Detection of Surface Defects on Railway Tracks Based on Deep Learning
The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems,...
Saved in:
Published in | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2022.3224594 |
Cover
Loading…
Abstract | The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps. |
---|---|
AbstractList | The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps. The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps. |
Author | Wang, Maoli Zhao, Yining Zhu, Xiao Li, Kaizhi |
Author_xml | – sequence: 1 givenname: Maoli orcidid: 0000-0001-5420-1463 surname: Wang fullname: Wang, Maoli organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 2 givenname: Kaizhi surname: Li fullname: Li, Kaizhi organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 3 givenname: Xiao surname: Zhu fullname: Zhu, Xiao organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 4 givenname: Yining surname: Zhao fullname: Zhao, Yining organization: School of Computer Science, Qufu Normal University, Rizhao, China |
BookMark | eNqFkE1rGzEQhkVIIWmSX5DLQs92V9-aY2o7acBQiNOzmNXOhnWclSutKfn3kbshlF6qi8TDvO-I5zM7HeJAjF3zes55DV9vFovVZjMXtRBzKYTSoE7YueAGZlJLc_rX-4xd5byty3EFaXvOVksaKYx9HKrYVZtD6jBQtaSuwFwV-oD97je-Vo8Jw3OuvmGm9siXRPtqTZiGfni6ZJ863GW6er8v2M_b1ePi-2z94-5-cbOeBVW7cSbQWS6tQXBOcoXUqmBANk5ZQ4IkJ6MBQTeSN1qBI7DK1A7qJkDLGysv2P3U20bc-n3qXzC9-oi9_wNievKYxj7syHfYtrxrZeDKKSCHjhwF5dCCEVxj6foyde1T_HWgPPptPKShfN8Lq5y2gnNepuQ0FVLMOVH3sZXX_qjfT_r9Ub9_119S8E8q9CMeLY-p-PxP9nrK9kT0sQ3ASC1AvgEmVpIf |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_rs16224267 crossref_primary_10_1109_ACCESS_2023_3334973 crossref_primary_10_1109_TITS_2024_3421355 crossref_primary_10_1007_s44163_024_00127_2 crossref_primary_10_3390_s23218952 crossref_primary_10_1016_j_engappai_2023_106825 crossref_primary_10_1109_ACCESS_2024_3427347 crossref_primary_10_1109_ACCESS_2023_3280992 crossref_primary_10_1109_JSEN_2024_3402730 crossref_primary_10_1016_j_ultras_2024_107314 crossref_primary_10_1142_S0218126625501816 crossref_primary_10_3390_s24113579 crossref_primary_10_1109_JSEN_2024_3447730 crossref_primary_10_3390_infrastructures10010003 crossref_primary_10_3390_aerospace11080676 |
Cites_doi | 10.1109/ACCESS.2021.3055512 10.1049/hve2.12221 10.3390/e23111437 10.1109/TSC.2021.3106264 10.1109/CVPR.2019.00326 10.1049/iet-ipr.2018.5840 10.1109/TII.2020.2997836 10.1109/TIM.2022.3194909 10.1109/TIM.2020.3036067 10.1016/j.trc.2018.05.007 10.1016/j.neucom.2021.03.091 10.3390/app8071028 10.1109/CVPR.2019.00754 10.1111/mice.12836 10.1109/TII.2019.2917522 10.1016/j.autcon.2022.104469 10.1109/CVPR42600.2020.01155 10.3390/s22186993 10.1109/TIM.2018.2803830 10.1007/s41095-022-0271-y 10.1109/TII.2021.3085848 10.1177/14759217211013110 10.1109/TII.2020.3045196 10.1109/TIM.2020.2975454 10.1088/1361-6501/abc6e2 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2018.00745 10.1109/JSEN.2017.2761858 10.14504/ajr.8.S1.22 10.1109/TII.2020.3004397 10.12700/APH.19.3.2022.3.14 10.1016/j.measurement.2020.107771 10.1016/j.asoc.2021.107706 10.3390/buildings12081225 10.1016/j.ijleo.2018.11.053 10.1177/09544054211014443 10.1016/j.jmsy.2021.12.004 10.1109/TIM.2018.2853958 10.1109/TPDS.2022.3196840 10.1109/TITS.2021.3058635 10.1016/j.autcon.2022.104260 10.1109/ACCESS.2020.3032164 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3224594 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_fadd1fd3c14849e8a8e8ec48a796215a 10_1109_ACCESS_2022_3224594 9963529 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-2a871376a988314aed4c693b8476e2e31e659a95b31b5498e97460890bc9d1b73 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:20:18 EDT 2025 Mon Jun 30 07:20:51 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 02:48:34 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-2a871376a988314aed4c693b8476e2e31e659a95b31b5498e97460890bc9d1b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5420-1463 0000-0002-8518-6152 0000-0003-1240-9287 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9963529 |
PQID | 2748572111 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_9963529 doaj_primary_oai_doaj_org_article_fadd1fd3c14849e8a8e8ec48a796215a crossref_primary_10_1109_ACCESS_2022_3224594 proquest_journals_2748572111 crossref_citationtrail_10_1109_ACCESS_2022_3224594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref17 ref16 redmon (ref25) 2018 ref19 ref18 woo (ref35) 2018 bochkovskiy (ref49) 2020 ref46 ref45 ref47 ref42 ref41 ref43 ref8 thuan (ref44) 2021 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 zhang (ref15) 2020; 70 liu (ref39) 2019 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 liu (ref48) 2016 |
References_xml | – ident: ref26 doi: 10.1109/ACCESS.2021.3055512 – ident: ref30 doi: 10.1049/hve2.12221 – ident: ref29 doi: 10.3390/e23111437 – ident: ref46 doi: 10.1109/TSC.2021.3106264 – ident: ref38 doi: 10.1109/CVPR.2019.00326 – ident: ref18 doi: 10.1049/iet-ipr.2018.5840 – ident: ref3 doi: 10.1109/TII.2020.2997836 – ident: ref43 doi: 10.1109/TIM.2022.3194909 – ident: ref19 doi: 10.1109/TIM.2020.3036067 – ident: ref20 doi: 10.1016/j.trc.2018.05.007 – ident: ref36 doi: 10.1016/j.neucom.2021.03.091 – ident: ref6 doi: 10.3390/app8071028 – ident: ref47 doi: 10.1109/CVPR.2019.00754 – ident: ref42 doi: 10.1111/mice.12836 – start-page: 3 year: 2018 ident: ref35 article-title: CBAM: Convolutional block attention module publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref16 doi: 10.1109/TII.2019.2917522 – ident: ref11 doi: 10.1016/j.autcon.2022.104469 – ident: ref34 doi: 10.1109/CVPR42600.2020.01155 – ident: ref31 doi: 10.3390/s22186993 – ident: ref14 doi: 10.1109/TIM.2018.2803830 – ident: ref37 doi: 10.1007/s41095-022-0271-y – ident: ref28 doi: 10.1109/TII.2021.3085848 – ident: ref2 doi: 10.1177/14759217211013110 – start-page: 21 year: 2016 ident: ref48 article-title: SSD: Single shot MultiBox detector publication-title: Proc Eur Conf Comput Vis – ident: ref13 doi: 10.1109/TII.2020.3045196 – ident: ref8 doi: 10.1109/TIM.2020.2975454 – ident: ref21 doi: 10.1088/1361-6501/abc6e2 – start-page: 1 year: 2021 ident: ref44 article-title: Evolution of Yolo algorithm and YOLOv5: The state-of-the-art object detection algorithm – year: 2018 ident: ref25 article-title: YOLOv3: An incremental improvement publication-title: arXiv 1804 02767 – ident: ref24 doi: 10.1109/TPAMI.2016.2577031 – ident: ref33 doi: 10.1109/CVPR.2018.00745 – year: 2019 ident: ref39 article-title: Learning spatial fusion for single-shot object detection publication-title: arXiv 1911 09516 – volume: 70 start-page: 1 year: 2020 ident: ref15 article-title: MCNet: Multiple context information segmentation network of no-service rail surface defects publication-title: IEEE Trans Instrum Meas – ident: ref5 doi: 10.1109/JSEN.2017.2761858 – ident: ref27 doi: 10.14504/ajr.8.S1.22 – ident: ref17 doi: 10.1109/TII.2020.3004397 – ident: ref32 doi: 10.12700/APH.19.3.2022.3.14 – year: 2020 ident: ref49 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv 2004 10934 – ident: ref7 doi: 10.1016/j.measurement.2020.107771 – ident: ref1 doi: 10.1016/j.asoc.2021.107706 – ident: ref41 doi: 10.3390/buildings12081225 – ident: ref12 doi: 10.1016/j.ijleo.2018.11.053 – ident: ref4 doi: 10.1177/09544054211014443 – ident: ref23 doi: 10.1016/j.jmsy.2021.12.004 – ident: ref10 doi: 10.1109/TIM.2018.2853958 – ident: ref45 doi: 10.1109/TPDS.2022.3196840 – ident: ref9 doi: 10.1109/TITS.2021.3058635 – ident: ref40 doi: 10.1016/j.autcon.2022.104260 – ident: ref22 doi: 10.1109/ACCESS.2020.3032164 |
SSID | ssj0000816957 |
Score | 2.3208778 |
Snippet | The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive spatial feature fusion Attention mechanism Convolution Deep learning Defects Design defects Feature extraction Machine learning Object recognition Parameters Rail surface defect Rail transportation Railway engineering Railway tracks Surface defects YOLOv5 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDy6dpPN7ibHPimCHnyAt5BkZ0WUtrQV8d87ycZSEfTiNWQfmUwy35cM3xBybvPMVpaXiUG8nIhayMQa7jMAgCGArqvc-POO65ti9CCuHvPHlVJfPieskQduDNeucQGyusoc4nahQBoJEpyQplQFhqsAjTDmrZCpsAdLVqi8jDJDLFXtTq-HI0JCyPklOrHIlfgWioJifyyx8mNfDsFmuE22IkqknebvdsgajHfJ5op24B4Z9GER0qjGdFLTu7dZbRzQPoT0DIqtt-b59d18UIxG7mVOuxiuKt_eB5jSKKv6tE8ehoP73iiJNRESJ1K5SLhBhoObglFSZkwYqIQrVGYxyBTAIWNQ5Mqo3GbMIvWTgHyhSKVKrVMVs2V2QNbHkzEcElpyA0ifSlf560BRGYFQyet1FdwijLAtwr_Mo10UDPd1K151IA6p0o1NtbepjjZtkYvlQ9NGL-P37l1v92VXL3YdGtAFdHQB_ZcLtMien7XlS5DCIaxULXLyNYs6Lsy5RhIuc8962dF_fPqYbPjhNGcyJ2R9MXuDU0QpC3sWHPITPYfeng priority: 102 providerName: Directory of Open Access Journals |
Title | Detection of Surface Defects on Railway Tracks Based on Deep Learning |
URI | https://ieeexplore.ieee.org/document/9963529 https://www.proquest.com/docview/2748572111 https://doaj.org/article/fadd1fd3c14849e8a8e8ec48a796215a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJzi0fBR1C0U-9EiWxHES-wi7IFSJHmiRuFn-mFQVaBdBVlX59Ywdb0QLQr1FVhw5Htvz3nj8DPDFVqX1ljeZIbyciVbIzBoeMgCwIADd-sqEeMfFt_r8Sny9rq5X4HA4C4OIMfkMx-Ex7uX7uVuEUNkRYXPCC2oVVom49We1hnhKuEBCVU0SFipydXQ8mdA_EAXkfEzDVlRK_OV8okZ_ulTlxUoc3cvZe7hYNqzPKrkZLzo7do__aDb-b8s34V3Cmey4HxhbsIKzbdh4pj64A6dT7GIi1ozNW_Z9cd8ah2yKMcGDUeml-XX72_xh5M_czQM7IYfnQ_kU8Y4lYdafH-Dq7PTH5DxLtypkTuSyy7ghjkTLilFSloUw6IWrVWnJTdXIsSywrpRRlS0LS-RRIjGOOpcqt075wjblLqzN5jP8CKzhBomANc6HDUXhjSCwFRS_am4JiNgR8GV3a5ckx8PNF7c6Uo9c6d5GOthIJxuN4HCodNcrbrz9-kmw4_BqkMuOBdT_Os0-3dIqXrS-dET-hEJpJEp0QppG1YR5zAh2gs2GjyRzjWB_OSp0mtoPmmi8rAJvLj69XmsP1kMD-zjNPqx19wv8TMilsweR8R_EgfsEwjnoPQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioUAOHJtt4tiJfWx3Wy3Q7QFaqTfLj0mFWu1WbVZV-fWMHW_ES4hbZMWR47E93zcefwb4YEVlvWVNbggv57zlMreGhQwALAlAt16YEO-YH9ezU_7pTJxtwM5wFgYRY_IZjsNj3Mv3S7cKobJdwuaEF9Q9uC_CYdz-tNYQUQlXSCjRJGmhslC7e5MJ_QWRQMbGNHC5UPwX9xNV-tO1Kn-sxdHBHD6B-bppfV7JxXjV2bH7_ptq4_-2_Sk8Tkgz2-uHxjPYwMVzePST_uAWHEyxi6lYi2zZZl9X161xmE0xpnhkVPrFfLu8NXcZeTR3cZPtk8vzoXyKeJUladbzF3B6eHAymeXpXoXc8UJ2OTPEkmhhMUrKquQGPXe1qiw5qhoZViXWQhklbFVaoo8SiXPUhVSFdcqXtqlewuZiucBXkDXMIFGwxvmwpci94QS3guZXzSxBETsCtu5u7ZLoeLj74lJH8lEo3dtIBxvpZKMR7AyVrnrNjX-_vh_sOLwaBLNjAfW_TvNPt7SOl62vHNE_rlAaiRIdl6ZRNaEeM4KtYLPhI8lcI9hejwqdJveNJiIvRWDO5eu_13oPD2Yn8yN99PH48xt4GBrbR222YbO7XuFbwjGdfReH7w-LduqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Surface+Defects+on+Railway+Tracks+Based+on+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Wang%2C+Maoli&rft.au=Li%2C+Kaizhi&rft.au=Zhu%2C+Xiao&rft.au=Zhao%2C+Yining&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3224594&rft.externalDocID=9963529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |