Interpreting patterns of ecoenzymatic stoichiometry
The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrat...
Saved in:
Published in | Soil biology & biochemistry Vol. 180; p. 108997 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior.
•Enzyme stoichiometry quantifies microbial resource acquisition from polymeric sources.•Soil enzyme activities reflect long-term microbial resource acquisition strategies.•Microbes can acquire simple, soluble resources independent of enzyme activity.•Limitations in one type of critical resource can alter microbial demands for others. |
---|---|
AbstractList | The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior.
•Enzyme stoichiometry quantifies microbial resource acquisition from polymeric sources.•Soil enzyme activities reflect long-term microbial resource acquisition strategies.•Microbes can acquire simple, soluble resources independent of enzyme activity.•Limitations in one type of critical resource can alter microbial demands for others. The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior. |
ArticleNumber | 108997 |
Author | Schimel, Joshua Moorhead, Daryl Sinsabaugh, Robert Cui, Yongxing |
Author_xml | – sequence: 1 givenname: Daryl orcidid: 0000-0002-3460-5302 surname: Moorhead fullname: Moorhead, Daryl email: daryl.moorhead@utoledo.edu organization: Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA – sequence: 2 givenname: Yongxing orcidid: 0000-0002-8624-2785 surname: Cui fullname: Cui, Yongxing organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China – sequence: 3 givenname: Robert orcidid: 0000-0003-4391-3902 surname: Sinsabaugh fullname: Sinsabaugh, Robert organization: Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA – sequence: 4 givenname: Joshua orcidid: 0000-0002-1022-6623 surname: Schimel fullname: Schimel, Joshua organization: Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA |
BookMark | eNqFkE1LAzEQhoNUsFZ_grBHL1vzucniQaT4USh40XPIprOaspusSSrUX--W9uSlp2GG93kZnks08cEDQjcEzwkm1d1mnoLrGhfmFFM23lRdyzM0JUrWJeNUTdAUY6ZKLIm8QJcpbTDGVBA2RWzpM8QhQnb-sxhMHjefitAWYAP4311vsrNFysHZLxd6yHF3hc5b0yW4Ps4Z-nh-el-8lqu3l-XicVVajlUuqVG1WjPKGqq4aaWogBkCvFUVlqqRlFecYyYkVhbAytaI8aDaVpC64XXFZuj20DvE8L2FlHXvkoWuMx7CNmlGBJNScVGP0ftD1MaQUoRWW5fHz4PP0bhOE6z3qvRGH1XpvSp9UDXS4h89RNebuDvJPRw4GC38OIg6WQfewtpFsFmvgzvR8AfaSYg7 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_175867 crossref_primary_10_59717_j_xinn_geo_2024_100048 crossref_primary_10_1002_saj2_20743 crossref_primary_10_1093_ismeco_ycae128 crossref_primary_10_1016_j_scitotenv_2024_173266 crossref_primary_10_1111_gcb_16765 crossref_primary_10_1016_j_chemosphere_2023_139280 crossref_primary_10_1016_j_scitotenv_2024_172530 crossref_primary_10_1016_j_scitotenv_2024_170079 crossref_primary_10_3390_app14135767 crossref_primary_10_1007_s11368_024_03887_7 crossref_primary_10_1007_s10021_024_00948_3 crossref_primary_10_1016_j_jenvman_2024_122925 crossref_primary_10_1016_j_eti_2024_103760 crossref_primary_10_1007_s11368_024_03892_w crossref_primary_10_1016_j_catena_2024_107956 crossref_primary_10_1007_s42832_023_0183_5 crossref_primary_10_1016_j_jhazmat_2023_133239 crossref_primary_10_1016_j_soilbio_2024_109385 crossref_primary_10_1016_j_scitotenv_2024_176928 crossref_primary_10_1111_gcb_70036 crossref_primary_10_1186_s13717_023_00457_6 crossref_primary_10_1016_j_scitotenv_2024_174088 crossref_primary_10_1007_s11368_023_03694_6 crossref_primary_10_1016_j_soilbio_2024_109614 crossref_primary_10_1111_ele_70011 crossref_primary_10_1016_j_soilbio_2023_109210 crossref_primary_10_1111_1365_2435_14361 crossref_primary_10_1002_advs_202308176 crossref_primary_10_1016_j_soilbio_2025_109770 crossref_primary_10_1016_j_geoderma_2023_116729 crossref_primary_10_1080_00380768_2024_2341669 crossref_primary_10_3390_agronomy15030731 |
Cites_doi | 10.1080/00380768.2018.1498286 10.1007/s10533-014-0058-z 10.1016/j.soilbio.2013.02.013 10.1007/s00374-017-1245-6 10.1890/15-2110.1 10.3389/fmicb.2013.00324 10.1007/s10533-007-9132-0 10.1016/j.soilbio.2020.107816 10.1016/j.soilbio.2022.108677 10.1016/j.apsoil.2022.104529 10.1111/j.1461-0248.2005.00756.x 10.1111/j.1461-0248.2012.01807.x 10.1146/annurev-ecolsys-071112-124414 10.1007/s00374-012-0723-0 10.1016/j.soilbio.2021.108363 10.1007/s10533-014-0030-y 10.1016/j.geoderma.2022.115868 10.3389/fmicb.2016.00524 10.1016/j.soilbio.2022.108613 10.1111/geb.13378 10.1016/j.soilbio.2018.10.011 10.1016/j.soilbio.2017.06.023 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2023.108997 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2023_108997 S0038071723000597 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c408t-2a898d323b284af756e3a1e4f86078b724644035708ceec7fa56448ff519b4963 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Aug 22 20:29:13 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Tue Jul 01 00:54:07 EDT 2025 Fri Feb 23 02:36:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decomposition Extracellular enzymes Ecological stoichiometry Microbial resource limitations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-2a898d323b284af756e3a1e4f86078b724644035708ceec7fa56448ff519b4963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4391-3902 0000-0002-1022-6623 0000-0002-3460-5302 0000-0002-8624-2785 |
PQID | 3153778459 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153778459 crossref_citationtrail_10_1016_j_soilbio_2023_108997 crossref_primary_10_1016_j_soilbio_2023_108997 elsevier_sciencedirect_doi_10_1016_j_soilbio_2023_108997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Spohn, Kuzyakov (bib21) 2013; 61 Cui, Moorhead, Wang, Xu, Wang, Wei, Zhu, Ge, Peng, Zhu, Fang (bib5) 2022; 419 Mori, Imai, Yokoyama, Kitayama (bib8) 2018; 64 Sinsabaugh, Follstad Shah, Findlay, Kuehn, Moorhead (bib19) 2015; 122 Wang, Mayes, Gu, Schadt (bib22) 2014; 9 Zheng, Vesterdal, Schmidt, Rousk (bib23) 2022; 167 Nannipieri, Giagnoni, Renella, Puglisi, Ceccanti, Masciandaro, Fornasier, Moscatelli, Marinari (bib11) 2012; 48 Sinsabaugh, Turner, Talbot, Waring, Powers, Kuske, Follstad Shah (bib20) 2016; 86 De Mastro, Brunetti, Traversa, Blagodatskaya (bib6) 2022; 177 Salazar-Villegas, Blagodatskaya, Dukes (bib14) 2016; 7 Cleveland, Liptzin (bib3) 2007; 85 Sinsabaugh, Belnap, Findlay, Shah, Hill, Kuehn, Kuske, Litvak, Martinez, Moorhead, Warnock (bib18) 2014; 121 Allison (bib2) 2012; 15 Mori, Aoyagi, Kitayama, Mo (bib10) 2021; 160 Cui, Moorhead, Guo, Peng, Wang, Zhang, Fang (bib4) 2021; 30 Hobbie, Hobbie (bib7) 2013; 4 Rosinger, Rousk, Sandén (bib13) 2019; 128 Mori (bib9) 2020; 146 Sinsabaugh, Follstad Shah (bib17) 2012; 43 Schimel, Weintraub, Moorhead (bib15) 2022; 169 Schimel, Becerra, Blankinship (bib16) 2017; 114 Allison (bib1) 2005; 8 Nannipieri, Trasar-Cepeda, Dick (bib12) 2018; 54 Schimel (10.1016/j.soilbio.2023.108997_bib15) 2022; 169 De Mastro (10.1016/j.soilbio.2023.108997_bib6) 2022; 177 Mori (10.1016/j.soilbio.2023.108997_bib9) 2020; 146 Allison (10.1016/j.soilbio.2023.108997_bib2) 2012; 15 Hobbie (10.1016/j.soilbio.2023.108997_bib7) 2013; 4 Schimel (10.1016/j.soilbio.2023.108997_bib16) 2017; 114 Allison (10.1016/j.soilbio.2023.108997_bib1) 2005; 8 Cui (10.1016/j.soilbio.2023.108997_bib4) 2021; 30 Nannipieri (10.1016/j.soilbio.2023.108997_bib11) 2012; 48 Zheng (10.1016/j.soilbio.2023.108997_bib23) 2022; 167 Sinsabaugh (10.1016/j.soilbio.2023.108997_bib17) 2012; 43 Spohn (10.1016/j.soilbio.2023.108997_bib21) 2013; 61 Cleveland (10.1016/j.soilbio.2023.108997_bib3) 2007; 85 Sinsabaugh (10.1016/j.soilbio.2023.108997_bib20) 2016; 86 Mori (10.1016/j.soilbio.2023.108997_bib8) 2018; 64 Nannipieri (10.1016/j.soilbio.2023.108997_bib12) 2018; 54 Mori (10.1016/j.soilbio.2023.108997_bib10) 2021; 160 Cui (10.1016/j.soilbio.2023.108997_bib5) 2022; 419 Wang (10.1016/j.soilbio.2023.108997_bib22) 2014; 9 Sinsabaugh (10.1016/j.soilbio.2023.108997_bib18) 2014; 121 Rosinger (10.1016/j.soilbio.2023.108997_bib13) 2019; 128 Salazar-Villegas (10.1016/j.soilbio.2023.108997_bib14) 2016; 7 Sinsabaugh (10.1016/j.soilbio.2023.108997_bib19) 2015; 122 |
References_xml | – volume: 167 year: 2022 ident: bib23 article-title: Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils publication-title: Soil Biology and Biochemistry – volume: 43 start-page: 313 year: 2012 end-page: 343 ident: bib17 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 48 start-page: 743 year: 2012 end-page: 762 ident: bib11 article-title: Soil enzymology: classical and molecular approaches publication-title: Biology and Fertility of Soils – volume: 30 start-page: 2297 year: 2021 end-page: 2311 ident: bib4 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecology and Biogeography – volume: 15 start-page: 1058 year: 2012 end-page: 1070 ident: bib2 article-title: A trait-based approach for modelling microbial litter decomposition publication-title: Ecology Letters – volume: 122 start-page: 175 year: 2015 end-page: 190 ident: bib19 article-title: Scaling microbial biomass, metabolism and resource supply publication-title: Biogeochemistry – volume: 7 start-page: 524 year: 2016 ident: bib14 article-title: Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture publication-title: Frontiers in Microbiology – volume: 121 start-page: 287 year: 2014 end-page: 304 ident: bib18 article-title: Extracellular enzyme kinetics scale with resource availability publication-title: Biogeochemistry – volume: 4 start-page: 324 year: 2013 ident: bib7 article-title: Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates publication-title: Frontiers in Microbiology – volume: 177 year: 2022 ident: bib6 article-title: Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem publication-title: Applied Soil Ecology – volume: 8 start-page: 626 year: 2005 end-page: 635 ident: bib1 article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecology Letters – volume: 64 start-page: 1 year: 2018 end-page: 4 ident: bib8 article-title: Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen- acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia publication-title: Soil Science & Plant Nutrition – volume: 419 year: 2022 ident: bib5 article-title: Decreasing microbial phosphorus limitation increases soil carbon release publication-title: Geoderma – volume: 146 year: 2020 ident: bib9 article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? publication-title: Soil Biology and Biochemistry – volume: 86 start-page: 172 year: 2016 end-page: 189 ident: bib20 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs – volume: 9 year: 2014 ident: bib22 article-title: Representation of dormant and active microbial dynamics for ecosystem modeling publication-title: PLoS One – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: bib3 article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 114 start-page: 5 year: 2017 end-page: 11 ident: bib16 article-title: Estimating decay dynamics for enzyme activities in soils from different ecosystems publication-title: Soil Biology and Biochemistry – volume: 128 start-page: 115 year: 2019 end-page: 126 ident: bib13 article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - a critical assessment in two subtropical soils publication-title: Soil Biology and Biochemistry – volume: 160 year: 2021 ident: bib10 article-title: Does the ratio of ß-1,4-glucosidase to ß-1,4-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? publication-title: Soil Biology and Biochemistry – volume: 61 start-page: 69 year: 2013 end-page: 75 ident: bib21 article-title: Phosphorus mineralization can be driven by microbial need for carbon publication-title: Soil Biology and Biochemistry – volume: 54 start-page: 11 year: 2018 end-page: 19 ident: bib12 article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis publication-title: Biology and Fertility of Soils – volume: 169 year: 2022 ident: bib15 article-title: Estimating microbial carbon use efficiency in soil: isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use publication-title: Soil Biology and Biochemistry – volume: 64 start-page: 1 year: 2018 ident: 10.1016/j.soilbio.2023.108997_bib8 article-title: Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen- acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia publication-title: Soil Science & Plant Nutrition doi: 10.1080/00380768.2018.1498286 – volume: 122 start-page: 175 year: 2015 ident: 10.1016/j.soilbio.2023.108997_bib19 article-title: Scaling microbial biomass, metabolism and resource supply publication-title: Biogeochemistry doi: 10.1007/s10533-014-0058-z – volume: 61 start-page: 69 year: 2013 ident: 10.1016/j.soilbio.2023.108997_bib21 article-title: Phosphorus mineralization can be driven by microbial need for carbon publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.02.013 – volume: 54 start-page: 11 year: 2018 ident: 10.1016/j.soilbio.2023.108997_bib12 article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-017-1245-6 – volume: 86 start-page: 172 year: 2016 ident: 10.1016/j.soilbio.2023.108997_bib20 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs doi: 10.1890/15-2110.1 – volume: 4 start-page: 324 year: 2013 ident: 10.1016/j.soilbio.2023.108997_bib7 article-title: Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2013.00324 – volume: 85 start-page: 235 year: 2007 ident: 10.1016/j.soilbio.2023.108997_bib3 article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 146 year: 2020 ident: 10.1016/j.soilbio.2023.108997_bib9 article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2020.107816 – volume: 169 year: 2022 ident: 10.1016/j.soilbio.2023.108997_bib15 article-title: Estimating microbial carbon use efficiency in soil: isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2022.108677 – volume: 177 year: 2022 ident: 10.1016/j.soilbio.2023.108997_bib6 article-title: Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2022.104529 – volume: 8 start-page: 626 year: 2005 ident: 10.1016/j.soilbio.2023.108997_bib1 article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2005.00756.x – volume: 15 start-page: 1058 year: 2012 ident: 10.1016/j.soilbio.2023.108997_bib2 article-title: A trait-based approach for modelling microbial litter decomposition publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2012.01807.x – volume: 43 start-page: 313 year: 2012 ident: 10.1016/j.soilbio.2023.108997_bib17 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution and Systematics doi: 10.1146/annurev-ecolsys-071112-124414 – volume: 48 start-page: 743 year: 2012 ident: 10.1016/j.soilbio.2023.108997_bib11 article-title: Soil enzymology: classical and molecular approaches publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-012-0723-0 – volume: 160 year: 2021 ident: 10.1016/j.soilbio.2023.108997_bib10 article-title: Does the ratio of ß-1,4-glucosidase to ß-1,4-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108363 – volume: 121 start-page: 287 year: 2014 ident: 10.1016/j.soilbio.2023.108997_bib18 article-title: Extracellular enzyme kinetics scale with resource availability publication-title: Biogeochemistry doi: 10.1007/s10533-014-0030-y – volume: 9 year: 2014 ident: 10.1016/j.soilbio.2023.108997_bib22 article-title: Representation of dormant and active microbial dynamics for ecosystem modeling publication-title: PLoS One – volume: 419 year: 2022 ident: 10.1016/j.soilbio.2023.108997_bib5 article-title: Decreasing microbial phosphorus limitation increases soil carbon release publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115868 – volume: 7 start-page: 524 year: 2016 ident: 10.1016/j.soilbio.2023.108997_bib14 article-title: Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.00524 – volume: 167 year: 2022 ident: 10.1016/j.soilbio.2023.108997_bib23 article-title: Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2022.108613 – volume: 30 start-page: 2297 year: 2021 ident: 10.1016/j.soilbio.2023.108997_bib4 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecology and Biogeography doi: 10.1111/geb.13378 – volume: 128 start-page: 115 year: 2019 ident: 10.1016/j.soilbio.2023.108997_bib13 article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - a critical assessment in two subtropical soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.10.011 – volume: 114 start-page: 5 year: 2017 ident: 10.1016/j.soilbio.2023.108997_bib16 article-title: Estimating decay dynamics for enzyme activities in soils from different ecosystems publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.06.023 |
SSID | ssj0002513 |
Score | 2.5595477 |
Snippet | The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108997 |
SubjectTerms | catalytic activity Decomposition Ecological stoichiometry enzyme activity Extracellular enzymes microbial communities Microbial resource limitations polymers soil biology stoichiometry temporal variation |
Title | Interpreting patterns of ecoenzymatic stoichiometry |
URI | https://dx.doi.org/10.1016/j.soilbio.2023.108997 https://www.proquest.com/docview/3153778459 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KPagH0apYP0oEr2nT7Ca7OZZiqYo9WehtyW42mlLS0o-DHvztziSbFkUQvAQSmBBeNvNmyLy3hNxpkSRxqLSL1bfLuiZ1RchClwK7h13jKa5RKPw8Codj9jgJJjXSr7QwOFZpc3-Z04tsba90LJqdRZahxhfN0oGAaeEygopyxjiu8vbnbswD-Nsa7woU6_CdiqczRb_cmcpQA-hTnLaL0Pvpd376kakL-hkckyNbNzq98tFOSM3kDXLYe11a7wzTIPv9avO2U0K3w4RATc6iMNHMV848daDdNPnHe-HU6kDll-k3VOBD1BkZD-5f-kPX7o_gauaJtevHIhIJ9akCjolTHoSGxl3DUhEC8SvuMyh2PBpwTwAVap7GAXZjaQpVm2Lw5Z2Tej7PzQVxQk8HfpTAEfoLJUzMTGyYz7SAZltp3SSsQkVqax6Oe1jMZDUlNpUWTIlgyhLMJmlvwxale8ZfAaKCXH5bBhIy_F-ht9UrkgA2_veIczPfrCSFrM65YEF0-f_bX5EDPCtnHa9Jfb3cmBuoR9aqVSy4FtnrPTwNR1_l6N_l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8YlvI-gxNs1ustuDh-KD-jwpeFuz241WJC22RerBP-UfdCbZWBRBELzkkDB7-HaYb4bMfAOwa2S7ncTa-JR9-7xuU1_GPPYZsntct4EWhgaFL6_i1g0_u41uK_BezsJQW6WL_UVMz6O1e1NzaNZ6nQ7N-JJYOhIwy1VGhOusPLejF6zb-genR3jJe2F4cnx92PLdagHf8EAO_DCRDdlmIdMYnpNURLFlSd3yVMbImVqEHPOEgEUikMgiRqRJRIVMmmLCozk6LZ47AZMcwwWtTdh_G_eVYMLglH4lTQeJ8dhQ7ZEEep90h4YOQ0btfQ0Sm_qZEL9RQ853J3Mw6xJVr1lgMQ8Vmy3ATPP-2Yl12AWYOiy3xS0C--xeRC70erlqZ9b3uqmH9a3NXke5NKyHqWbHPNDIP1otwc2_oLYM1ayb2RXw4sBEYaONTyxotLQJt4nlITcSq3ttzCrwEhVlnFo5Lc14UmVb2qNyYCoCUxVgrsL-p1mvkOv4zUCWkKsvfqeQUn4z3SmvSCHY9KMlyWx32FcMaUQIyaPG2t-P34ap1vXlhbo4vTpfh2n6UjRabkB18Dy0m5gMDfRW7nwe3P23t38AhvYZuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+patterns+of+ecoenzymatic+stoichiometry&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Moorhead%2C+Daryl&rft.au=Cui%2C+Yongxing&rft.au=Sinsabaugh%2C+Robert&rft.au=Schimel%2C+Joshua&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=180&rft_id=info:doi/10.1016%2Fj.soilbio.2023.108997&rft.externalDocID=S0038071723000597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |