Game Theory-Based Optimal Cooperative Path Planning for Multiple UAVs
This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and co...
Saved in:
Published in | IEEE access Vol. 10; pp. 108034 - 108045 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application. |
---|---|
AbstractList | This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application. |
Author | Van Nguyen, Lanh Ha, Quang Phuc Phung, Manh Duong |
Author_xml | – sequence: 1 givenname: Lanh orcidid: 0000-0003-4665-8863 surname: Van Nguyen fullname: Van Nguyen, Lanh email: vanlanh.nguyen@uts.edu.au organization: School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 2 givenname: Manh Duong orcidid: 0000-0001-5247-6180 surname: Phung fullname: Phung, Manh Duong organization: Fulbright University Vietnam, Ho Chi Minh City, Vietnam – sequence: 3 givenname: Quang Phuc orcidid: 0000-0003-0978-1758 surname: Ha fullname: Ha, Quang Phuc organization: School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia |
BookMark | eNqFkFtLxDAQhYMoeP0FvhR87ppJ2qZ5XMt6AcUFL68hTaeapTY1zQr77412EfHFeZlhmHPO8B2S3d71SMgp0BkAlefzqlo8PMwYZWzGGXDK8x1ywKCQKc95sftr3icn47iiscq4ysUBWVzpN0weX9H5TXqhR2yS-yHYN90llXMDeh3sByZLHV6TZaf73vYvSet8crfugh06TJ7mz-Mx2Wt1N-LJth-Rp8vFY3Wd3t5f3VTz29RktAwp4zXLRJkL3QjJCgllUdeIRjcItMWszmhuCspKI5BKIZBBjpkB1uZQN4zyI3Iz-TZOr9Tg459-o5y26nvh_IvSPljToaoNFBw5R8NNpltaFyJrMqhz0RoAWUavs8lr8O59jWNQK7f2fXxfMcEKYDQCi1d8ujLejaPH9icVqPrCryb86gu_2uKPKvlHZWyIJF0fvLbdP9rTSWsR8SdNSuBScP4JGzySuw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s41693_024_00135_9 crossref_primary_10_1016_j_asoc_2024_112269 crossref_primary_10_1108_AEAT_10_2023_0258 crossref_primary_10_3390_electronics12081932 crossref_primary_10_1016_j_comnet_2024_110820 crossref_primary_10_3390_s24196242 crossref_primary_10_3390_electronics12204203 crossref_primary_10_1109_JIOT_2024_3364230 crossref_primary_10_1109_TIE_2024_3426106 crossref_primary_10_1016_j_adhoc_2023_103309 crossref_primary_10_1051_e3sconf_202449604004 crossref_primary_10_3390_drones7030170 |
Cites_doi | 10.1016/j.automatica.2019.01.025 10.1016/j.asoc.2021.107376 10.1061/(ASCE)CO.1943-7862.0001806 10.1109/JSYST.2019.2922290 10.1109/TCYB.2021.3050509 10.1109/TCST.2017.2738602 10.1109/TCSII.2021.3112787 10.1109/TCYB.2019.2905570 10.1109/TNNLS.2020.3027293 10.1016/j.ast.2011.02.006 10.1109/ACCESS.2022.3157626 10.1109/TAC.2018.2798817 10.1061/(ASCE)ME.1943-5479.0000637 10.1016/j.arcontrol.2012.09.008 10.1109/ACCESS.2022.3188794 10.1109/COMST.2018.2863030 10.1016/j.oceaneng.2015.01.008 10.1109/ACCESS.2019.2912306 10.1109/ACCESS.2019.2938254 10.1016/j.cie.2019.106138 10.1002/rob.20414 10.1109/TCST.2007.899732 10.1016/j.neucom.2013.04.020 10.1109/ACCESS.2021.3098676 10.1109/ACCESS.2021.3110804 10.1109/ACCESS.2022.3168981 10.1007/s10846-014-0077-y 10.1109/TEVC.2004.826076 10.1109/CDC.2011.6160521 10.1016/j.autcon.2021.103763 10.22260/ISARC2022/0051 10.1017/cbo9780511895043 10.1109/INFCOMW.2019.8845309 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3213035 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 108045 |
ExternalDocumentID | oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198 10_1109_ACCESS_2022_3213035 9913973 |
Genre | orig-research |
GrantInformation_xml | – fundername: Vingroup Science and Technology Scholarship Program, VinUniversity, Vingroup, for overseas study for master’s and doctoral degrees |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Mon Jun 30 04:15:56 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 02:48:31 EDT 2025 Wed Aug 27 02:18:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0978-1758 0000-0001-5247-6180 0000-0003-4665-8863 |
OpenAccessLink | https://doaj.org/article/bc163e33ec3c4af0b674d41b57fc1198 |
PQID | 2726120536 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3213035 ieee_primary_9913973 doaj_primary_oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198 proquest_journals_2726120536 crossref_primary_10_1109_ACCESS_2022_3213035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Myerson (ref11) 1997 |
References_xml | – ident: ref18 doi: 10.1016/j.automatica.2019.01.025 – ident: ref23 doi: 10.1016/j.asoc.2021.107376 – ident: ref25 doi: 10.1061/(ASCE)CO.1943-7862.0001806 – ident: ref34 doi: 10.1109/JSYST.2019.2922290 – ident: ref17 doi: 10.1109/TCYB.2021.3050509 – ident: ref21 doi: 10.1109/TCST.2017.2738602 – ident: ref7 doi: 10.1109/TCSII.2021.3112787 – ident: ref30 doi: 10.1109/TCYB.2019.2905570 – ident: ref28 doi: 10.1109/TNNLS.2020.3027293 – ident: ref6 doi: 10.1016/j.ast.2011.02.006 – ident: ref2 doi: 10.1109/ACCESS.2022.3157626 – ident: ref19 doi: 10.1109/TAC.2018.2798817 – ident: ref24 doi: 10.1061/(ASCE)ME.1943-5479.0000637 – ident: ref29 doi: 10.1016/j.arcontrol.2012.09.008 – ident: ref13 doi: 10.1109/ACCESS.2022.3188794 – ident: ref15 doi: 10.1109/COMST.2018.2863030 – ident: ref4 doi: 10.1016/j.oceaneng.2015.01.008 – volume-title: Game Theory: Analysis of Conflict year: 1997 ident: ref11 – ident: ref3 doi: 10.1109/ACCESS.2019.2912306 – ident: ref31 doi: 10.1109/ACCESS.2019.2938254 – ident: ref26 doi: 10.1016/j.cie.2019.106138 – ident: ref8 doi: 10.1002/rob.20414 – ident: ref22 doi: 10.1109/TCST.2007.899732 – volume-title: Digital Elevation Model (DEM) of Australia Derived From LiDAR 5 Metre Grid ident: ref35 – ident: ref10 doi: 10.1016/j.neucom.2013.04.020 – ident: ref5 doi: 10.1109/ACCESS.2021.3098676 – ident: ref1 doi: 10.1109/ACCESS.2021.3110804 – ident: ref12 doi: 10.1109/ACCESS.2022.3168981 – ident: ref33 doi: 10.1007/s10846-014-0077-y – ident: ref27 doi: 10.1109/TEVC.2004.826076 – ident: ref9 doi: 10.1109/CDC.2011.6160521 – ident: ref14 doi: 10.1016/j.autcon.2021.103763 – ident: ref32 doi: 10.22260/ISARC2022/0051 – ident: ref16 doi: 10.1017/cbo9780511895043 – ident: ref20 doi: 10.1109/INFCOMW.2019.8845309 |
SSID | ssj0000816957 |
Score | 2.325404 |
Snippet | This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108034 |
SubjectTerms | Algorithms Autonomous aerial vehicles Cooperative path planning Cost function Game theory Nash equilibrium Particle swarm optimization Path planning PSO Stackelberg-Nash game Task analysis UAV Unmanned aerial vehicles Working conditions |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) - NZ dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJzi05UvdliIfOJLFX7Hj47KCokpbeuhW3KzYmVwou6jsXvrrO068UUtR1VsUxZHjZ4_fTMZvAM6Ma5xEqQtbBlnokquiCqYtpEIbrZIY6hTvmH02N3P96a6824Lz4SwMInbJZzhOl92__GYZ1ylUduGShqVV27BNjlt_VmuIp6QCEq60WVhIcHcxmU7pG8gFlHKsZLLV5R-bT6fRn4uq_GWJu-3l-jXMNh3rs0rux-tVGMefzzQb_7fnb-BV5pls0k-MfdjCxQHs_aY-eAhXH-sHZP3h_OKSdrOG3ZIBeaBm0-XyEXtNcPaFOCLb1DZixHHZLCchsvnk29MRzK-vvk5vilxVoYiaVytCIUhtq9LWjXXSOFGZEBBTNr7gLepAFC4aoh3RIid2iEQKUEch21KERnJ1DDuL5QLfApM1b5vKoHUVaoN10JFbJ1rygmrHQz0CuRluH7PkeKp88d13rgd3vsfIJ4x8xmgE50Ojx15x49-PXyYch0eTXHZ3g8bf59XnQyTaiUphVFHXLQ_G6kaLUNo2CuGqERwmzIaXZLhGcLKZFT4v7ScvbVJdI9tl3r3c6j3spg72cZoT2Fn9WOMHYi6rcNpN2V-pMeiK priority: 102 providerName: IEEE |
Title | Game Theory-Based Optimal Cooperative Path Planning for Multiple UAVs |
URI | https://ieeexplore.ieee.org/document/9913973 https://www.proquest.com/docview/2726120536 https://doaj.org/article/bc163e33ec3c4af0b674d41b57fc1198 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIhCQR4YCfgVOx5LxUNIBQaK2KzYuUz0IVr-P-fErYqQYGGN7CT-fL77zrK_I-Rc28oKECozuReZypnMCq_rTEgwwUgBvoz7HcNHfT9SD2_521qpr3gmrJUHboG78gEZA0gJQQZV1sxroyrFfW7qwDFjjt4XY95aMtX44IJrm5skM8SZveoPBjgiTAiFuJQieu78WyhqFPtTiZUffrkJNre7ZCexRNpv_26PbMBkn2yvaQd2yM1dOQbaXq3PrjEWVfQJl_8Yuw2m0xm0it70GRkeXVYmoshQ6TAdIaSj_uv8gIxub14G91mqiZAFxYoFYuiFMkVuyspYoS0vtPcA8Sw9ZzUojwQsaCQNwQBDbgcY0kEFLuqc-0oweUg2J9MJHBEqSlZXhQZjC1AaSq8CM5bXmMOUlvmyS8QSHheSYHisW_HumsSBWddi6iKmLmHaJRerTrNWL-P35tcR91XTKHbdPEATcMkE3F8m0CWdOGurl9godWpkl_SWs-jSwpw7YaJmGnoeffwfnz4hW3E47Z5Mj2wuPj7hFFnKwp81BnnWXCj8AlZ04Fc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXEQoEcODZbvx0ft6uWBbqFQxf1ZsXO5ALdrdrdC7-eceKNeAlxi6I4cvzZM58n428A3hrXOIFClVYHUSrNZFkF05ZCoo1WCgx1infMz81soT5c6ssdOBzOwiBil3yG43TZ_ctvVnGTQmVHLmlYWnkH7pLf16I_rTVEVFIJCadtlhbizB1NplP6CtoECjGWIllr_Yv76VT6c1mVP2xx52BOH8J827U-r-TreLMO4_j9N9XG_-37I3iQmWYx6afGY9jB5RPY-0l_cB9O3tVXWPTH88tj8mdN8YlMyBU1m65W19irghefiSUW2-pGBbHcYp7TEIvF5MvtU1icnlxMZ2Wuq1BGxao14RCEspW2dWOdMI5XJgTElI_PWYsqEImLhohHtMiIHyLRAlSRi1bz0Agmn8HucrXE51CImrVNZdC6CpXBOqjIrOMt7YNqx0I9ArEdbh-z6HiqffHNd5sP5nyPkU8Y-YzRCA6HRte95sa_Hz9OOA6PJsHs7gaNv8_rz4dIxBOlxCijqlsWjFWN4kHbNnLuqhHsJ8yGl2S4RnCwnRU-L-5bL2zSXSPrZV78vdUbuDe7mJ_5s_fnH1_C_dTZPmpzALvrmw2-Ih6zDq-76fsD9Jbr1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Game+Theory-Based+Optimal+Cooperative+Path+Planning+for+Multiple+UAVs&rft.jtitle=IEEE+access&rft.au=Van+Nguyen%2C+Lanh&rft.au=Phung%2C+Manh+Duong&rft.au=Ha%2C+Quang+Phuc&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=108034&rft.epage=108045&rft_id=info:doi/10.1109%2FACCESS.2022.3213035&rft.externalDocID=9913973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |