Improved Reptile Search Optimization Algorithm Using Chaotic Map and Simulated Annealing for Feature Selection in Medical Field

The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithm...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 51428 - 51446
Main Authors Elgamal, Zenab, Sabri, Aznul Qalid Md, Tubishat, Mohammad, Tbaishat, Dina, Makhadmeh, Sharif Naser, Alomari, Osama Ahmad
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets.
AbstractList The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test ( <tex-math notation="LaTeX">$p$ </tex-math>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets.
The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test ([Formula Omitted]-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets.
The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles' encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets.
Author Tubishat, Mohammad
Alomari, Osama Ahmad
Elgamal, Zenab
Sabri, Aznul Qalid Md
Makhadmeh, Sharif Naser
Tbaishat, Dina
Author_xml – sequence: 1
  givenname: Zenab
  orcidid: 0000-0002-9927-5893
  surname: Elgamal
  fullname: Elgamal, Zenab
  email: zenabelgamal@siswa.um.edu.my
  organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Aznul Qalid Md
  orcidid: 0000-0002-4758-5400
  surname: Sabri
  fullname: Sabri, Aznul Qalid Md
  email: aznulqalid@um.edu.my
  organization: Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Mohammad
  surname: Tubishat
  fullname: Tubishat, Mohammad
  organization: College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Dina
  orcidid: 0000-0001-8029-9716
  surname: Tbaishat
  fullname: Tbaishat, Dina
  organization: College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
– sequence: 5
  givenname: Sharif Naser
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
– sequence: 6
  givenname: Osama Ahmad
  surname: Alomari
  fullname: Alomari, Osama Ahmad
  organization: MLALP Research Group, University of Sharjah, Sharjah, United Arab Emirates
BookMark eNqFkUFvGyEQhVdRKjVN8gtyQcrZLgvsshytVdxaShSpTs5ozA42Fru4LK7UXvrXi71RVPVSLsDovW9g3qficggDFsVdSedlSdXnRds-rNdzRhmb81KKphIXxRUrazXjFa8v_zp_LG7HcU_zanKpklfF71V_iOEHduQbHpLzSNYI0ezIc7717hckFway8NsQXdr15HV0w5a0OwjJGfIEBwJDR9auP3pImbIYBgR_0tgQyRIhHeOJ6dGcSW4gT9g5A54sHfrupvhgwY94-7ZfF6_Lh5f26-zx-cuqXTzOjKBNmjGo2YYrZLYxRrIKlBSWbWjNuZVq01XWMkola2zNGhQVCl4LI43tDDBhgF8Xq4nbBdjrQ3Q9xJ86gNPnQohbDTF_yaMWwEpls3fTMCEyXoGtgEMFlAIamln3EytP7vsRx6T34RiH_HzN6lrSslFKZRWfVCaGcYxo37uWVJ-C01Nw-hScfgsuu9Q_LuPSOYQUwfn_eO8mr0PE925KSiHyoP4AdAapUQ
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app13010564
crossref_primary_10_3390_math12020262
crossref_primary_10_1007_s10115_024_02225_0
crossref_primary_10_1371_journal_pone_0307288
crossref_primary_10_1016_j_cosrev_2024_100647
crossref_primary_10_48084_etasr_8274
crossref_primary_10_1177_1088467X251313530
crossref_primary_10_1111_exsy_13553
crossref_primary_10_1615_IntJMultCompEng_2023050387
crossref_primary_10_1016_j_compbiomed_2023_107825
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_1080_1448837X_2024_2432715
crossref_primary_10_1007_s00521_023_09023_9
crossref_primary_10_32604_ee_2023_045270
crossref_primary_10_1007_s10586_024_04888_4
crossref_primary_10_48084_etasr_7818
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1109_ACCESS_2023_3272556
crossref_primary_10_1108_IDD_11_2022_0118
crossref_primary_10_3390_app13053206
crossref_primary_10_1109_ACCESS_2024_3376629
crossref_primary_10_1007_s10586_024_04381_y
crossref_primary_10_3390_jmse11020259
crossref_primary_10_1007_s11831_023_09883_3
crossref_primary_10_1016_j_cie_2023_109080
crossref_primary_10_1016_j_knosys_2024_111960
crossref_primary_10_1111_coin_70018
crossref_primary_10_32604_csse_2023_036119
Cites_doi 10.1109/ITMS47855.2019.8940760
10.1109/ICEEE.2010.5660461
10.1016/0960-0779(94)90033-7
10.1126/science.220.4598.671
10.1016/j.apm.2020.04.019
10.1080/08839514.2020.1861407
10.1016/j.compbiomed.2019.103375
10.1016/j.advengsoft.2017.07.002
10.1007/s00521-020-05210-0
10.1016/j.future.2020.03.055
10.1007/978-3-662-62007-6_12
10.1007/s00521-017-2988-6
10.1515/jisys-2019-0062
10.1016/j.eswa.2019.113122
10.1016/j.aej.2017.04.013
10.1016/j.asoc.2016.01.044
10.1016/j.jcde.2017.02.005
10.1016/j.neucom.2017.04.053
10.1016/j.knosys.2022.108320
10.1007/s13042-022-01529-3
10.1007/s10489-021-03037-3
10.1007/s12652-017-0655-5
10.1016/j.eswa.2019.03.039
10.3390/sym12050784
10.1007/s00500-021-06425-6
10.1016/j.knosys.2021.107638
10.1016/j.engappai.2019.103370
10.3390/computation9060068
10.1007/s00521-020-05474-6
10.1007/s12065-022-00711-4
10.1016/j.knosys.2022.108511
10.1016/j.eswa.2018.06.023
10.1007/s10845-021-01877-x
10.3390/e22080876
10.1016/j.jcde.2017.12.006
10.1109/MHS.1995.494215
10.1016/j.cma.2020.113609
10.1016/j.advengsoft.2016.01.008
10.1007/s10489-018-1334-8
10.1088/0953-8984/8/47/047
10.1016/j.engappai.2019.103249
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-018-3343-2
10.1016/j.eswa.2018.08.051
10.1109/ACCESS.2020.3001204
10.1007/s00500-019-03988-3
10.1109/ACCESS.2020.3006473
10.1109/ACCESS.2021.3101210
10.1007/s00521-018-03972-2
10.1007/s00500-021-06424-7
10.1016/j.eswa.2021.116158
10.1109/MIPRO.2015.7160458
10.3390/math9182321
10.1109/ACCESS.2020.3029728
10.1007/s10596-020-10030-1
10.1109/ICoCS.2015.7483317
10.17485/ijst/2015/v8i22/79092
10.1016/j.future.2019.02.028
10.1016/j.knosys.2019.105190
10.1016/j.knosys.2020.106425
10.1016/j.eswa.2020.113873
10.1007/s00521-021-06775-0
10.1016/j.eswa.2022.116621
10.1016/j.neucom.2016.03.101
10.1109/4235.585893
10.4108/eai.3-12-2015.2262476
10.1007/s00521-021-06751-8
10.1016/j.matcom.2021.09.014
10.1016/j.asoc.2017.11.006
10.3322/caac.21708
10.1109/ACCESS.2019.2944295
10.1080/21642583.2019.1620658
10.1016/j.jksuci.2018.12.001
10.1088/1742-6596/1682/1/012020
10.1007/s00357-018-9261-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3174854
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 51446
ExternalDocumentID oai_doaj_org_article_4a219f7cfb8244f799af5a3a5a00aec0
10_1109_ACCESS_2022_3174854
9774406
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2a62b39e2f8cc725a974f2b0633f79bd5ff200728f628e45e4364c7cfdca24ca3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:14:06 EDT 2025
Mon Jun 30 05:53:20 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Jul 01 04:21:10 EDT 2025
Wed Aug 27 02:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2a62b39e2f8cc725a974f2b0633f79bd5ff200728f628e45e4364c7cfdca24ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9927-5893
0000-0001-8029-9716
0000-0002-4758-5400
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9774406
PQID 2667018999
PQPubID 4845423
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_4a219f7cfb8244f799af5a3a5a00aec0
crossref_primary_10_1109_ACCESS_2022_3174854
proquest_journals_2667018999
ieee_primary_9774406
crossref_citationtrail_10_1109_ACCESS_2022_3174854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Usman (ref18) 2020; 14
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref78
ref37
ref36
ref31
ref30
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Long (ref74) 1996; 8
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
(ref75) 2018
ref60
ref62
ref61
References_xml – ident: ref4
  doi: 10.1109/ITMS47855.2019.8940760
– ident: ref53
  doi: 10.1109/ICEEE.2010.5660461
– ident: ref73
  doi: 10.1016/0960-0779(94)90033-7
– ident: ref67
  doi: 10.1126/science.220.4598.671
– ident: ref69
  doi: 10.1016/j.apm.2020.04.019
– ident: ref22
  doi: 10.1080/08839514.2020.1861407
– ident: ref2
  doi: 10.1016/j.compbiomed.2019.103375
– ident: ref44
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref7
  doi: 10.1007/s00521-020-05210-0
– ident: ref78
  doi: 10.1016/j.future.2020.03.055
– ident: ref34
  doi: 10.1007/978-3-662-62007-6_12
– ident: ref52
  doi: 10.1007/s00521-017-2988-6
– ident: ref77
  doi: 10.1515/jisys-2019-0062
– volume-title: The Yarpiz Project Resource of Academic and Professional Scientific Source Codes
  year: 2018
  ident: ref75
– ident: ref23
  doi: 10.1016/j.eswa.2019.113122
– ident: ref66
  doi: 10.1016/j.aej.2017.04.013
– ident: ref68
  doi: 10.1016/j.asoc.2016.01.044
– ident: ref54
  doi: 10.1016/j.jcde.2017.02.005
– ident: ref70
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref38
  doi: 10.1016/j.knosys.2022.108320
– ident: ref25
  doi: 10.1007/s13042-022-01529-3
– ident: ref65
  doi: 10.1007/s10489-021-03037-3
– ident: ref14
  doi: 10.1007/s12652-017-0655-5
– ident: ref29
  doi: 10.1016/j.eswa.2019.03.039
– ident: ref60
  doi: 10.3390/sym12050784
– ident: ref26
  doi: 10.1007/s00500-021-06425-6
– ident: ref10
  doi: 10.1016/j.knosys.2021.107638
– ident: ref61
  doi: 10.1016/j.engappai.2019.103370
– ident: ref20
  doi: 10.3390/computation9060068
– ident: ref58
  doi: 10.1007/s00521-020-05474-6
– ident: ref64
  doi: 10.1007/s12065-022-00711-4
– ident: ref71
  doi: 10.1016/j.knosys.2022.108511
– ident: ref48
  doi: 10.1016/j.eswa.2018.06.023
– ident: ref32
  doi: 10.1007/s10845-021-01877-x
– ident: ref6
  doi: 10.3390/e22080876
– ident: ref51
  doi: 10.1016/j.jcde.2017.12.006
– ident: ref40
  doi: 10.1109/MHS.1995.494215
– volume: 14
  start-page: 203
  year: 2020
  ident: ref18
  article-title: Filter-based feature selection using information theory and binary cuckoo optimisation algorithm
  publication-title: J. Inf. Technol. Manage.
– ident: ref39
  doi: 10.1016/j.cma.2020.113609
– ident: ref41
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref15
  doi: 10.1007/s10489-018-1334-8
– ident: ref21
  doi: 10.1016/j.eswa.2019.113122
– volume: 8
  start-page: 9471
  year: 1996
  ident: ref74
  article-title: A comparison of simulated annealing cooling strategies
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/8/47/047
– ident: ref57
  doi: 10.1016/j.engappai.2019.103249
– ident: ref42
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref56
  doi: 10.1007/s00521-018-3343-2
– ident: ref46
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref27
  doi: 10.1109/ACCESS.2020.3001204
– ident: ref13
  doi: 10.1007/s00500-019-03988-3
– ident: ref30
  doi: 10.1109/ACCESS.2020.3006473
– ident: ref35
  doi: 10.1109/ACCESS.2021.3101210
– ident: ref3
  doi: 10.1007/s00521-018-03972-2
– ident: ref9
  doi: 10.1007/s00500-021-06424-7
– ident: ref36
  doi: 10.1016/j.eswa.2021.116158
– ident: ref17
  doi: 10.1109/MIPRO.2015.7160458
– ident: ref12
  doi: 10.3390/math9182321
– ident: ref55
  doi: 10.1109/ACCESS.2020.3029728
– ident: ref16
  doi: 10.1007/s10596-020-10030-1
– ident: ref47
  doi: 10.1109/ICoCS.2015.7483317
– ident: ref11
  doi: 10.17485/ijst/2015/v8i22/79092
– ident: ref43
  doi: 10.1016/j.future.2019.02.028
– ident: ref37
  doi: 10.1016/j.knosys.2019.105190
– ident: ref50
  doi: 10.1016/j.knosys.2020.106425
– ident: ref59
  doi: 10.1016/j.eswa.2020.113873
– ident: ref5
  doi: 10.1007/s00521-021-06775-0
– ident: ref28
  doi: 10.1016/j.eswa.2022.116621
– ident: ref76
  doi: 10.1016/j.neucom.2016.03.101
– ident: ref33
  doi: 10.1109/4235.585893
– ident: ref31
  doi: 10.4108/eai.3-12-2015.2262476
– ident: ref49
  doi: 10.1007/s00521-021-06751-8
– ident: ref63
  doi: 10.1016/j.matcom.2021.09.014
– ident: ref45
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref1
  doi: 10.3322/caac.21708
– ident: ref8
  doi: 10.1109/ACCESS.2019.2944295
– ident: ref19
  doi: 10.1080/21642583.2019.1620658
– ident: ref24
  doi: 10.1016/j.jksuci.2018.12.001
– ident: ref62
  doi: 10.1088/1742-6596/1682/1/012020
– ident: ref72
  doi: 10.1007/s00357-018-9261-2
SSID ssj0000816957
Score 2.3822792
Snippet The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51428
SubjectTerms Chaos theory
Classification algorithms
Crocodiles
Datasets
Feature extraction
Feature selection
feature selection (FS)
Genetic algorithms
Heuristic algorithms
Heuristic methods
Machine learning
Optimization
optimization algorithm
Optimization algorithms
Particle swarm optimization
Performance evaluation
Reptile search algorithm (RSA)
Reptiles
Search algorithms
Search problems
Simulated annealing
simulated annealing (SA)
Sociology
Statistical tests
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqTu2haguoW6DygWMjYseO4-Oy6gpVgkotSNws2_EUpN0sguXMr3fGMautkNpLj4mcSTxje95zxjOMHYsmSoN-pDI1pEolaKugAlS9EEGTBwZFB5zPL9qzK_XtWl9vlfqimLAxPfCouBPlcU6BiRA69ERgrPWgfeO1r2ufYmbr6PO2yFRegzvRWm1KmiFR25PpbIY9QkIoJfJUozqt_nBFOWN_KbHyYl3Ozmb-jr0tKJFPx697z16l4QN7s5U7cJc9jdsBqec_KDBlkfgYOcy_49WynK7k08WvFdL_myXPsQF8duNXKJOf-zvuh57_vF1S_S6UMsUF19PZdI4wlhMyfLwnmYscqzXw24GXnzp8TlFve-xq_vVydlaVagpVVHW3rqRvZWhsktDFaKT2yCRABoQoDWo19BqA9i1lB63sktJJNa2KqPg-eqmib_bZzrAa0kfGlUeaI2ynoQHV99aaBkLfArb1bRBiwuSzYl0sqcap4sXCZcpRWzdaw5E1XLHGhH3ZPHQ3Ztr4e_NTstimKaXJzjdw8LgyeNy_Bs-E7ZK9N0IIDCPCmbDDZ_u7MqUfHCIZUwukp_bT_3j1AXtN3Rl3cw7Zzvr-MR0hvlmHz3ko_waCv_bd
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Reptile Search Optimization Algorithm Using Chaotic Map and Simulated Annealing for Feature Selection in Medical Field
URI https://ieeexplore.ieee.org/document/9774406
https://www.proquest.com/docview/2667018999
https://doaj.org/article/4a219f7cfb8244f799af5a3a5a00aec0
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWPcGB14IoLCsfOG66iWPH8bFUVCukggSstDfLT7aiTVclvXDhrzPjuBEvIW5JZFu2ZjLzzXgehLyqasck6JFCljEUPMSmsNzGwleVFaiBI8cE5-W75vKKv70W10fkfMyFCSGk4LMwxcd0l--3bo-usgvEKhzra98Bw23I1Rr9KdhAQgmZCwtVpbqYzedwBjABGQPLVPJW8F-UT6rRn5uq_CGJk3pZPCDLw8aGqJIv031vp-7bbzUb_3fnD8n9jDPpbGCMR-QodI_JvZ-qD56Q74NDIXj6AUNb1oEOscf0Pbxtcn4mna0_b3er_mZDU3QBnd-YLaxJl-aWms7Tj6sNdgCDVWYgsg1mt1MAwhSx5X6Ha65TtFdHVx3N10J0gXFzT8jV4s2n-WWR-zEUjpdtXzDTMFurwGLrnGTCgC0SmQWQU0eprBcxoueTtbFhbeAi8LrhTrronWHcmfopOe62XXhGKDdgKFWqFbGO3HulZB2tbyKMNY2tqglhB0Jpl4uVY8-MtU5GS6n0QF2N1NWZuhNyPk66HWp1_Hv4a-SAcSgW2k4fgHI6_7eaGxDpEc5gWwBCcExlojC1EaYsTXDlhJwgtcdFMqEn5PTATzoLha8asJAsKzBw1fO_z3pB7uIGBw_PKTnud_vwEjBPb8-Sr-AssfwPIyEApw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcQAOfA1EtwE-cFy6xLHj-NhVVAXWIcEm7WbZjr1VtOlU0ssu-9f3XuJGfAlxSyLbsvVe3pff-z1C3me5YxL0SCLT4BPuQ5FYbkNSZZkVqIEDxwLn2VkxveCfLsXlDjnqa2G8923ymR_iY3uXX63cBkNlx2ircMTXfgB6X2RdtVYfUcEWEkrICC2Upep4NB7DKcAJZAx8U8lLwX9RPy1Kf2yr8ocsbhXM5CmZbbfW5ZV8H24aO3S3v6E2_u_en5En0dKko441npMdX78gj3_CH9wjd11IwVf0Kya3LDztso_pF3hbxgpNOlpcrdbz5npJ2_wCOr42K1iTzswNNXVFv82X2AMMVhmB0DZY307BFKZoXW7WuOaizfeq6bym8WKITjBz7iW5mHw4H0-T2JEhcTwtm4SZgtlceRZK5yQTBryRwCyYOXmQylYiBIx9sjIUrPRceJ4X3EkXKmcYdyZ_RXbrVe1fE8oNuEqZKkXIA68qpWQebFUEGGsKm2UDwraE0i7ClWPXjIVu3ZZU6Y66GqmrI3UH5KifdNOhdfx7-AlyQD8UobbbD0A5Hf9czQ0I9QBnsCWYQnBMZYIwuREmTY136YDsIbX7RSKhB-Rwy086ioUfGqwhmWbg4qr9v896Rx5Oz2en-vTj2ecD8gg328V7Dslus974N2ABNfZty_j3ltIC-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Reptile+Search+Optimization+Algorithm+Using+Chaotic+Map+and+Simulated+Annealing+for+Feature+Selection+in+Medical+Field&rft.jtitle=IEEE+access&rft.au=Elgamal%2C+Zenab&rft.au=Sabri%2C+Aznul+Qalid+Md&rft.au=Tubishat%2C+Mohammad&rft.au=Tbaishat%2C+Dina&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=51428&rft.epage=51446&rft_id=info:doi/10.1109%2FACCESS.2022.3174854&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3174854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon