Detection of Surface Defects on Railway Tracks Based on Deep Learning

The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Wang, Maoli, Li, Kaizhi, Zhu, Xiao, Zhao, Yining
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3224594

Cover

Loading…
Abstract The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps.
AbstractList The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps.
The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale variation between different types of defects both pose challenges to the detection of rail surface defects. In order to solve the above problems, this paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening functional attention mechanism (V-CBAM) that contains two key components: adaptive channel attention (F-CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive convolution kernels for cross-channel connections, which reduces the number of parameters of the attention mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the collection of real rail images and manually labels defects to train an object detection network and open source it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps.
Author Wang, Maoli
Zhao, Yining
Zhu, Xiao
Li, Kaizhi
Author_xml – sequence: 1
  givenname: Maoli
  orcidid: 0000-0001-5420-1463
  surname: Wang
  fullname: Wang, Maoli
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 2
  givenname: Kaizhi
  surname: Li
  fullname: Li, Kaizhi
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 3
  givenname: Xiao
  surname: Zhu
  fullname: Zhu, Xiao
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 4
  givenname: Yining
  surname: Zhao
  fullname: Zhao, Yining
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
BookMark eNqFkE1rGzEQhkVIIWmSX5DLQs92V9-aY2o7acBQiNOzmNXOhnWclSutKfn3kbshlF6qi8TDvO-I5zM7HeJAjF3zes55DV9vFovVZjMXtRBzKYTSoE7YueAGZlJLc_rX-4xd5byty3EFaXvOVksaKYx9HKrYVZtD6jBQtaSuwFwV-oD97je-Vo8Jw3OuvmGm9siXRPtqTZiGfni6ZJ863GW6er8v2M_b1ePi-2z94-5-cbOeBVW7cSbQWS6tQXBOcoXUqmBANk5ZQ4IkJ6MBQTeSN1qBI7DK1A7qJkDLGysv2P3U20bc-n3qXzC9-oi9_wNievKYxj7syHfYtrxrZeDKKSCHjhwF5dCCEVxj6foyde1T_HWgPPptPKShfN8Lq5y2gnNepuQ0FVLMOVH3sZXX_qjfT_r9Ub9_119S8E8q9CMeLY-p-PxP9nrK9kT0sQ3ASC1AvgEmVpIf
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_rs16224267
crossref_primary_10_1109_ACCESS_2023_3334973
crossref_primary_10_1109_TITS_2024_3421355
crossref_primary_10_1007_s44163_024_00127_2
crossref_primary_10_3390_s23218952
crossref_primary_10_1016_j_engappai_2023_106825
crossref_primary_10_1109_ACCESS_2024_3427347
crossref_primary_10_1109_ACCESS_2023_3280992
crossref_primary_10_1109_JSEN_2024_3402730
crossref_primary_10_1016_j_ultras_2024_107314
crossref_primary_10_1142_S0218126625501816
crossref_primary_10_3390_s24113579
crossref_primary_10_1109_JSEN_2024_3447730
crossref_primary_10_3390_infrastructures10010003
crossref_primary_10_3390_aerospace11080676
Cites_doi 10.1109/ACCESS.2021.3055512
10.1049/hve2.12221
10.3390/e23111437
10.1109/TSC.2021.3106264
10.1109/CVPR.2019.00326
10.1049/iet-ipr.2018.5840
10.1109/TII.2020.2997836
10.1109/TIM.2022.3194909
10.1109/TIM.2020.3036067
10.1016/j.trc.2018.05.007
10.1016/j.neucom.2021.03.091
10.3390/app8071028
10.1109/CVPR.2019.00754
10.1111/mice.12836
10.1109/TII.2019.2917522
10.1016/j.autcon.2022.104469
10.1109/CVPR42600.2020.01155
10.3390/s22186993
10.1109/TIM.2018.2803830
10.1007/s41095-022-0271-y
10.1109/TII.2021.3085848
10.1177/14759217211013110
10.1109/TII.2020.3045196
10.1109/TIM.2020.2975454
10.1088/1361-6501/abc6e2
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2018.00745
10.1109/JSEN.2017.2761858
10.14504/ajr.8.S1.22
10.1109/TII.2020.3004397
10.12700/APH.19.3.2022.3.14
10.1016/j.measurement.2020.107771
10.1016/j.asoc.2021.107706
10.3390/buildings12081225
10.1016/j.ijleo.2018.11.053
10.1177/09544054211014443
10.1016/j.jmsy.2021.12.004
10.1109/TIM.2018.2853958
10.1109/TPDS.2022.3196840
10.1109/TITS.2021.3058635
10.1016/j.autcon.2022.104260
10.1109/ACCESS.2020.3032164
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3224594
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_fadd1fd3c14849e8a8e8ec48a796215a
10_1109_ACCESS_2022_3224594
9963529
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2a871376a988314aed4c693b8476e2e31e659a95b31b5498e97460890bc9d1b73
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:20:18 EDT 2025
Mon Jun 30 07:20:51 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 02:48:34 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2a871376a988314aed4c693b8476e2e31e659a95b31b5498e97460890bc9d1b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5420-1463
0000-0002-8518-6152
0000-0003-1240-9287
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9963529
PQID 2748572111
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9963529
doaj_primary_oai_doaj_org_article_fadd1fd3c14849e8a8e8ec48a796215a
crossref_primary_10_1109_ACCESS_2022_3224594
proquest_journals_2748572111
crossref_citationtrail_10_1109_ACCESS_2022_3224594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref17
ref16
redmon (ref25) 2018
ref19
ref18
woo (ref35) 2018
bochkovskiy (ref49) 2020
ref46
ref45
ref47
ref42
ref41
ref43
ref8
thuan (ref44) 2021
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
zhang (ref15) 2020; 70
liu (ref39) 2019
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
liu (ref48) 2016
References_xml – ident: ref26
  doi: 10.1109/ACCESS.2021.3055512
– ident: ref30
  doi: 10.1049/hve2.12221
– ident: ref29
  doi: 10.3390/e23111437
– ident: ref46
  doi: 10.1109/TSC.2021.3106264
– ident: ref38
  doi: 10.1109/CVPR.2019.00326
– ident: ref18
  doi: 10.1049/iet-ipr.2018.5840
– ident: ref3
  doi: 10.1109/TII.2020.2997836
– ident: ref43
  doi: 10.1109/TIM.2022.3194909
– ident: ref19
  doi: 10.1109/TIM.2020.3036067
– ident: ref20
  doi: 10.1016/j.trc.2018.05.007
– ident: ref36
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref6
  doi: 10.3390/app8071028
– ident: ref47
  doi: 10.1109/CVPR.2019.00754
– ident: ref42
  doi: 10.1111/mice.12836
– start-page: 3
  year: 2018
  ident: ref35
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref16
  doi: 10.1109/TII.2019.2917522
– ident: ref11
  doi: 10.1016/j.autcon.2022.104469
– ident: ref34
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref31
  doi: 10.3390/s22186993
– ident: ref14
  doi: 10.1109/TIM.2018.2803830
– ident: ref37
  doi: 10.1007/s41095-022-0271-y
– ident: ref28
  doi: 10.1109/TII.2021.3085848
– ident: ref2
  doi: 10.1177/14759217211013110
– start-page: 21
  year: 2016
  ident: ref48
  article-title: SSD: Single shot MultiBox detector
  publication-title: Proc Eur Conf Comput Vis
– ident: ref13
  doi: 10.1109/TII.2020.3045196
– ident: ref8
  doi: 10.1109/TIM.2020.2975454
– ident: ref21
  doi: 10.1088/1361-6501/abc6e2
– start-page: 1
  year: 2021
  ident: ref44
  article-title: Evolution of Yolo algorithm and YOLOv5: The state-of-the-art object detection algorithm
– year: 2018
  ident: ref25
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
– ident: ref24
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref33
  doi: 10.1109/CVPR.2018.00745
– year: 2019
  ident: ref39
  article-title: Learning spatial fusion for single-shot object detection
  publication-title: arXiv 1911 09516
– volume: 70
  start-page: 1
  year: 2020
  ident: ref15
  article-title: MCNet: Multiple context information segmentation network of no-service rail surface defects
  publication-title: IEEE Trans Instrum Meas
– ident: ref5
  doi: 10.1109/JSEN.2017.2761858
– ident: ref27
  doi: 10.14504/ajr.8.S1.22
– ident: ref17
  doi: 10.1109/TII.2020.3004397
– ident: ref32
  doi: 10.12700/APH.19.3.2022.3.14
– year: 2020
  ident: ref49
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv 2004 10934
– ident: ref7
  doi: 10.1016/j.measurement.2020.107771
– ident: ref1
  doi: 10.1016/j.asoc.2021.107706
– ident: ref41
  doi: 10.3390/buildings12081225
– ident: ref12
  doi: 10.1016/j.ijleo.2018.11.053
– ident: ref4
  doi: 10.1177/09544054211014443
– ident: ref23
  doi: 10.1016/j.jmsy.2021.12.004
– ident: ref10
  doi: 10.1109/TIM.2018.2853958
– ident: ref45
  doi: 10.1109/TPDS.2022.3196840
– ident: ref9
  doi: 10.1109/TITS.2021.3058635
– ident: ref40
  doi: 10.1016/j.autcon.2022.104260
– ident: ref22
  doi: 10.1109/ACCESS.2020.3032164
SSID ssj0000816957
Score 2.3208778
Snippet The detection of rail surface defects is very important in railway transportation. However, the edge defects on both sides of the rail and the multi-scale...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive spatial feature fusion
Attention mechanism
Convolution
Deep learning
Defects
Design defects
Feature extraction
Machine learning
Object recognition
Parameters
Rail surface defect
Rail transportation
Railway engineering
Railway tracks
Surface defects
YOLOv5
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDy6dpPN7ibHPimCHnyAt5BkZ0WUtrQV8d87ycZSEfTiNWQfmUwy35cM3xBybvPMVpaXiUG8nIhayMQa7jMAgCGArqvc-POO65ti9CCuHvPHlVJfPieskQduDNeucQGyusoc4nahQBoJEpyQplQFhqsAjTDmrZCpsAdLVqi8jDJDLFXtTq-HI0JCyPklOrHIlfgWioJifyyx8mNfDsFmuE22IkqknebvdsgajHfJ5op24B4Z9GER0qjGdFLTu7dZbRzQPoT0DIqtt-b59d18UIxG7mVOuxiuKt_eB5jSKKv6tE8ehoP73iiJNRESJ1K5SLhBhoObglFSZkwYqIQrVGYxyBTAIWNQ5Mqo3GbMIvWTgHyhSKVKrVMVs2V2QNbHkzEcElpyA0ifSlf560BRGYFQyet1FdwijLAtwr_Mo10UDPd1K151IA6p0o1NtbepjjZtkYvlQ9NGL-P37l1v92VXL3YdGtAFdHQB_ZcLtMien7XlS5DCIaxULXLyNYs6Lsy5RhIuc8962dF_fPqYbPjhNGcyJ2R9MXuDU0QpC3sWHPITPYfeng
  priority: 102
  providerName: Directory of Open Access Journals
Title Detection of Surface Defects on Railway Tracks Based on Deep Learning
URI https://ieeexplore.ieee.org/document/9963529
https://www.proquest.com/docview/2748572111
https://doaj.org/article/fadd1fd3c14849e8a8e8ec48a796215a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJzi0fBR1C0U-9EiWxHES-wi7IFSJHmiRuFn-mFQVaBdBVlX59Ywdb0QLQr1FVhw5Htvz3nj8DPDFVqX1ljeZIbyciVbIzBoeMgCwIADd-sqEeMfFt_r8Sny9rq5X4HA4C4OIMfkMx-Ex7uX7uVuEUNkRYXPCC2oVVom49We1hnhKuEBCVU0SFipydXQ8mdA_EAXkfEzDVlRK_OV8okZ_ulTlxUoc3cvZe7hYNqzPKrkZLzo7do__aDb-b8s34V3Cmey4HxhbsIKzbdh4pj64A6dT7GIi1ozNW_Z9cd8ah2yKMcGDUeml-XX72_xh5M_czQM7IYfnQ_kU8Y4lYdafH-Dq7PTH5DxLtypkTuSyy7ghjkTLilFSloUw6IWrVWnJTdXIsSywrpRRlS0LS-RRIjGOOpcqt075wjblLqzN5jP8CKzhBomANc6HDUXhjSCwFRS_am4JiNgR8GV3a5ckx8PNF7c6Uo9c6d5GOthIJxuN4HCodNcrbrz9-kmw4_BqkMuOBdT_Os0-3dIqXrS-dET-hEJpJEp0QppG1YR5zAh2gs2GjyRzjWB_OSp0mtoPmmi8rAJvLj69XmsP1kMD-zjNPqx19wv8TMilsweR8R_EgfsEwjnoPQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioUAOHJtt4tiJfWx3Wy3Q7QFaqTfLj0mFWu1WbVZV-fWMHW_ES4hbZMWR47E93zcefwb4YEVlvWVNbggv57zlMreGhQwALAlAt16YEO-YH9ezU_7pTJxtwM5wFgYRY_IZjsNj3Mv3S7cKobJdwuaEF9Q9uC_CYdz-tNYQUQlXSCjRJGmhslC7e5MJ_QWRQMbGNHC5UPwX9xNV-tO1Kn-sxdHBHD6B-bppfV7JxXjV2bH7_ptq4_-2_Sk8Tkgz2-uHxjPYwMVzePST_uAWHEyxi6lYi2zZZl9X161xmE0xpnhkVPrFfLu8NXcZeTR3cZPtk8vzoXyKeJUladbzF3B6eHAymeXpXoXc8UJ2OTPEkmhhMUrKquQGPXe1qiw5qhoZViXWQhklbFVaoo8SiXPUhVSFdcqXtqlewuZiucBXkDXMIFGwxvmwpci94QS3guZXzSxBETsCtu5u7ZLoeLj74lJH8lEo3dtIBxvpZKMR7AyVrnrNjX-_vh_sOLwaBLNjAfW_TvNPt7SOl62vHNE_rlAaiRIdl6ZRNaEeM4KtYLPhI8lcI9hejwqdJveNJiIvRWDO5eu_13oPD2Yn8yN99PH48xt4GBrbR222YbO7XuFbwjGdfReH7w-LduqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Surface+Defects+on+Railway+Tracks+Based+on+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Wang%2C+Maoli&rft.au=Li%2C+Kaizhi&rft.au=Zhu%2C+Xiao&rft.au=Zhao%2C+Yining&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3224594&rft.externalDocID=9963529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon