A comparison of cepstral features in the detection of pathological voices by varying the input and filterbank of the cepstrum computation

Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learn...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; p. 1
Main Authors Reddy, Mittapalle Kiran, Alku, Paavo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learning -based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological voice, the former approach is still a valid choice. In the existing detection systems based on the traditional pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto standard feature set. In this study, automatic voice pathology detection is investigated by comparing the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks are compared. Experiments were conducted separately using six databases consisting of voices produced by speakers suffering from one of four disorders (dysphonia, Parkinson's disease, laryngitis, or heart failure) and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from the voice signal. Furthermore, this combination provided comparable or better performance than four existing cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions.
AbstractList Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learning -based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological voice, the former approach is still a valid choice. In the existing detection systems based on the traditional pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto standard feature set. In this study, automatic voice pathology detection is investigated by comparing the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks are compared. Experiments were conducted separately using six databases consisting of voices produced by speakers suffering from one of four disorders (dysphonia, Parkinson’s disease, laryngitis, or heart failure) and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from the voice signal. Furthermore, this combination provided comparable or better performance than four existing cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions.
Author Reddy, Mittapalle Kiran
Alku, Paavo
Author_xml – sequence: 1
  givenname: Mittapalle Kiran
  surname: Reddy
  fullname: Reddy, Mittapalle Kiran
  organization: Department of Signal Processing and Acoustics, Aalto University, FI-00076 Espoo, Finland. (e-mail: kiran.reddy889@gmail.com)
– sequence: 2
  givenname: Paavo
  surname: Alku
  fullname: Alku, Paavo
  organization: Department of Signal Processing and Acoustics, Aalto University, FI-00076 Espoo, Finland
BookMark eNpNkc1u3CAUha0qlZomeYJskLqeKT_GwHI0SttIkbpIs0aALxOmHnAxjpRH6FsXj6OobECX75x7pPO5uYgpQtPcErwlBKuvu_3-7vFxSzElW0aI6Dr-obmkpFMbxll38d_7U3MzTUdcj6wjLi6bvzvk0mk0OUwpouSRg3Eq2QzIgylzhgmFiMozoB4KuBJWajTlOQ3pEFwlX1JwlbOv6MXk1xAPZz7EcS7IxB75MBTI1sTfi3T5W5fMp_PuuZjF9rr56M0wwc3bfdU8fbv7tf-xefj5_X6_e9i4FsuyoTU7o33rFWWYtyCo5JQ7IkBIsK0FwgXFqvPWS9U7JSw1LWuFZF4IgXt21dyvvn0yRz3mcKqhdTJBnwcpH7TJJbgBtLJccsO9FbRtOxBKtlj4zjpgigpvq9eX1WvM6c8MU9HHNOdY42vKJSYYU6UqxVbK5TRNGfz7VoL1UqFeK9RLhfqtwqq6XVUBAN4VinNZjdk_2j6aZA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_jvoice_2022_10_016
crossref_primary_10_1121_10_0026241
crossref_primary_10_3390_diagnostics12112758
crossref_primary_10_3390_app13063571
crossref_primary_10_1109_LSP_2022_3199669
crossref_primary_10_3390_s23115196
crossref_primary_10_1016_j_eswa_2023_119650
crossref_primary_10_1007_s00034_023_02551_8
crossref_primary_10_1016_j_eswa_2023_119651
crossref_primary_10_1109_ACCESS_2021_3135011
crossref_primary_10_1016_j_bspc_2023_105624
crossref_primary_10_1109_LSP_2023_3298532
crossref_primary_10_1007_s10772_024_10085_w
crossref_primary_10_1109_OJSP_2023_3242862
crossref_primary_10_1142_S0219467824500359
crossref_primary_10_1016_j_csl_2023_101552
crossref_primary_10_1016_j_specom_2024_103040
Cites_doi 10.1080/02699200701830869
10.1038/s41598-019-55271-y
10.1109/ACCESS.2020.3046767
10.1121/1.424266
10.1371/journal.pone.0185613
10.1109/ICASSP.2009.4960656
10.1007/s12046-011-0041-5
10.1109/ACCESS.2020.2986171
10.1109/TBME.2010.2089052
10.1109/TBME.2003.820386
10.4304/jcp.7.1.161-168
10.1109/JBHI.2016.2633509
10.1016/j.specom.2020.02.006
10.1016/j.bspc.2018.09.003
10.1016/j.bbe.2020.12.009
10.1109/10.108123
10.1016/j.bbe.2016.01.004
10.21437/Interspeech.2016-129
10.1109/10.709563
10.1109/TASSP.1980.1163420
10.1159/000089611
10.1016/j.specom.2008.09.005
10.1109/ACCESS.2020.2967224
10.21437/Interspeech.2019-2903
10.1016/j.jvoice.2018.07.014
10.1109/10.817624
10.21437/Interspeech.2016-1062
10.1016/j.bspc.2021.102418
10.1109/TASSP.1980.1163453
10.1016/j.jvoice.2015.06.010
10.1121/1.4812756
10.1016/j.compeleceng.2016.08.021
10.1109/JSTSP.2019.2957988
10.1109/ICASSP.2019.8682391
10.1109/TASLP.2013.2294585
10.1016/j.specom.2018.12.002
10.1136/bmj.327.7414.514
10.1007/s00405-007-0467-x
10.1109/JBHI.2015.2464354
10.1016/j.csl.2021.101216
10.1109/TASLP.2017.2759002
10.1109/TAFFC.2015.2457417
10.1016/j.specom.2020.10.003
10.1016/j.jvoice.2010.04.009
10.1109/JBHI.2013.2245674
10.1109/JBHI.2015.2490087
10.1136/jnnp.41.4.361
10.1109/JBHI.2018.2866873
10.1109/JBHI.2018.2800741
10.1109/ASRU.2011.6163888
10.21437/Interspeech.2018-1351
10.1109/TBME.2006.871883
10.1109/ACCESS.2018.2856238
10.1109/10.880107
10.1121/1.5111059
10.1016/j.irbm.2019.11.004
10.1109/ACCESS.2020.2984925
10.1109/JBHI.2020.2978103
10.1109/IEMBS.2002.1134447
10.1016/j.specom.2019.04.003
10.1109/TASLP.2019.2906484
10.1109/JBHI.2015.2467375
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3117665
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_9b585a5fb72446e798407f6bce3927fb
10_1109_ACCESS_2021_3117665
9558801
Genre orig-research
GrantInformation_xml – fundername: Academy of Finland
  grantid: 330139
  funderid: 10.13039/501100002341
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-200832d4f923054e728525c17e78eb4be1572096fbf89dc97b2a434783f7770d3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:14:55 EDT 2024
Thu Oct 10 19:22:24 EDT 2024
Wed Sep 11 14:09:01 EDT 2024
Wed Jun 26 19:29:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-200832d4f923054e728525c17e78eb4be1572096fbf89dc97b2a434783f7770d3
ORCID 0000-0002-7987-1735
0000-0002-8173-9418
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9558801
PQID 2580100299
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3117665
ieee_primary_9558801
proquest_journals_2580100299
doaj_primary_oai_doaj_org_article_9b585a5fb72446e798407f6bce3927fb
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref15
ref58
keronen (ref52) 2009
ref14
ref55
ref11
ref10
ref17
ref16
ref19
van der maaten (ref68) 2008; 9
ref18
(ref56) 2010
ref51
ref50
ref46
ref45
eyben (ref41) 2010
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
hemmerling (ref33) 2016
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
orozco-arroyave (ref54) 2014
ref24
ref67
ref23
ref26
rosenbek (ref7) 1985
ref69
ref25
ref64
ref20
moro-velazquez (ref53) 2019; 9
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
reddy (ref57) 2021; 69
ref60
ref62
ref61
References_xml – ident: ref55
  doi: 10.1080/02699200701830869
– volume: 9
  start-page: 1
  year: 2019
  ident: ref53
  article-title: Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55271-y
  contributor:
    fullname: moro-velazquez
– ident: ref24
  doi: 10.1109/ACCESS.2020.3046767
– ident: ref4
  doi: 10.1121/1.424266
– ident: ref62
  doi: 10.1371/journal.pone.0185613
– ident: ref19
  doi: 10.1109/ICASSP.2009.4960656
– ident: ref46
  doi: 10.1007/s12046-011-0041-5
– ident: ref15
  doi: 10.1109/ACCESS.2020.2986171
– ident: ref29
  doi: 10.1109/TBME.2010.2089052
– ident: ref28
  doi: 10.1109/TBME.2003.820386
– ident: ref61
  doi: 10.4304/jcp.7.1.161-168
– ident: ref1
  doi: 10.1109/JBHI.2016.2633509
– ident: ref40
  doi: 10.1016/j.specom.2020.02.006
– ident: ref44
  doi: 10.1016/j.bspc.2018.09.003
– ident: ref64
  doi: 10.1016/j.bbe.2020.12.009
– ident: ref26
  doi: 10.1109/10.108123
– ident: ref58
  doi: 10.1016/j.bbe.2016.01.004
– ident: ref43
  doi: 10.21437/Interspeech.2016-129
– ident: ref23
  doi: 10.1109/10.709563
– ident: ref48
  doi: 10.1109/TASSP.1980.1163420
– ident: ref60
  doi: 10.1159/000089611
– ident: ref20
  doi: 10.1016/j.specom.2008.09.005
– ident: ref13
  doi: 10.1109/ACCESS.2020.2967224
– ident: ref34
  doi: 10.21437/Interspeech.2019-2903
– ident: ref67
  doi: 10.1016/j.jvoice.2018.07.014
– ident: ref27
  doi: 10.1109/10.817624
– start-page: 97
  year: 1985
  ident: ref7
  article-title: The dysarthrias: Description, diagnosis, and treatment
  publication-title: Clinical management of neurogenic communicative disorders
  contributor:
    fullname: rosenbek
– start-page: 221
  year: 2009
  ident: ref52
  article-title: Noise robust LVCSR feature extraction based on stabilized weighted linear prediction
  publication-title: Proc 13th Int Conf Speech Comput
  contributor:
    fullname: keronen
– start-page: 1190
  year: 2016
  ident: ref33
  article-title: Automatic detection of Parkinson's disease based on modulated vowels
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2016-1062
  contributor:
    fullname: hemmerling
– ident: ref66
  doi: 10.1016/j.bspc.2021.102418
– ident: ref6
  doi: 10.1109/TASSP.1980.1163453
– ident: ref32
  doi: 10.1016/j.jvoice.2015.06.010
– ident: ref49
  doi: 10.1121/1.4812756
– ident: ref59
  doi: 10.1016/j.compeleceng.2016.08.021
– ident: ref16
  doi: 10.1109/JSTSP.2019.2957988
– ident: ref36
  doi: 10.1109/ICASSP.2019.8682391
– start-page: 1459
  year: 2010
  ident: ref41
  article-title: openSMILE-The Munich versatile and fast open-source audio feature extractor
  publication-title: Proc ACM Multimedia
  contributor:
    fullname: eyben
– ident: ref47
  doi: 10.1109/TASLP.2013.2294585
– ident: ref69
  doi: 10.1016/j.specom.2018.12.002
– ident: ref14
  doi: 10.1136/bmj.327.7414.514
– ident: ref51
  doi: 10.1007/s00405-007-0467-x
– ident: ref10
  doi: 10.1109/JBHI.2015.2464354
– volume: 69
  year: 2021
  ident: ref57
  article-title: The automatic detection of heart failure using speech signals
  publication-title: Comput Speech Lang
  contributor:
    fullname: reddy
– ident: ref65
  doi: 10.1016/j.csl.2021.101216
– start-page: 342
  year: 2014
  ident: ref54
  article-title: New Spanish speech corpus database for the analysis of people suffering from Parkinson's disease
  publication-title: Proc Lang Resour Eval Conf (LREC)
  contributor:
    fullname: orozco-arroyave
– ident: ref17
  doi: 10.1109/TASLP.2017.2759002
– ident: ref42
  doi: 10.1109/TAFFC.2015.2457417
– ident: ref39
  doi: 10.1016/j.specom.2020.10.003
– ident: ref21
  doi: 10.1016/j.jvoice.2010.04.009
– ident: ref12
  doi: 10.1109/JBHI.2013.2245674
– ident: ref3
  doi: 10.1109/JBHI.2015.2490087
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref68
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
  contributor:
    fullname: van der maaten
– ident: ref8
  doi: 10.1136/jnnp.41.4.361
– ident: ref11
  doi: 10.1109/JBHI.2018.2866873
– ident: ref45
  doi: 10.1109/JBHI.2018.2800741
– ident: ref38
  doi: 10.1109/ASRU.2011.6163888
– ident: ref35
  doi: 10.21437/Interspeech.2018-1351
– ident: ref50
  doi: 10.1109/TBME.2006.871883
– ident: ref37
  doi: 10.1109/ACCESS.2018.2856238
– ident: ref25
  doi: 10.1109/10.880107
– ident: ref30
  doi: 10.1121/1.5111059
– ident: ref63
  doi: 10.1016/j.irbm.2019.11.004
– ident: ref5
  doi: 10.1109/ACCESS.2020.2984925
– ident: ref9
  doi: 10.1109/JBHI.2020.2978103
– ident: ref18
  doi: 10.1109/IEMBS.2002.1134447
– ident: ref22
  doi: 10.1016/j.specom.2019.04.003
– ident: ref31
  doi: 10.1109/TASLP.2019.2906484
– year: 2010
  ident: ref56
  publication-title: Saarbrücken Voice Database
– ident: ref2
  doi: 10.1109/JBHI.2015.2467375
SSID ssj0000816957
Score 2.3620062
Snippet Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Cepstral analysis
cepstral coefficients
Computation
Feature extraction
glottal inverse filtering
Machine learning
Mel frequency cepstral coefficient
Parkinson's disease
Pathology
Pipelines
Signal to noise ratio
support vector machine
Support vector machines
Time-domain analysis
Vocal tract
Voice disorders
Voice recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhCQR4YiZov5-KxBKrCgBho1c2yY1uqEGkF6cBP4F9zdtKoiIGFMbETx37nu3e2c0fIdWaNlibRAVjDg7QMTaDiSAc6i7VkICNQ_pTvUzaZpo9zNt9K9eXOhDXhgZuBG3KFhFYyqwANUWaAo0cCNlOlQcsOVnntG_ItZ8rr4DzKOIM2zBCWD0dFgT1ChzCO0E91YRHZD1PkI_a3KVZ-6WVvbMaH5KBliXTUfN0R2THVMdnfih3YI18jWnQ5BOnS0sKs_LIFdaxujV40XVQU6R29M7U_b-VrPcu603d0tnRqgqpPOpPv7n8nX_-hWq1rKitNxwu3l65k9eoedWVNI-s32mSD8LCekOn4_qWYBG1ehaBMw7x2EwPnsU4tkjtkbAbinMWsjMBAblSqTMQgRtfGKptzXXJQsUyTFPLEAkCok1OyWy0rc0ZoZkum8pyHUqIq4Eg-mA5lghdGW56pPrnZDLFYNeEzhHc7Qi4aRIRDRLSI9Mmtg6Gr6mJf-xsoEaKVCPGXRPRJz4HYvYQzhkoq6pPBBlTRztMPETMscTuT_Pw_mr4ge647zRLNgOwiIOYSSUutrrx8fgPx2-f1
  priority: 102
  providerName: Directory of Open Access Journals
Title A comparison of cepstral features in the detection of pathological voices by varying the input and filterbank of the cepstrum computation
URI https://ieeexplore.ieee.org/document/9558801
https://www.proquest.com/docview/2580100299
https://doaj.org/article/9b585a5fb72446e798407f6bce3927fb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRBbSuUDx2ablzPxcVlRVUhwolJvlh9jaVWRXdGkUvkH_OvOONmI14FbEtuxkxmPvxmPZ4R430QMFquQQUSd1T7HzJVFyEJTBqvAFuCSl--X5vKq_nStrg_E2XwWBhGT8xku-TLt5YetH9hUdq6VInYjXecRaD2e1ZrtKZxAQiuYAgsVuT5frdf0DaQClgVpphwIUf22-KQY_VNSlb8kcVpeLp6Jz_uBjV4lN8uhd0v_44-Yjf878ufi6YQz5WpkjBfiALuX4skv0QePxM-V9HMWQrmN0uMuGT5kxBTu81ZuOkkAUQbsk8dWqsU5jPcSU95tWdBIdy_v7Hc-MZXqb7rd0EvbBRk3vBvvbHfDTbls7GT4lvoeRkeAV-Lq4uPX9WU2ZWbIfJ23PU8tkgShjgQPCfMhlK0qlS8AoUVXOywUlKQcRRdbHbwGV9q6qqGtIgDkoXotDrtth2-EbKJXrm11bi0JE03wRYXcVnSDIerGLcTZnmRmNwbgMElxybUZKWyYwmai8EJ8YLLOVTl6dnpA5DDTZDTakZJkVXRA4KZB0KTlQmycR0KLEKnPIybh_JKJegtxsmcSM830W1MqKuG9TX3871ZvxWMe4Gi2ORGH9IvxHQGZ3p0mA8Bp4uMHX9Xz6Q
link.rule.ids 315,783,787,799,867,2109,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQPdAe-oKKbSn1oUey5OU4Pm5XRdsWOIHEzfJjLK0Q2RUkSO0_6L_ujJONaMuBWxLbsZMZj78Zj2cY-1wF8AYKn8gAKildConNM5_4KvdGSJNJG718z6vFZfn9SlxtsaPxLAwAROczmNJl3Mv3K9eRqexYCYHshrrOM8TVddWf1hotKpRCQgk5hBbKUnU8m8_xK1AJzDPUTSkUovhr-YlR-oe0Kv_J4rjAnLxiZ5uh9X4l19OutVP365-ojU8d-2v2ckCafNazxhu2Bc1b9uJB_MFd9nvG3ZiHkK8Cd7COpg8eIAb8vOPLhiNE5B7a6LMVa1EW443M5PcrEjXc_uT35pbOTMX6y2bdtdw0nocl7cdb01xTUyrrO-luYt9d7wqwxy5Pvl7MF8mQmyFxZVq3NLlQFvgyIEBE1Acyr0UuXCZB1mBLC5mQOapHwYZaeaekzU1ZlLIugpQy9cU7tt2sGthnvApO2LpWqTEoThQCGOFTU-AN-KAqO2FHG5LpdR-CQ0fVJVW6p7AmCuuBwhP2hcg6VqX42fEBkkMP01Eri2qSEcFKhDcVSIV6rgyVdYB4UQbsc5dIOL5koN6EHWyYRA9z_U7nAktod1O9f7zVJ7azuDg71affzn98YM9psL0R54Bt4--GjwhrWnsYufkPfwj2Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Cepstral+Features+in+the+Detection+of+Pathological+Voices+by+Varying+the+Input+and+Filterbank+of+the+Cepstrum+Computation&rft.jtitle=IEEE+access&rft.au=Reddy%2C+Mittapalle+Kiran&rft.au=Alku%2C+Paavo&rft.date=2021-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=135953&rft.epage=135963&rft_id=info:doi/10.1109%2FACCESS.2021.3117665&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3117665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon