Interpreting patterns of ecoenzymatic stoichiometry

The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrat...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 180; p. 108997
Main Authors Moorhead, Daryl, Cui, Yongxing, Sinsabaugh, Robert, Schimel, Joshua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior. •Enzyme stoichiometry quantifies microbial resource acquisition from polymeric sources.•Soil enzyme activities reflect long-term microbial resource acquisition strategies.•Microbes can acquire simple, soluble resources independent of enzyme activity.•Limitations in one type of critical resource can alter microbial demands for others.
AbstractList The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior. •Enzyme stoichiometry quantifies microbial resource acquisition from polymeric sources.•Soil enzyme activities reflect long-term microbial resource acquisition strategies.•Microbes can acquire simple, soluble resources independent of enzyme activity.•Limitations in one type of critical resource can alter microbial demands for others.
The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil microbial communities. The approach evaluates the acquisition of resources obtained through the enzyme-mediated catalysis of polymeric substrates. However, labile resources that do not require enzyme activity circumvent this catalytic pathway, can alter the balance of enzyme activities and skew their interpretation. More specifically, the microbial use of soluble resources can occur within minutes to hours of their addition whereas the use of polymeric resources depends on the production and turnover of extracellular enzymes (days to weeks). This temporal difference between potential, short-term microbial metabolic responses to soluble resources and longer-term community responses to enzyme-mediated acquisition of polymeric resources can produce seemingly conflicting interpretations of microbial resource limitations. However, stoichiometric tools provide insights to microbial resource use and limitations that differ in functional context from other measures of microbial community behavior.
ArticleNumber 108997
Author Schimel, Joshua
Moorhead, Daryl
Sinsabaugh, Robert
Cui, Yongxing
Author_xml – sequence: 1
  givenname: Daryl
  orcidid: 0000-0002-3460-5302
  surname: Moorhead
  fullname: Moorhead, Daryl
  email: daryl.moorhead@utoledo.edu
  organization: Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
– sequence: 2
  givenname: Yongxing
  orcidid: 0000-0002-8624-2785
  surname: Cui
  fullname: Cui, Yongxing
  organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
– sequence: 3
  givenname: Robert
  orcidid: 0000-0003-4391-3902
  surname: Sinsabaugh
  fullname: Sinsabaugh, Robert
  organization: Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
– sequence: 4
  givenname: Joshua
  orcidid: 0000-0002-1022-6623
  surname: Schimel
  fullname: Schimel, Joshua
  organization: Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
BookMark eNqFkE1LAzEQhoNUsFZ_grBHL1vzucniQaT4USh40XPIprOaspusSSrUX--W9uSlp2GG93kZnks08cEDQjcEzwkm1d1mnoLrGhfmFFM23lRdyzM0JUrWJeNUTdAUY6ZKLIm8QJcpbTDGVBA2RWzpM8QhQnb-sxhMHjefitAWYAP4311vsrNFysHZLxd6yHF3hc5b0yW4Ps4Z-nh-el-8lqu3l-XicVVajlUuqVG1WjPKGqq4aaWogBkCvFUVlqqRlFecYyYkVhbAytaI8aDaVpC64XXFZuj20DvE8L2FlHXvkoWuMx7CNmlGBJNScVGP0ftD1MaQUoRWW5fHz4PP0bhOE6z3qvRGH1XpvSp9UDXS4h89RNebuDvJPRw4GC38OIg6WQfewtpFsFmvgzvR8AfaSYg7
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_175867
crossref_primary_10_59717_j_xinn_geo_2024_100048
crossref_primary_10_1002_saj2_20743
crossref_primary_10_1093_ismeco_ycae128
crossref_primary_10_1016_j_scitotenv_2024_173266
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1016_j_chemosphere_2023_139280
crossref_primary_10_1016_j_scitotenv_2024_172530
crossref_primary_10_1016_j_scitotenv_2024_170079
crossref_primary_10_3390_app14135767
crossref_primary_10_1007_s11368_024_03887_7
crossref_primary_10_1007_s10021_024_00948_3
crossref_primary_10_1016_j_jenvman_2024_122925
crossref_primary_10_1016_j_eti_2024_103760
crossref_primary_10_1007_s11368_024_03892_w
crossref_primary_10_1016_j_catena_2024_107956
crossref_primary_10_1007_s42832_023_0183_5
crossref_primary_10_1016_j_jhazmat_2023_133239
crossref_primary_10_1016_j_soilbio_2024_109385
crossref_primary_10_1016_j_scitotenv_2024_176928
crossref_primary_10_1111_gcb_70036
crossref_primary_10_1186_s13717_023_00457_6
crossref_primary_10_1016_j_scitotenv_2024_174088
crossref_primary_10_1007_s11368_023_03694_6
crossref_primary_10_1016_j_soilbio_2024_109614
crossref_primary_10_1111_ele_70011
crossref_primary_10_1016_j_soilbio_2023_109210
crossref_primary_10_1111_1365_2435_14361
crossref_primary_10_1002_advs_202308176
crossref_primary_10_1016_j_soilbio_2025_109770
crossref_primary_10_1016_j_geoderma_2023_116729
crossref_primary_10_1080_00380768_2024_2341669
crossref_primary_10_3390_agronomy15030731
Cites_doi 10.1080/00380768.2018.1498286
10.1007/s10533-014-0058-z
10.1016/j.soilbio.2013.02.013
10.1007/s00374-017-1245-6
10.1890/15-2110.1
10.3389/fmicb.2013.00324
10.1007/s10533-007-9132-0
10.1016/j.soilbio.2020.107816
10.1016/j.soilbio.2022.108677
10.1016/j.apsoil.2022.104529
10.1111/j.1461-0248.2005.00756.x
10.1111/j.1461-0248.2012.01807.x
10.1146/annurev-ecolsys-071112-124414
10.1007/s00374-012-0723-0
10.1016/j.soilbio.2021.108363
10.1007/s10533-014-0030-y
10.1016/j.geoderma.2022.115868
10.3389/fmicb.2016.00524
10.1016/j.soilbio.2022.108613
10.1111/geb.13378
10.1016/j.soilbio.2018.10.011
10.1016/j.soilbio.2017.06.023
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2023.108997
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2023_108997
S0038071723000597
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c408t-2a898d323b284af756e3a1e4f86078b724644035708ceec7fa56448ff519b4963
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Aug 22 20:29:13 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Tue Jul 01 00:54:07 EDT 2025
Fri Feb 23 02:36:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decomposition
Extracellular enzymes
Ecological stoichiometry
Microbial resource limitations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2a898d323b284af756e3a1e4f86078b724644035708ceec7fa56448ff519b4963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4391-3902
0000-0002-1022-6623
0000-0002-3460-5302
0000-0002-8624-2785
PQID 3153778459
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153778459
crossref_citationtrail_10_1016_j_soilbio_2023_108997
crossref_primary_10_1016_j_soilbio_2023_108997
elsevier_sciencedirect_doi_10_1016_j_soilbio_2023_108997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Spohn, Kuzyakov (bib21) 2013; 61
Cui, Moorhead, Wang, Xu, Wang, Wei, Zhu, Ge, Peng, Zhu, Fang (bib5) 2022; 419
Mori, Imai, Yokoyama, Kitayama (bib8) 2018; 64
Sinsabaugh, Follstad Shah, Findlay, Kuehn, Moorhead (bib19) 2015; 122
Wang, Mayes, Gu, Schadt (bib22) 2014; 9
Zheng, Vesterdal, Schmidt, Rousk (bib23) 2022; 167
Nannipieri, Giagnoni, Renella, Puglisi, Ceccanti, Masciandaro, Fornasier, Moscatelli, Marinari (bib11) 2012; 48
Sinsabaugh, Turner, Talbot, Waring, Powers, Kuske, Follstad Shah (bib20) 2016; 86
De Mastro, Brunetti, Traversa, Blagodatskaya (bib6) 2022; 177
Salazar-Villegas, Blagodatskaya, Dukes (bib14) 2016; 7
Cleveland, Liptzin (bib3) 2007; 85
Sinsabaugh, Belnap, Findlay, Shah, Hill, Kuehn, Kuske, Litvak, Martinez, Moorhead, Warnock (bib18) 2014; 121
Allison (bib2) 2012; 15
Mori, Aoyagi, Kitayama, Mo (bib10) 2021; 160
Cui, Moorhead, Guo, Peng, Wang, Zhang, Fang (bib4) 2021; 30
Hobbie, Hobbie (bib7) 2013; 4
Rosinger, Rousk, Sandén (bib13) 2019; 128
Mori (bib9) 2020; 146
Sinsabaugh, Follstad Shah (bib17) 2012; 43
Schimel, Weintraub, Moorhead (bib15) 2022; 169
Schimel, Becerra, Blankinship (bib16) 2017; 114
Allison (bib1) 2005; 8
Nannipieri, Trasar-Cepeda, Dick (bib12) 2018; 54
Schimel (10.1016/j.soilbio.2023.108997_bib15) 2022; 169
De Mastro (10.1016/j.soilbio.2023.108997_bib6) 2022; 177
Mori (10.1016/j.soilbio.2023.108997_bib9) 2020; 146
Allison (10.1016/j.soilbio.2023.108997_bib2) 2012; 15
Hobbie (10.1016/j.soilbio.2023.108997_bib7) 2013; 4
Schimel (10.1016/j.soilbio.2023.108997_bib16) 2017; 114
Allison (10.1016/j.soilbio.2023.108997_bib1) 2005; 8
Cui (10.1016/j.soilbio.2023.108997_bib4) 2021; 30
Nannipieri (10.1016/j.soilbio.2023.108997_bib11) 2012; 48
Zheng (10.1016/j.soilbio.2023.108997_bib23) 2022; 167
Sinsabaugh (10.1016/j.soilbio.2023.108997_bib17) 2012; 43
Spohn (10.1016/j.soilbio.2023.108997_bib21) 2013; 61
Cleveland (10.1016/j.soilbio.2023.108997_bib3) 2007; 85
Sinsabaugh (10.1016/j.soilbio.2023.108997_bib20) 2016; 86
Mori (10.1016/j.soilbio.2023.108997_bib8) 2018; 64
Nannipieri (10.1016/j.soilbio.2023.108997_bib12) 2018; 54
Mori (10.1016/j.soilbio.2023.108997_bib10) 2021; 160
Cui (10.1016/j.soilbio.2023.108997_bib5) 2022; 419
Wang (10.1016/j.soilbio.2023.108997_bib22) 2014; 9
Sinsabaugh (10.1016/j.soilbio.2023.108997_bib18) 2014; 121
Rosinger (10.1016/j.soilbio.2023.108997_bib13) 2019; 128
Salazar-Villegas (10.1016/j.soilbio.2023.108997_bib14) 2016; 7
Sinsabaugh (10.1016/j.soilbio.2023.108997_bib19) 2015; 122
References_xml – volume: 167
  year: 2022
  ident: bib23
  article-title: Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils
  publication-title: Soil Biology and Biochemistry
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: bib17
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution and Systematics
– volume: 48
  start-page: 743
  year: 2012
  end-page: 762
  ident: bib11
  article-title: Soil enzymology: classical and molecular approaches
  publication-title: Biology and Fertility of Soils
– volume: 30
  start-page: 2297
  year: 2021
  end-page: 2311
  ident: bib4
  article-title: Stoichiometric models of microbial metabolic limitation in soil systems
  publication-title: Global Ecology and Biogeography
– volume: 15
  start-page: 1058
  year: 2012
  end-page: 1070
  ident: bib2
  article-title: A trait-based approach for modelling microbial litter decomposition
  publication-title: Ecology Letters
– volume: 122
  start-page: 175
  year: 2015
  end-page: 190
  ident: bib19
  article-title: Scaling microbial biomass, metabolism and resource supply
  publication-title: Biogeochemistry
– volume: 7
  start-page: 524
  year: 2016
  ident: bib14
  article-title: Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture
  publication-title: Frontiers in Microbiology
– volume: 121
  start-page: 287
  year: 2014
  end-page: 304
  ident: bib18
  article-title: Extracellular enzyme kinetics scale with resource availability
  publication-title: Biogeochemistry
– volume: 4
  start-page: 324
  year: 2013
  ident: bib7
  article-title: Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates
  publication-title: Frontiers in Microbiology
– volume: 177
  year: 2022
  ident: bib6
  article-title: Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem
  publication-title: Applied Soil Ecology
– volume: 8
  start-page: 626
  year: 2005
  end-page: 635
  ident: bib1
  article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments
  publication-title: Ecology Letters
– volume: 64
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib8
  article-title: Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen- acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia
  publication-title: Soil Science & Plant Nutrition
– volume: 419
  year: 2022
  ident: bib5
  article-title: Decreasing microbial phosphorus limitation increases soil carbon release
  publication-title: Geoderma
– volume: 146
  year: 2020
  ident: bib9
  article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations?
  publication-title: Soil Biology and Biochemistry
– volume: 86
  start-page: 172
  year: 2016
  end-page: 189
  ident: bib20
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
– volume: 9
  year: 2014
  ident: bib22
  article-title: Representation of dormant and active microbial dynamics for ecosystem modeling
  publication-title: PLoS One
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: bib3
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 114
  start-page: 5
  year: 2017
  end-page: 11
  ident: bib16
  article-title: Estimating decay dynamics for enzyme activities in soils from different ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 128
  start-page: 115
  year: 2019
  end-page: 126
  ident: bib13
  article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - a critical assessment in two subtropical soils
  publication-title: Soil Biology and Biochemistry
– volume: 160
  year: 2021
  ident: bib10
  article-title: Does the ratio of ß-1,4-glucosidase to ß-1,4-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?
  publication-title: Soil Biology and Biochemistry
– volume: 61
  start-page: 69
  year: 2013
  end-page: 75
  ident: bib21
  article-title: Phosphorus mineralization can be driven by microbial need for carbon
  publication-title: Soil Biology and Biochemistry
– volume: 54
  start-page: 11
  year: 2018
  end-page: 19
  ident: bib12
  article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis
  publication-title: Biology and Fertility of Soils
– volume: 169
  year: 2022
  ident: bib15
  article-title: Estimating microbial carbon use efficiency in soil: isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use
  publication-title: Soil Biology and Biochemistry
– volume: 64
  start-page: 1
  year: 2018
  ident: 10.1016/j.soilbio.2023.108997_bib8
  article-title: Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen- acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia
  publication-title: Soil Science & Plant Nutrition
  doi: 10.1080/00380768.2018.1498286
– volume: 122
  start-page: 175
  year: 2015
  ident: 10.1016/j.soilbio.2023.108997_bib19
  article-title: Scaling microbial biomass, metabolism and resource supply
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-0058-z
– volume: 61
  start-page: 69
  year: 2013
  ident: 10.1016/j.soilbio.2023.108997_bib21
  article-title: Phosphorus mineralization can be driven by microbial need for carbon
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.02.013
– volume: 54
  start-page: 11
  year: 2018
  ident: 10.1016/j.soilbio.2023.108997_bib12
  article-title: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-017-1245-6
– volume: 86
  start-page: 172
  year: 2016
  ident: 10.1016/j.soilbio.2023.108997_bib20
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
  doi: 10.1890/15-2110.1
– volume: 4
  start-page: 324
  year: 2013
  ident: 10.1016/j.soilbio.2023.108997_bib7
  article-title: Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2013.00324
– volume: 85
  start-page: 235
  year: 2007
  ident: 10.1016/j.soilbio.2023.108997_bib3
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 146
  year: 2020
  ident: 10.1016/j.soilbio.2023.108997_bib9
  article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107816
– volume: 169
  year: 2022
  ident: 10.1016/j.soilbio.2023.108997_bib15
  article-title: Estimating microbial carbon use efficiency in soil: isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2022.108677
– volume: 177
  year: 2022
  ident: 10.1016/j.soilbio.2023.108997_bib6
  article-title: Fertilization promotes microbial growth and minimum tillage increases nutrient-acquiring enzyme activities in a semiarid agro-ecosystem
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2022.104529
– volume: 8
  start-page: 626
  year: 2005
  ident: 10.1016/j.soilbio.2023.108997_bib1
  article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2005.00756.x
– volume: 15
  start-page: 1058
  year: 2012
  ident: 10.1016/j.soilbio.2023.108997_bib2
  article-title: A trait-based approach for modelling microbial litter decomposition
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2012.01807.x
– volume: 43
  start-page: 313
  year: 2012
  ident: 10.1016/j.soilbio.2023.108997_bib17
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution and Systematics
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 48
  start-page: 743
  year: 2012
  ident: 10.1016/j.soilbio.2023.108997_bib11
  article-title: Soil enzymology: classical and molecular approaches
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-012-0723-0
– volume: 160
  year: 2021
  ident: 10.1016/j.soilbio.2023.108997_bib10
  article-title: Does the ratio of ß-1,4-glucosidase to ß-1,4-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108363
– volume: 121
  start-page: 287
  year: 2014
  ident: 10.1016/j.soilbio.2023.108997_bib18
  article-title: Extracellular enzyme kinetics scale with resource availability
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-0030-y
– volume: 9
  year: 2014
  ident: 10.1016/j.soilbio.2023.108997_bib22
  article-title: Representation of dormant and active microbial dynamics for ecosystem modeling
  publication-title: PLoS One
– volume: 419
  year: 2022
  ident: 10.1016/j.soilbio.2023.108997_bib5
  article-title: Decreasing microbial phosphorus limitation increases soil carbon release
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115868
– volume: 7
  start-page: 524
  year: 2016
  ident: 10.1016/j.soilbio.2023.108997_bib14
  article-title: Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00524
– volume: 167
  year: 2022
  ident: 10.1016/j.soilbio.2023.108997_bib23
  article-title: Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2022.108613
– volume: 30
  start-page: 2297
  year: 2021
  ident: 10.1016/j.soilbio.2023.108997_bib4
  article-title: Stoichiometric models of microbial metabolic limitation in soil systems
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.13378
– volume: 128
  start-page: 115
  year: 2019
  ident: 10.1016/j.soilbio.2023.108997_bib13
  article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - a critical assessment in two subtropical soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.10.011
– volume: 114
  start-page: 5
  year: 2017
  ident: 10.1016/j.soilbio.2023.108997_bib16
  article-title: Estimating decay dynamics for enzyme activities in soils from different ecosystems
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.06.023
SSID ssj0002513
Score 2.5595477
Snippet The stoichiometry of extracellular enzyme activities has been both proposed and refuted to quantify resource use efficiency and resource limitations to soil...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108997
SubjectTerms catalytic activity
Decomposition
Ecological stoichiometry
enzyme activity
Extracellular enzymes
microbial communities
Microbial resource limitations
polymers
soil biology
stoichiometry
temporal variation
Title Interpreting patterns of ecoenzymatic stoichiometry
URI https://dx.doi.org/10.1016/j.soilbio.2023.108997
https://www.proquest.com/docview/3153778459
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KPagH0apYP0oEr2nT7Ca7OZZiqYo9WehtyW42mlLS0o-DHvztziSbFkUQvAQSmBBeNvNmyLy3hNxpkSRxqLSL1bfLuiZ1RchClwK7h13jKa5RKPw8Codj9jgJJjXSr7QwOFZpc3-Z04tsba90LJqdRZahxhfN0oGAaeEygopyxjiu8vbnbswD-Nsa7woU6_CdiqczRb_cmcpQA-hTnLaL0Pvpd376kakL-hkckyNbNzq98tFOSM3kDXLYe11a7wzTIPv9avO2U0K3w4RATc6iMNHMV848daDdNPnHe-HU6kDll-k3VOBD1BkZD-5f-kPX7o_gauaJtevHIhIJ9akCjolTHoSGxl3DUhEC8SvuMyh2PBpwTwAVap7GAXZjaQpVm2Lw5Z2Tej7PzQVxQk8HfpTAEfoLJUzMTGyYz7SAZltp3SSsQkVqax6Oe1jMZDUlNpUWTIlgyhLMJmlvwxale8ZfAaKCXH5bBhIy_F-ht9UrkgA2_veIczPfrCSFrM65YEF0-f_bX5EDPCtnHa9Jfb3cmBuoR9aqVSy4FtnrPTwNR1_l6N_l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8YlvI-gxNs1ustuDh-KD-jwpeFuz241WJC22RerBP-UfdCbZWBRBELzkkDB7-HaYb4bMfAOwa2S7ncTa-JR9-7xuU1_GPPYZsntct4EWhgaFL6_i1g0_u41uK_BezsJQW6WL_UVMz6O1e1NzaNZ6nQ7N-JJYOhIwy1VGhOusPLejF6zb-genR3jJe2F4cnx92PLdagHf8EAO_DCRDdlmIdMYnpNURLFlSd3yVMbImVqEHPOEgEUikMgiRqRJRIVMmmLCozk6LZ47AZMcwwWtTdh_G_eVYMLglH4lTQeJ8dhQ7ZEEep90h4YOQ0btfQ0Sm_qZEL9RQ853J3Mw6xJVr1lgMQ8Vmy3ATPP-2Yl12AWYOiy3xS0C--xeRC70erlqZ9b3uqmH9a3NXke5NKyHqWbHPNDIP1otwc2_oLYM1ayb2RXw4sBEYaONTyxotLQJt4nlITcSq3ttzCrwEhVlnFo5Lc14UmVb2qNyYCoCUxVgrsL-p1mvkOv4zUCWkKsvfqeQUn4z3SmvSCHY9KMlyWx32FcMaUQIyaPG2t-P34ap1vXlhbo4vTpfh2n6UjRabkB18Dy0m5gMDfRW7nwe3P23t38AhvYZuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+patterns+of+ecoenzymatic+stoichiometry&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Moorhead%2C+Daryl&rft.au=Cui%2C+Yongxing&rft.au=Sinsabaugh%2C+Robert&rft.au=Schimel%2C+Joshua&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=180&rft_id=info:doi/10.1016%2Fj.soilbio.2023.108997&rft.externalDocID=S0038071723000597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon