Improved Reptile Search Optimization Algorithm Using Chaotic Map and Simulated Annealing for Feature Selection in Medical Field
The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithm...
Saved in:
Published in | IEEE access Vol. 10; pp. 51428 - 51446 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets. |
---|---|
AbstractList | The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test ( <tex-math notation="LaTeX">$p$ </tex-math>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets. The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test ([Formula Omitted]-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets. The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets. |
Author | Tubishat, Mohammad Alomari, Osama Ahmad Elgamal, Zenab Sabri, Aznul Qalid Md Makhadmeh, Sharif Naser Tbaishat, Dina |
Author_xml | – sequence: 1 givenname: Zenab orcidid: 0000-0002-9927-5893 surname: Elgamal fullname: Elgamal, Zenab email: zenabelgamal@siswa.um.edu.my organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia – sequence: 2 givenname: Aznul Qalid Md orcidid: 0000-0002-4758-5400 surname: Sabri fullname: Sabri, Aznul Qalid Md email: aznulqalid@um.edu.my organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia – sequence: 3 givenname: Mohammad surname: Tubishat fullname: Tubishat, Mohammad organization: College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Dina orcidid: 0000-0001-8029-9716 surname: Tbaishat fullname: Tbaishat, Dina organization: College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates – sequence: 5 givenname: Sharif Naser surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates – sequence: 6 givenname: Osama Ahmad surname: Alomari fullname: Alomari, Osama Ahmad organization: MLALP Research Group, University of Sharjah, Sharjah, United Arab Emirates |
BookMark | eNqFkUFvGyEQhVdRKjVN8gtyQcrZLgvsshytVdxaShSpTs5ozA42Fru4LK7UXvrXi71RVPVSLsDovW9g3qficggDFsVdSedlSdXnRds-rNdzRhmb81KKphIXxRUrazXjFa8v_zp_LG7HcU_zanKpklfF71V_iOEHduQbHpLzSNYI0ezIc7717hckFway8NsQXdr15HV0w5a0OwjJGfIEBwJDR9auP3pImbIYBgR_0tgQyRIhHeOJ6dGcSW4gT9g5A54sHfrupvhgwY94-7ZfF6_Lh5f26-zx-cuqXTzOjKBNmjGo2YYrZLYxRrIKlBSWbWjNuZVq01XWMkola2zNGhQVCl4LI43tDDBhgF8Xq4nbBdjrQ3Q9xJ86gNPnQohbDTF_yaMWwEpls3fTMCEyXoGtgEMFlAIamln3EytP7vsRx6T34RiH_HzN6lrSslFKZRWfVCaGcYxo37uWVJ-C01Nw-hScfgsuu9Q_LuPSOYQUwfn_eO8mr0PE925KSiHyoP4AdAapUQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_app13010564 crossref_primary_10_3390_math12020262 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1371_journal_pone_0307288 crossref_primary_10_1016_j_cosrev_2024_100647 crossref_primary_10_48084_etasr_8274 crossref_primary_10_1177_1088467X251313530 crossref_primary_10_1111_exsy_13553 crossref_primary_10_1615_IntJMultCompEng_2023050387 crossref_primary_10_1016_j_compbiomed_2023_107825 crossref_primary_10_3390_biomimetics8080615 crossref_primary_10_1080_1448837X_2024_2432715 crossref_primary_10_1007_s00521_023_09023_9 crossref_primary_10_32604_ee_2023_045270 crossref_primary_10_1007_s10586_024_04888_4 crossref_primary_10_48084_etasr_7818 crossref_primary_10_1007_s11831_023_09990_1 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1109_ACCESS_2023_3272556 crossref_primary_10_1108_IDD_11_2022_0118 crossref_primary_10_3390_app13053206 crossref_primary_10_1109_ACCESS_2024_3376629 crossref_primary_10_1007_s10586_024_04381_y crossref_primary_10_3390_jmse11020259 crossref_primary_10_1007_s11831_023_09883_3 crossref_primary_10_1016_j_cie_2023_109080 crossref_primary_10_1016_j_knosys_2024_111960 crossref_primary_10_1111_coin_70018 crossref_primary_10_32604_csse_2023_036119 |
Cites_doi | 10.1109/ITMS47855.2019.8940760 10.1109/ICEEE.2010.5660461 10.1016/0960-0779(94)90033-7 10.1126/science.220.4598.671 10.1016/j.apm.2020.04.019 10.1080/08839514.2020.1861407 10.1016/j.compbiomed.2019.103375 10.1016/j.advengsoft.2017.07.002 10.1007/s00521-020-05210-0 10.1016/j.future.2020.03.055 10.1007/978-3-662-62007-6_12 10.1007/s00521-017-2988-6 10.1515/jisys-2019-0062 10.1016/j.eswa.2019.113122 10.1016/j.aej.2017.04.013 10.1016/j.asoc.2016.01.044 10.1016/j.jcde.2017.02.005 10.1016/j.neucom.2017.04.053 10.1016/j.knosys.2022.108320 10.1007/s13042-022-01529-3 10.1007/s10489-021-03037-3 10.1007/s12652-017-0655-5 10.1016/j.eswa.2019.03.039 10.3390/sym12050784 10.1007/s00500-021-06425-6 10.1016/j.knosys.2021.107638 10.1016/j.engappai.2019.103370 10.3390/computation9060068 10.1007/s00521-020-05474-6 10.1007/s12065-022-00711-4 10.1016/j.knosys.2022.108511 10.1016/j.eswa.2018.06.023 10.1007/s10845-021-01877-x 10.3390/e22080876 10.1016/j.jcde.2017.12.006 10.1109/MHS.1995.494215 10.1016/j.cma.2020.113609 10.1016/j.advengsoft.2016.01.008 10.1007/s10489-018-1334-8 10.1088/0953-8984/8/47/047 10.1016/j.engappai.2019.103249 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-018-3343-2 10.1016/j.eswa.2018.08.051 10.1109/ACCESS.2020.3001204 10.1007/s00500-019-03988-3 10.1109/ACCESS.2020.3006473 10.1109/ACCESS.2021.3101210 10.1007/s00521-018-03972-2 10.1007/s00500-021-06424-7 10.1016/j.eswa.2021.116158 10.1109/MIPRO.2015.7160458 10.3390/math9182321 10.1109/ACCESS.2020.3029728 10.1007/s10596-020-10030-1 10.1109/ICoCS.2015.7483317 10.17485/ijst/2015/v8i22/79092 10.1016/j.future.2019.02.028 10.1016/j.knosys.2019.105190 10.1016/j.knosys.2020.106425 10.1016/j.eswa.2020.113873 10.1007/s00521-021-06775-0 10.1016/j.eswa.2022.116621 10.1016/j.neucom.2016.03.101 10.1109/4235.585893 10.4108/eai.3-12-2015.2262476 10.1007/s00521-021-06751-8 10.1016/j.matcom.2021.09.014 10.1016/j.asoc.2017.11.006 10.3322/caac.21708 10.1109/ACCESS.2019.2944295 10.1080/21642583.2019.1620658 10.1016/j.jksuci.2018.12.001 10.1088/1742-6596/1682/1/012020 10.1007/s00357-018-9261-2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3174854 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 51446 |
ExternalDocumentID | oai_doaj_org_article_4a219f7cfb8244f799af5a3a5a00aec0 10_1109_ACCESS_2022_3174854 9774406 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-2a62b39e2f8cc725a974f2b0633f79bd5ff200728f628e45e4364c7cfdca24ca3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:14:06 EDT 2025 Mon Jun 30 05:53:20 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 04:21:10 EDT 2025 Wed Aug 27 02:37:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-2a62b39e2f8cc725a974f2b0633f79bd5ff200728f628e45e4364c7cfdca24ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9927-5893 0000-0001-8029-9716 0000-0002-4758-5400 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9774406 |
PQID | 2667018999 |
PQPubID | 4845423 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a219f7cfb8244f799af5a3a5a00aec0 crossref_primary_10_1109_ACCESS_2022_3174854 proquest_journals_2667018999 ieee_primary_9774406 crossref_citationtrail_10_1109_ACCESS_2022_3174854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Usman (ref18) 2020; 14 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref78 ref37 ref36 ref31 ref30 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Long (ref74) 1996; 8 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 (ref75) 2018 ref60 ref62 ref61 |
References_xml | – ident: ref4 doi: 10.1109/ITMS47855.2019.8940760 – ident: ref53 doi: 10.1109/ICEEE.2010.5660461 – ident: ref73 doi: 10.1016/0960-0779(94)90033-7 – ident: ref67 doi: 10.1126/science.220.4598.671 – ident: ref69 doi: 10.1016/j.apm.2020.04.019 – ident: ref22 doi: 10.1080/08839514.2020.1861407 – ident: ref2 doi: 10.1016/j.compbiomed.2019.103375 – ident: ref44 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref7 doi: 10.1007/s00521-020-05210-0 – ident: ref78 doi: 10.1016/j.future.2020.03.055 – ident: ref34 doi: 10.1007/978-3-662-62007-6_12 – ident: ref52 doi: 10.1007/s00521-017-2988-6 – ident: ref77 doi: 10.1515/jisys-2019-0062 – volume-title: The Yarpiz Project Resource of Academic and Professional Scientific Source Codes year: 2018 ident: ref75 – ident: ref23 doi: 10.1016/j.eswa.2019.113122 – ident: ref66 doi: 10.1016/j.aej.2017.04.013 – ident: ref68 doi: 10.1016/j.asoc.2016.01.044 – ident: ref54 doi: 10.1016/j.jcde.2017.02.005 – ident: ref70 doi: 10.1016/j.neucom.2017.04.053 – ident: ref38 doi: 10.1016/j.knosys.2022.108320 – ident: ref25 doi: 10.1007/s13042-022-01529-3 – ident: ref65 doi: 10.1007/s10489-021-03037-3 – ident: ref14 doi: 10.1007/s12652-017-0655-5 – ident: ref29 doi: 10.1016/j.eswa.2019.03.039 – ident: ref60 doi: 10.3390/sym12050784 – ident: ref26 doi: 10.1007/s00500-021-06425-6 – ident: ref10 doi: 10.1016/j.knosys.2021.107638 – ident: ref61 doi: 10.1016/j.engappai.2019.103370 – ident: ref20 doi: 10.3390/computation9060068 – ident: ref58 doi: 10.1007/s00521-020-05474-6 – ident: ref64 doi: 10.1007/s12065-022-00711-4 – ident: ref71 doi: 10.1016/j.knosys.2022.108511 – ident: ref48 doi: 10.1016/j.eswa.2018.06.023 – ident: ref32 doi: 10.1007/s10845-021-01877-x – ident: ref6 doi: 10.3390/e22080876 – ident: ref51 doi: 10.1016/j.jcde.2017.12.006 – ident: ref40 doi: 10.1109/MHS.1995.494215 – volume: 14 start-page: 203 year: 2020 ident: ref18 article-title: Filter-based feature selection using information theory and binary cuckoo optimisation algorithm publication-title: J. Inf. Technol. Manage. – ident: ref39 doi: 10.1016/j.cma.2020.113609 – ident: ref41 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref15 doi: 10.1007/s10489-018-1334-8 – ident: ref21 doi: 10.1016/j.eswa.2019.113122 – volume: 8 start-page: 9471 year: 1996 ident: ref74 article-title: A comparison of simulated annealing cooling strategies publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/8/47/047 – ident: ref57 doi: 10.1016/j.engappai.2019.103249 – ident: ref42 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref56 doi: 10.1007/s00521-018-3343-2 – ident: ref46 doi: 10.1016/j.eswa.2018.08.051 – ident: ref27 doi: 10.1109/ACCESS.2020.3001204 – ident: ref13 doi: 10.1007/s00500-019-03988-3 – ident: ref30 doi: 10.1109/ACCESS.2020.3006473 – ident: ref35 doi: 10.1109/ACCESS.2021.3101210 – ident: ref3 doi: 10.1007/s00521-018-03972-2 – ident: ref9 doi: 10.1007/s00500-021-06424-7 – ident: ref36 doi: 10.1016/j.eswa.2021.116158 – ident: ref17 doi: 10.1109/MIPRO.2015.7160458 – ident: ref12 doi: 10.3390/math9182321 – ident: ref55 doi: 10.1109/ACCESS.2020.3029728 – ident: ref16 doi: 10.1007/s10596-020-10030-1 – ident: ref47 doi: 10.1109/ICoCS.2015.7483317 – ident: ref11 doi: 10.17485/ijst/2015/v8i22/79092 – ident: ref43 doi: 10.1016/j.future.2019.02.028 – ident: ref37 doi: 10.1016/j.knosys.2019.105190 – ident: ref50 doi: 10.1016/j.knosys.2020.106425 – ident: ref59 doi: 10.1016/j.eswa.2020.113873 – ident: ref5 doi: 10.1007/s00521-021-06775-0 – ident: ref28 doi: 10.1016/j.eswa.2022.116621 – ident: ref76 doi: 10.1016/j.neucom.2016.03.101 – ident: ref33 doi: 10.1109/4235.585893 – ident: ref31 doi: 10.4108/eai.3-12-2015.2262476 – ident: ref49 doi: 10.1007/s00521-021-06751-8 – ident: ref63 doi: 10.1016/j.matcom.2021.09.014 – ident: ref45 doi: 10.1016/j.asoc.2017.11.006 – ident: ref1 doi: 10.3322/caac.21708 – ident: ref8 doi: 10.1109/ACCESS.2019.2944295 – ident: ref19 doi: 10.1080/21642583.2019.1620658 – ident: ref24 doi: 10.1016/j.jksuci.2018.12.001 – ident: ref62 doi: 10.1088/1742-6596/1682/1/012020 – ident: ref72 doi: 10.1007/s00357-018-9261-2 |
SSID | ssj0000816957 |
Score | 2.3822792 |
Snippet | The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 51428 |
SubjectTerms | Chaos theory Classification algorithms Crocodiles Datasets Feature extraction Feature selection feature selection (FS) Genetic algorithms Heuristic algorithms Heuristic methods Machine learning Optimization optimization algorithm Optimization algorithms Particle swarm optimization Performance evaluation Reptile search algorithm (RSA) Reptiles Search algorithms Search problems Simulated annealing simulated annealing (SA) Sociology Statistical tests |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqTu2haguoW6DygWMjYseO4-Oy6gpVgkotSNws2_EUpN0sguXMr3fGMautkNpLj4mcSTxje95zxjOMHYsmSoN-pDI1pEolaKugAlS9EEGTBwZFB5zPL9qzK_XtWl9vlfqimLAxPfCouBPlcU6BiRA69ERgrPWgfeO1r2ufYmbr6PO2yFRegzvRWm1KmiFR25PpbIY9QkIoJfJUozqt_nBFOWN_KbHyYl3Ozmb-jr0tKJFPx697z16l4QN7s5U7cJc9jdsBqec_KDBlkfgYOcy_49WynK7k08WvFdL_myXPsQF8duNXKJOf-zvuh57_vF1S_S6UMsUF19PZdI4wlhMyfLwnmYscqzXw24GXnzp8TlFve-xq_vVydlaVagpVVHW3rqRvZWhsktDFaKT2yCRABoQoDWo19BqA9i1lB63sktJJNa2KqPg-eqmib_bZzrAa0kfGlUeaI2ynoQHV99aaBkLfArb1bRBiwuSzYl0sqcap4sXCZcpRWzdaw5E1XLHGhH3ZPHQ3Ztr4e_NTstimKaXJzjdw8LgyeNy_Bs-E7ZK9N0IIDCPCmbDDZ_u7MqUfHCIZUwukp_bT_3j1AXtN3Rl3cw7Zzvr-MR0hvlmHz3ko_waCv_bd priority: 102 providerName: Directory of Open Access Journals |
Title | Improved Reptile Search Optimization Algorithm Using Chaotic Map and Simulated Annealing for Feature Selection in Medical Field |
URI | https://ieeexplore.ieee.org/document/9774406 https://www.proquest.com/docview/2667018999 https://doaj.org/article/4a219f7cfb8244f799af5a3a5a00aec0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWPcGB14IoLCsfOG66iWPH8bFUVCukggSstDfLT7aiTVclvXDhrzPjuBEvIW5JZFu2ZjLzzXgehLyqasck6JFCljEUPMSmsNzGwleVFaiBI8cE5-W75vKKv70W10fkfMyFCSGk4LMwxcd0l--3bo-usgvEKhzra98Bw23I1Rr9KdhAQgmZCwtVpbqYzedwBjABGQPLVPJW8F-UT6rRn5uq_CGJk3pZPCDLw8aGqJIv031vp-7bbzUb_3fnD8n9jDPpbGCMR-QodI_JvZ-qD56Q74NDIXj6AUNb1oEOscf0Pbxtcn4mna0_b3er_mZDU3QBnd-YLaxJl-aWms7Tj6sNdgCDVWYgsg1mt1MAwhSx5X6Ha65TtFdHVx3N10J0gXFzT8jV4s2n-WWR-zEUjpdtXzDTMFurwGLrnGTCgC0SmQWQU0eprBcxoueTtbFhbeAi8LrhTrronWHcmfopOe62XXhGKDdgKFWqFbGO3HulZB2tbyKMNY2tqglhB0Jpl4uVY8-MtU5GS6n0QF2N1NWZuhNyPk66HWp1_Hv4a-SAcSgW2k4fgHI6_7eaGxDpEc5gWwBCcExlojC1EaYsTXDlhJwgtcdFMqEn5PTATzoLha8asJAsKzBw1fO_z3pB7uIGBw_PKTnud_vwEjBPb8-Sr-AssfwPIyEApw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcQAOfA1EtwE-cFy6xLHj-NhVVAXWIcEm7WbZjr1VtOlU0ssu-9f3XuJGfAlxSyLbsvVe3pff-z1C3me5YxL0SCLT4BPuQ5FYbkNSZZkVqIEDxwLn2VkxveCfLsXlDjnqa2G8923ymR_iY3uXX63cBkNlx2ircMTXfgB6X2RdtVYfUcEWEkrICC2Upep4NB7DKcAJZAx8U8lLwX9RPy1Kf2yr8ocsbhXM5CmZbbfW5ZV8H24aO3S3v6E2_u_en5En0dKko441npMdX78gj3_CH9wjd11IwVf0Kya3LDztso_pF3hbxgpNOlpcrdbz5npJ2_wCOr42K1iTzswNNXVFv82X2AMMVhmB0DZY307BFKZoXW7WuOaizfeq6bym8WKITjBz7iW5mHw4H0-T2JEhcTwtm4SZgtlceRZK5yQTBryRwCyYOXmQylYiBIx9sjIUrPRceJ4X3EkXKmcYdyZ_RXbrVe1fE8oNuEqZKkXIA68qpWQebFUEGGsKm2UDwraE0i7ClWPXjIVu3ZZU6Y66GqmrI3UH5KifdNOhdfx7-AlyQD8UobbbD0A5Hf9czQ0I9QBnsCWYQnBMZYIwuREmTY136YDsIbX7RSKhB-Rwy086ioUfGqwhmWbg4qr9v896Rx5Oz2en-vTj2ecD8gg328V7Dslus974N2ABNfZty_j3ltIC-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Reptile+Search+Optimization+Algorithm+Using+Chaotic+Map+and+Simulated+Annealing+for+Feature+Selection+in+Medical+Field&rft.jtitle=IEEE+access&rft.au=Elgamal%2C+Zenab&rft.au=Sabri%2C+Aznul+Qalid+Md&rft.au=Tubishat%2C+Mohammad&rft.au=Tbaishat%2C+Dina&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=51428&rft.epage=51446&rft_id=info:doi/10.1109%2FACCESS.2022.3174854&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3174854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |