A comparison of cepstral features in the detection of pathological voices by varying the input and filterbank of the cepstrum computation
Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learn...
Saved in:
Published in | IEEE access Vol. 9; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learning -based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological voice, the former approach is still a valid choice. In the existing detection systems based on the traditional pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto standard feature set. In this study, automatic voice pathology detection is investigated by comparing the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks are compared. Experiments were conducted separately using six databases consisting of voices produced by speakers suffering from one of four disorders (dysphonia, Parkinson's disease, laryngitis, or heart failure) and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from the voice signal. Furthermore, this combination provided comparable or better performance than four existing cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions. |
---|---|
AbstractList | Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learning -based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological voice, the former approach is still a valid choice. In the existing detection systems based on the traditional pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto standard feature set. In this study, automatic voice pathology detection is investigated by comparing the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks are compared. Experiments were conducted separately using six databases consisting of voices produced by speakers suffering from one of four disorders (dysphonia, Parkinson’s disease, laryngitis, or heart failure) and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from the voice signal. Furthermore, this combination provided comparable or better performance than four existing cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions. |
Author | Reddy, Mittapalle Kiran Alku, Paavo |
Author_xml | – sequence: 1 givenname: Mittapalle Kiran surname: Reddy fullname: Reddy, Mittapalle Kiran organization: Department of Signal Processing and Acoustics, Aalto University, FI-00076 Espoo, Finland. (e-mail: kiran.reddy889@gmail.com) – sequence: 2 givenname: Paavo surname: Alku fullname: Alku, Paavo organization: Department of Signal Processing and Acoustics, Aalto University, FI-00076 Espoo, Finland |
BookMark | eNpNkc1u3CAUha0qlZomeYJskLqeKT_GwHI0SttIkbpIs0aALxOmHnAxjpRH6FsXj6OobECX75x7pPO5uYgpQtPcErwlBKuvu_3-7vFxSzElW0aI6Dr-obmkpFMbxll38d_7U3MzTUdcj6wjLi6bvzvk0mk0OUwpouSRg3Eq2QzIgylzhgmFiMozoB4KuBJWajTlOQ3pEFwlX1JwlbOv6MXk1xAPZz7EcS7IxB75MBTI1sTfi3T5W5fMp_PuuZjF9rr56M0wwc3bfdU8fbv7tf-xefj5_X6_e9i4FsuyoTU7o33rFWWYtyCo5JQ7IkBIsK0FwgXFqvPWS9U7JSw1LWuFZF4IgXt21dyvvn0yRz3mcKqhdTJBnwcpH7TJJbgBtLJccsO9FbRtOxBKtlj4zjpgigpvq9eX1WvM6c8MU9HHNOdY42vKJSYYU6UqxVbK5TRNGfz7VoL1UqFeK9RLhfqtwqq6XVUBAN4VinNZjdk_2j6aZA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_jvoice_2022_10_016 crossref_primary_10_1121_10_0026241 crossref_primary_10_3390_diagnostics12112758 crossref_primary_10_3390_app13063571 crossref_primary_10_1109_LSP_2022_3199669 crossref_primary_10_3390_s23115196 crossref_primary_10_1016_j_eswa_2023_119650 crossref_primary_10_1007_s00034_023_02551_8 crossref_primary_10_1016_j_eswa_2023_119651 crossref_primary_10_1109_ACCESS_2021_3135011 crossref_primary_10_1016_j_bspc_2023_105624 crossref_primary_10_1109_LSP_2023_3298532 crossref_primary_10_1007_s10772_024_10085_w crossref_primary_10_1109_OJSP_2023_3242862 crossref_primary_10_1142_S0219467824500359 crossref_primary_10_1016_j_csl_2023_101552 crossref_primary_10_1016_j_specom_2024_103040 |
Cites_doi | 10.1080/02699200701830869 10.1038/s41598-019-55271-y 10.1109/ACCESS.2020.3046767 10.1121/1.424266 10.1371/journal.pone.0185613 10.1109/ICASSP.2009.4960656 10.1007/s12046-011-0041-5 10.1109/ACCESS.2020.2986171 10.1109/TBME.2010.2089052 10.1109/TBME.2003.820386 10.4304/jcp.7.1.161-168 10.1109/JBHI.2016.2633509 10.1016/j.specom.2020.02.006 10.1016/j.bspc.2018.09.003 10.1016/j.bbe.2020.12.009 10.1109/10.108123 10.1016/j.bbe.2016.01.004 10.21437/Interspeech.2016-129 10.1109/10.709563 10.1109/TASSP.1980.1163420 10.1159/000089611 10.1016/j.specom.2008.09.005 10.1109/ACCESS.2020.2967224 10.21437/Interspeech.2019-2903 10.1016/j.jvoice.2018.07.014 10.1109/10.817624 10.21437/Interspeech.2016-1062 10.1016/j.bspc.2021.102418 10.1109/TASSP.1980.1163453 10.1016/j.jvoice.2015.06.010 10.1121/1.4812756 10.1016/j.compeleceng.2016.08.021 10.1109/JSTSP.2019.2957988 10.1109/ICASSP.2019.8682391 10.1109/TASLP.2013.2294585 10.1016/j.specom.2018.12.002 10.1136/bmj.327.7414.514 10.1007/s00405-007-0467-x 10.1109/JBHI.2015.2464354 10.1016/j.csl.2021.101216 10.1109/TASLP.2017.2759002 10.1109/TAFFC.2015.2457417 10.1016/j.specom.2020.10.003 10.1016/j.jvoice.2010.04.009 10.1109/JBHI.2013.2245674 10.1109/JBHI.2015.2490087 10.1136/jnnp.41.4.361 10.1109/JBHI.2018.2866873 10.1109/JBHI.2018.2800741 10.1109/ASRU.2011.6163888 10.21437/Interspeech.2018-1351 10.1109/TBME.2006.871883 10.1109/ACCESS.2018.2856238 10.1109/10.880107 10.1121/1.5111059 10.1016/j.irbm.2019.11.004 10.1109/ACCESS.2020.2984925 10.1109/JBHI.2020.2978103 10.1109/IEMBS.2002.1134447 10.1016/j.specom.2019.04.003 10.1109/TASLP.2019.2906484 10.1109/JBHI.2015.2467375 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3117665 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_9b585a5fb72446e798407f6bce3927fb 10_1109_ACCESS_2021_3117665 9558801 |
Genre | orig-research |
GrantInformation_xml | – fundername: Academy of Finland grantid: 330139 funderid: 10.13039/501100002341 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-200832d4f923054e728525c17e78eb4be1572096fbf89dc97b2a434783f7770d3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:55 EDT 2024 Thu Oct 10 19:22:24 EDT 2024 Wed Sep 11 14:09:01 EDT 2024 Wed Jun 26 19:29:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-200832d4f923054e728525c17e78eb4be1572096fbf89dc97b2a434783f7770d3 |
ORCID | 0000-0002-7987-1735 0000-0002-8173-9418 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9558801 |
PQID | 2580100299 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3117665 ieee_primary_9558801 proquest_journals_2580100299 doaj_primary_oai_doaj_org_article_9b585a5fb72446e798407f6bce3927fb |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref59 ref15 ref58 keronen (ref52) 2009 ref14 ref55 ref11 ref10 ref17 ref16 ref19 van der maaten (ref68) 2008; 9 ref18 (ref56) 2010 ref51 ref50 ref46 ref45 eyben (ref41) 2010 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 hemmerling (ref33) 2016 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 orozco-arroyave (ref54) 2014 ref24 ref67 ref23 ref26 rosenbek (ref7) 1985 ref69 ref25 ref64 ref20 moro-velazquez (ref53) 2019; 9 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 reddy (ref57) 2021; 69 ref60 ref62 ref61 |
References_xml | – ident: ref55 doi: 10.1080/02699200701830869 – volume: 9 start-page: 1 year: 2019 ident: ref53 article-title: Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's disease publication-title: Sci Rep doi: 10.1038/s41598-019-55271-y contributor: fullname: moro-velazquez – ident: ref24 doi: 10.1109/ACCESS.2020.3046767 – ident: ref4 doi: 10.1121/1.424266 – ident: ref62 doi: 10.1371/journal.pone.0185613 – ident: ref19 doi: 10.1109/ICASSP.2009.4960656 – ident: ref46 doi: 10.1007/s12046-011-0041-5 – ident: ref15 doi: 10.1109/ACCESS.2020.2986171 – ident: ref29 doi: 10.1109/TBME.2010.2089052 – ident: ref28 doi: 10.1109/TBME.2003.820386 – ident: ref61 doi: 10.4304/jcp.7.1.161-168 – ident: ref1 doi: 10.1109/JBHI.2016.2633509 – ident: ref40 doi: 10.1016/j.specom.2020.02.006 – ident: ref44 doi: 10.1016/j.bspc.2018.09.003 – ident: ref64 doi: 10.1016/j.bbe.2020.12.009 – ident: ref26 doi: 10.1109/10.108123 – ident: ref58 doi: 10.1016/j.bbe.2016.01.004 – ident: ref43 doi: 10.21437/Interspeech.2016-129 – ident: ref23 doi: 10.1109/10.709563 – ident: ref48 doi: 10.1109/TASSP.1980.1163420 – ident: ref60 doi: 10.1159/000089611 – ident: ref20 doi: 10.1016/j.specom.2008.09.005 – ident: ref13 doi: 10.1109/ACCESS.2020.2967224 – ident: ref34 doi: 10.21437/Interspeech.2019-2903 – ident: ref67 doi: 10.1016/j.jvoice.2018.07.014 – ident: ref27 doi: 10.1109/10.817624 – start-page: 97 year: 1985 ident: ref7 article-title: The dysarthrias: Description, diagnosis, and treatment publication-title: Clinical management of neurogenic communicative disorders contributor: fullname: rosenbek – start-page: 221 year: 2009 ident: ref52 article-title: Noise robust LVCSR feature extraction based on stabilized weighted linear prediction publication-title: Proc 13th Int Conf Speech Comput contributor: fullname: keronen – start-page: 1190 year: 2016 ident: ref33 article-title: Automatic detection of Parkinson's disease based on modulated vowels publication-title: Proc INTERSPEECH doi: 10.21437/Interspeech.2016-1062 contributor: fullname: hemmerling – ident: ref66 doi: 10.1016/j.bspc.2021.102418 – ident: ref6 doi: 10.1109/TASSP.1980.1163453 – ident: ref32 doi: 10.1016/j.jvoice.2015.06.010 – ident: ref49 doi: 10.1121/1.4812756 – ident: ref59 doi: 10.1016/j.compeleceng.2016.08.021 – ident: ref16 doi: 10.1109/JSTSP.2019.2957988 – ident: ref36 doi: 10.1109/ICASSP.2019.8682391 – start-page: 1459 year: 2010 ident: ref41 article-title: openSMILE-The Munich versatile and fast open-source audio feature extractor publication-title: Proc ACM Multimedia contributor: fullname: eyben – ident: ref47 doi: 10.1109/TASLP.2013.2294585 – ident: ref69 doi: 10.1016/j.specom.2018.12.002 – ident: ref14 doi: 10.1136/bmj.327.7414.514 – ident: ref51 doi: 10.1007/s00405-007-0467-x – ident: ref10 doi: 10.1109/JBHI.2015.2464354 – volume: 69 year: 2021 ident: ref57 article-title: The automatic detection of heart failure using speech signals publication-title: Comput Speech Lang contributor: fullname: reddy – ident: ref65 doi: 10.1016/j.csl.2021.101216 – start-page: 342 year: 2014 ident: ref54 article-title: New Spanish speech corpus database for the analysis of people suffering from Parkinson's disease publication-title: Proc Lang Resour Eval Conf (LREC) contributor: fullname: orozco-arroyave – ident: ref17 doi: 10.1109/TASLP.2017.2759002 – ident: ref42 doi: 10.1109/TAFFC.2015.2457417 – ident: ref39 doi: 10.1016/j.specom.2020.10.003 – ident: ref21 doi: 10.1016/j.jvoice.2010.04.009 – ident: ref12 doi: 10.1109/JBHI.2013.2245674 – ident: ref3 doi: 10.1109/JBHI.2015.2490087 – volume: 9 start-page: 2579 year: 2008 ident: ref68 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res contributor: fullname: van der maaten – ident: ref8 doi: 10.1136/jnnp.41.4.361 – ident: ref11 doi: 10.1109/JBHI.2018.2866873 – ident: ref45 doi: 10.1109/JBHI.2018.2800741 – ident: ref38 doi: 10.1109/ASRU.2011.6163888 – ident: ref35 doi: 10.21437/Interspeech.2018-1351 – ident: ref50 doi: 10.1109/TBME.2006.871883 – ident: ref37 doi: 10.1109/ACCESS.2018.2856238 – ident: ref25 doi: 10.1109/10.880107 – ident: ref30 doi: 10.1121/1.5111059 – ident: ref63 doi: 10.1016/j.irbm.2019.11.004 – ident: ref5 doi: 10.1109/ACCESS.2020.2984925 – ident: ref9 doi: 10.1109/JBHI.2020.2978103 – ident: ref18 doi: 10.1109/IEMBS.2002.1134447 – ident: ref22 doi: 10.1016/j.specom.2019.04.003 – ident: ref31 doi: 10.1109/TASLP.2019.2906484 – year: 2010 ident: ref56 publication-title: Saarbrücken Voice Database – ident: ref2 doi: 10.1109/JBHI.2015.2467375 |
SSID | ssj0000816957 |
Score | 2.3620062 |
Snippet | Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Cepstral analysis cepstral coefficients Computation Feature extraction glottal inverse filtering Machine learning Mel frequency cepstral coefficient Parkinson's disease Pathology Pipelines Signal to noise ratio support vector machine Support vector machines Time-domain analysis Vocal tract Voice disorders Voice recognition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhCQR4YiZov5-KxBKrCgBho1c2yY1uqEGkF6cBP4F9zdtKoiIGFMbETx37nu3e2c0fIdWaNlibRAVjDg7QMTaDiSAc6i7VkICNQ_pTvUzaZpo9zNt9K9eXOhDXhgZuBG3KFhFYyqwANUWaAo0cCNlOlQcsOVnntG_ItZ8rr4DzKOIM2zBCWD0dFgT1ChzCO0E91YRHZD1PkI_a3KVZ-6WVvbMaH5KBliXTUfN0R2THVMdnfih3YI18jWnQ5BOnS0sKs_LIFdaxujV40XVQU6R29M7U_b-VrPcu603d0tnRqgqpPOpPv7n8nX_-hWq1rKitNxwu3l65k9eoedWVNI-s32mSD8LCekOn4_qWYBG1ehaBMw7x2EwPnsU4tkjtkbAbinMWsjMBAblSqTMQgRtfGKptzXXJQsUyTFPLEAkCok1OyWy0rc0ZoZkum8pyHUqIq4Eg-mA5lghdGW56pPrnZDLFYNeEzhHc7Qi4aRIRDRLSI9Mmtg6Gr6mJf-xsoEaKVCPGXRPRJz4HYvYQzhkoq6pPBBlTRztMPETMscTuT_Pw_mr4ge647zRLNgOwiIOYSSUutrrx8fgPx2-f1 priority: 102 providerName: Directory of Open Access Journals |
Title | A comparison of cepstral features in the detection of pathological voices by varying the input and filterbank of the cepstrum computation |
URI | https://ieeexplore.ieee.org/document/9558801 https://www.proquest.com/docview/2580100299 https://doaj.org/article/9b585a5fb72446e798407f6bce3927fb |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRBbSuUDx2ablzPxcVlRVUhwolJvlh9jaVWRXdGkUvkH_OvOONmI14FbEtuxkxmPvxmPZ4R430QMFquQQUSd1T7HzJVFyEJTBqvAFuCSl--X5vKq_nStrg_E2XwWBhGT8xku-TLt5YetH9hUdq6VInYjXecRaD2e1ZrtKZxAQiuYAgsVuT5frdf0DaQClgVpphwIUf22-KQY_VNSlb8kcVpeLp6Jz_uBjV4lN8uhd0v_44-Yjf878ufi6YQz5WpkjBfiALuX4skv0QePxM-V9HMWQrmN0uMuGT5kxBTu81ZuOkkAUQbsk8dWqsU5jPcSU95tWdBIdy_v7Hc-MZXqb7rd0EvbBRk3vBvvbHfDTbls7GT4lvoeRkeAV-Lq4uPX9WU2ZWbIfJ23PU8tkgShjgQPCfMhlK0qlS8AoUVXOywUlKQcRRdbHbwGV9q6qqGtIgDkoXotDrtth2-EbKJXrm11bi0JE03wRYXcVnSDIerGLcTZnmRmNwbgMElxybUZKWyYwmai8EJ8YLLOVTl6dnpA5DDTZDTakZJkVXRA4KZB0KTlQmycR0KLEKnPIybh_JKJegtxsmcSM830W1MqKuG9TX3871ZvxWMe4Gi2ORGH9IvxHQGZ3p0mA8Bp4uMHX9Xz6Q |
link.rule.ids | 315,783,787,799,867,2109,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQPdAe-oKKbSn1oUey5OU4Pm5XRdsWOIHEzfJjLK0Q2RUkSO0_6L_ujJONaMuBWxLbsZMZj78Zj2cY-1wF8AYKn8gAKildConNM5_4KvdGSJNJG718z6vFZfn9SlxtsaPxLAwAROczmNJl3Mv3K9eRqexYCYHshrrOM8TVddWf1hotKpRCQgk5hBbKUnU8m8_xK1AJzDPUTSkUovhr-YlR-oe0Kv_J4rjAnLxiZ5uh9X4l19OutVP365-ojU8d-2v2ckCafNazxhu2Bc1b9uJB_MFd9nvG3ZiHkK8Cd7COpg8eIAb8vOPLhiNE5B7a6LMVa1EW443M5PcrEjXc_uT35pbOTMX6y2bdtdw0nocl7cdb01xTUyrrO-luYt9d7wqwxy5Pvl7MF8mQmyFxZVq3NLlQFvgyIEBE1Acyr0UuXCZB1mBLC5mQOapHwYZaeaekzU1ZlLIugpQy9cU7tt2sGthnvApO2LpWqTEoThQCGOFTU-AN-KAqO2FHG5LpdR-CQ0fVJVW6p7AmCuuBwhP2hcg6VqX42fEBkkMP01Eri2qSEcFKhDcVSIV6rgyVdYB4UQbsc5dIOL5koN6EHWyYRA9z_U7nAktod1O9f7zVJ7azuDg71affzn98YM9psL0R54Bt4--GjwhrWnsYufkPfwj2Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Cepstral+Features+in+the+Detection+of+Pathological+Voices+by+Varying+the+Input+and+Filterbank+of+the+Cepstrum+Computation&rft.jtitle=IEEE+access&rft.au=Reddy%2C+Mittapalle+Kiran&rft.au=Alku%2C+Paavo&rft.date=2021-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=135953&rft.epage=135963&rft_id=info:doi/10.1109%2FACCESS.2021.3117665&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3117665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |