937_2020_1818254
proquest_miscellaneous_2636457474
proquest_journals_2503360075
crossref_primary_10_1080_07373937_2020_1818254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-16
PublicationDateYYYYMMDD 2020-09-16
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-16
  day: 16
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Drying technology
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
AOAC (CIT0025) 1990
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0013
  doi: 10.1108/09615530210413154
– ident: CIT0027
  doi: 10.1007/s11947-009-0300-1
– ident: CIT0038
– ident: CIT0004
  doi: 10.1016/j.biosystemseng.2017.12.001
– ident: CIT0020
  doi: 10.1080/07373937.2018.1494185
– ident: CIT0032
  doi: 10.1002/9781119223931
– ident: CIT0017
  doi: 10.1016/i
– ident: CIT0015
  doi: 10.1016/j.fbp.2018.06.002
– ident: CIT0053
  doi: 10.1080/07373937.2015
– ident: CIT0055
  doi: 10.1002/hyp.8278
– ident: CIT0045
  doi: 10.1007/s11947-012-0867-9
– ident: CIT0002
– ident: CIT0007
  doi: 10.1016/j.jfoodeng.2006.10.028
– ident: CIT0024
  doi: 10.1007/s13197-013-0941-y
– ident: CIT0012
  doi: 10.1016/j.ijheatmasstransfer.2019.119231
– ident: CIT0043
  doi: 10.1007/s13197-014-1347-1
– ident: CIT0031
  doi: 10.1016/j.foodcont.2019.107050
– ident: CIT0041
  doi: 10.1016/j.carbpol.2018.04.023
– ident: CIT0018
  doi: 10.1007/s11947-013-1245-y
– ident: CIT0001
  doi: 10.1016/S2095-3119(19)62654-7
– volume-title: Official Methods of Analysis
  year: 1990
  ident: CIT0025
– ident: CIT0042
  doi: 10.1111/j.1745-4530.2008.00314.x
– ident: CIT0022
  doi: 10.1016/j.biosystemseng.2006.07.009
– ident: CIT0044
  doi: 10.1080/07373937.2014.951124
– ident: CIT0039
  doi: 10.1080/07373937.2013.808659
– ident: CIT0005
  doi: 10.1080/07373937.2017.1361439
– ident: CIT0014
  doi: 10.1080/07373937.2014.954667
– ident: CIT0052
  doi: 10.1080/07373937.2019.1686476
– ident: CIT0019
  doi: 10.1111/jfpe.12308
– ident: CIT0009
  doi: 10.1515/ijfe-2015-0002
– ident: CIT0047
  doi: 10.1080/10942912.2010.489209
– ident: CIT0056
  doi: 10.1016/j.jfoodeng.2007.04.019
– ident: CIT0049
  doi: 10.1111/jfpp.12930
– ident: CIT0016
  doi: 10.1016/j.jfoodeng.2020.110043
– ident: CIT0029
  doi: 10.1016/j.foodchem.2020.127799
– ident: CIT0034
  doi: 10.1016/j.energy.2017.12.094
– ident: CIT0023
  doi: 10.1016/j.ijhydene.2017.01.012
– ident: CIT0048
  doi: 10.1016/j.fbp.2014.08.008
– ident: CIT0051
  doi: 10.1080/07373930802458911
– ident: CIT0008
  doi: 10.1080/07373937.2019.1607873
– ident: CIT0033
  doi: 10.1016/j.enconman
– ident: CIT0054
  doi: 10.1080/07373937.2017.1423325
– ident: CIT0026
  doi: 10.1007/s11947-009-0280-1
– ident: CIT0030
  doi: 10.1016/j.ifset.2012.09.005
– ident: CIT0010
  doi: 10.1016/j.biosystemseng.2009.11.001
– ident: CIT0028
  doi: 10.1111/j.1745-4530.2010.00594.x
– ident: CIT0050
  doi: 10.1017/S00071145
– ident: CIT0006
  doi: 10.1080/07373937.2015.1052082
– ident: CIT0035
  doi: 10.1016/j.fbp.2014.03.005
– ident: CIT0036
  doi: 10.1111/j.1365-2672.1990.tb02561.x
– ident: CIT0040
  doi: 10.1016/j.ifset.2016.10.015
– ident: CIT0046
  doi: 10.1080/07373937.2013.834928
– ident: CIT0021
  doi: 10.1016/j.compag.2007.05.003
– ident: CIT0011
  doi: 10.1016/j.ifset.2013.08.011
– ident: CIT0037
  doi: 10.1016/S0168-1605(02)00308-2
– ident: CIT0003
  doi: 10.1016/j.jfoodeng.2018.05.030
SSID ssj0008195
Score 2.5368578
Snippet In current work, air impingement drying (AID), infrared-assisted hot air-drying (IR-HAD), and hot air drying based on temperature and humidity control (TH-HAD)...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 418
SubjectTerms air
Air drying
artificial neural network (ANN)
Artificial neural networks
Ascorbic acid
Color
Cubes
Drying
Drying agents
drying kinetics
energy
Energy consumption
hot air drying based on temperature and humidity control (TH-HAD)
humidity
Humidity control
Kinetics
Microstructure
Moisture control
moisture diffusivity
neural networks
Physicochemical properties
Potato cubes
Potatoes
rehydration
Solanum tuberosum
specific energy
temperature
Topology
Vegetables
Title Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes
URI https://www.tandfonline.com/doi/abs/10.1080/07373937.2020.1818254
https://www.proquest.com/docview/2503360075
https://www.proquest.com/docview/2636457474
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdK9wA8IBggBgMZiQdQmqiJnaR9nLahCioktA0mXqLYcVAES6oueYCPwyfjo3AX22naVYzxErVO_Ce9X-_O9s93hLzKwQtgIsSZaiBc7uch6EGm3ImI8jxNMylUS5D9EM3O-Lvz8Hww-N1jLTW18OTPredK_keqUAZyxVOyN5Bs1ygUwGeQL1xBwnD9Jxkfr8gYNtFJ7WTL9uSSTg3dbgaYkm_gUNaGF6QXNDBblg4XsMA1-SUGV8W7F8jS05FlG71GjcvrSh8TlO2hzYX1NBdVjeljwFF1TmCajMT6ukEWCjzkzPEUlyPh-2XfCz7SA6q3LOtr1TNrio4pVDTtBkrhzgHJX23xpyL7Ab9Im5LYOVkWy_TCee9ttvMRunFtY2ZtAyaymJsh6qnAmIEKnOqwMJ6yKjpwYeI07utwHRDJYJX1FDI32l3bdq4tzhWzYXiW0Bt25uFQPHB9cPa8spOWG7BhPjtSo2-jrZpmEmwmMc3cIjsBTGSCIdk5mB19-dx5C7iP2YaKNW9qT5lh_Pdt41nzn9ai617xJloX6fQ-uWfmNvRAA_UBGahyl9w-tCkFd8ndXvTLh-SXgS-tctrBl2qwUgNfWpW2xMJ3RDfAS1fgHdF16I4oAJdq4NIecLFLDVz6mhrY0g62dO69oS1oH5Gzt8enhzPXpAxxJR9PajeQ4JNJP1Rgt0DXTAUTcSTTkEf-NGNhliukk4jUZ1Jlk4wLlqowjINcjCcxk4I9JsOyKtUT5PyBTxIFPI4jMHQBE1GWxlEIyisbc6HCPcKtIBJp4uljWpfvyV-BsEe8rtpCB5S5rsK0L-Wkblfycp12J2HX1N23kEiM3rpMAmQuYFoKeIWX3W1AAm4VpqWqGngmQnpCzGP-9KbjfUburP7K-2QIElfPwXGvxQuD_T_xuenv
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbW7tDusK2PYd2yVQN6aIE4i62Hk-NQrMjaLJe1QG-CJUuXtnaQ2Jf9m_3TkZIVJCuGHnq0JNoWRJGiSH4k5MTBKYBpgZZqphOeOgFykNlkpKVzRVEabX2A7ExObvjlrbhdy4XBsEq0oV0AivCyGjc3XkbHkLivwJYeyA3MuwyaQOeAmbNFXoqxzLGKARvOVtIY_UQeipPBZgKamMXzv9ds6KcN9NJH0tqroIs3xMSfD5End4O20QPz-x9cx-fN7i153Z1Q6bfAUnvkha32yc55LAy3T16tYRgekD8B_3hJa0djtZWGlgtMn6KhPjX0VbHlDigRGbpPw50KFuzyiAV0jm6BBeK79ukDhgkGaNt2YfsUJkOtz1KkxueMekGHn5zXcFqu6ekvMNGr9oE2LUbAwAg6HZxRA0_LQ3Jz8f36fJJ0dR8Sw4ejJskMKFaTCgvCBxhmrJnOpSkEB2OvZKJ0FmMCdJEyY8tRyTUrrBB55vRwlDOj2TuyXdWVfY-BW6BYZMbzXIK0ypiWZZFLARxYDrm24ojwuNrKdKDoWJvjXqURO7VbDYWrobrVOCKDFdk8oII8RTBeZyXV-OsYF2qnKPYEbS_yneoEzFJl6H7G2gIwhS-rbmAE9PcUla1bGCPRxwz2Iv_wjM8fk53J9c-pmv6YXX0ku9iF8TKp7JFt4AP7CQ5ljf7sd91fm0orbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkKA9QJtSNVDoVuLQSnEae73r5IgCUYEqQoJKva28r0upHSX2hX_DP-3MrjdqQaiHHuP1xF7N7Dw8M98Q8sGBF8AUx0g1U0meOg56kNlkooRzZWm0sr5AdiHOL_OvVzxWE667skqMoV0AivC6Gg_30rhYEXcGUulx3CC6y-ASmByIcp6SZwLBw7GLY7zYKGNME3kkTgZnCWhiE8___uaeeboHXvqPsvYWaP6KqPjuofDketQ2aqR__wXr-KjN7ZCXnX9KPwaB2iVPbNUnL2ZxLFyfbN9BMNwjfwL68ZrWjsZZKw01K2yeomE6NaxV8co1UCIu9JCGLyo4rsvjFdAlJgVWiO46pDdYJBiAbduVHVLYC7W-R5Fq3zHq1Rw-clmDr1zTkx8QoFftDW1arH-BO-jF6JRq-LV-TS7nn3_OzpNu6kOi8_GkSTINZlWn3ILqAXGZKqYKoUsOvJ0axo2zWBGgypRpayYmV6y0nBeZU-NJwbRi-6RX1ZU9wLItMCsiy4sCRAOcEyVMWQgO8mfGubJ8QPLIbKk7SHSczPFLphE5teOGRG7IjhsDMtqQLQMmyEME07uSJBv_McaFySmSPUB7GMVOduplLTNMPuNkAdjC8WYZBAGzPWVl6xbuEZhhhmgxf_OIxx-R598_zeXFl8W3t2QLV7BYJhWHpAdiYN-BR9ao9_7M3QLFUSoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+drying+methods+on+drying+kinetics%2C+physicochemical+properties%2C+microstructure%2C+and+energy+consumption+of+potato+%28+Solanum+tuberosum+L.%29+cubes&rft.jtitle=Drying+technology&rft.au=Wang%2C+Hui&rft.au=Liu%2C+Zi-Liang&rft.au=Vidyarthi%2C+Sriram+K.&rft.au=Wang%2C+Qing-Hui&rft.date=2020-09-16&rft.issn=0737-3937&rft.eissn=1532-2300&rft.volume=39&rft.issue=3&rft.spage=418&rft.epage=431&rft_id=info:doi/10.1080%2F07373937.2020.1818254&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07373937_2020_1818254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-3937&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-3937&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-3937&client=summon