The crop yield gap between organic and conventional agriculture

► We analyzed 362 published organic–conventional comparative crop yields. ► The organic yield gap is 20%, but differs somewhat between crops and regions. ► We found a weak indication of an increasing yield gap as conventional yields increase. ► We hypothesize that when upscaling to farm/regional lev...

Full description

Saved in:
Bibliographic Details
Published inAgricultural systems Vol. 108; pp. 1 - 9
Main Authors de Ponti, Tomek, Rijk, Bert, van Ittersum, Martin K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We analyzed 362 published organic–conventional comparative crop yields. ► The organic yield gap is 20%, but differs somewhat between crops and regions. ► We found a weak indication of an increasing yield gap as conventional yields increase. ► We hypothesize that when upscaling to farm/regional levels the yield gap will be larger. ► In that context, research is needed at farm and regional level and on nutrient availability. A key issue in the debate on the contribution of organic agriculture to the future of world agriculture is whether organic agriculture can produce sufficient food to feed the world. Comparisons of organic and conventional yields play a central role in this debate. We therefore compiled and analyzed a meta-dataset of 362 published organic–conventional comparative crop yields. Our results show that organic yields of individual crops are on average 80% of conventional yields, but variation is substantial (standard deviation 21%). In our dataset, the organic yield gap significantly differed between crop groups and regions. The analysis gave some support to our hypothesis that the organic–conventional yield gap increases as conventional yields increase, but this relationship was only rather weak. The rationale behind this hypothesis is that when conventional yields are high and relatively close to the potential or water-limited level, nutrient stress must, as per definition of the potential or water-limited yield levels, be low and pests and diseases well controlled, which are conditions more difficult to attain in organic agriculture. We discuss our findings in the context of the literature on this subject and address the issue of upscaling our results to higher system levels. Our analysis was at field and crop level. We hypothesize that due to challenges in the maintenance of nutrient availability in organic systems at crop rotation, farm and regional level, the average yield gap between conventional and organic systems may be larger than 20% at higher system levels. This relates in particular to the role of legumes in the rotation and the farming system, and to the availability of (organic) manure at the farm and regional levels. Future research should therefore focus on assessing the relative performance of both types of agriculture at higher system levels, i.e. the farm, regional and global system levels, and should in that context pay particular attention to nutrient availability in both organic and conventional agriculture.
AbstractList A key issue in the debate on the contribution of organic agriculture to the future of world agriculture is whether organic agriculture can produce sufficient food to feed the world. Comparisons of organic and conventional yields play a central role in this debate. We therefore compiled and analyzed a meta-dataset of 362 published organic–conventional comparative crop yields. Our results show that organic yields of individual crops are on average 80% of conventional yields, but variation is substantial (standard deviation 21%). In our dataset, the organic yield gap significantly differed between crop groups and regions. The analysis gave some support to our hypothesis that the organic–conventional yield gap increases as conventional yields increase, but this relationship was only rather weak. The rationale behind this hypothesis is that when conventional yields are high and relatively close to the potential or water-limited level, nutrient stress must, as per definition of the potential or water-limited yield levels, be low and pests and diseases well controlled, which are conditions more difficult to attain in organic agriculture. We discuss our findings in the context of the literature on this subject and address the issue of upscaling our results to higher system levels. Our analysis was at field and crop level. We hypothesize that due to challenges in the maintenance of nutrient availability in organic systems at crop rotation, farm and regional level, the average yield gap between conventional and organic systems may be larger than 20% at higher system levels. This relates in particular to the role of legumes in the rotation and the farming system, and to the availability of (organic) manure at the farm and regional levels. Future research should therefore focus on assessing the relative performance of both types of agriculture at higher system levels, i.e. the farm, regional and global system levels, and should in that context pay particular attention to nutrient availability in both organic and conventional agriculture.
► We analyzed 362 published organic–conventional comparative crop yields. ► The organic yield gap is 20%, but differs somewhat between crops and regions. ► We found a weak indication of an increasing yield gap as conventional yields increase. ► We hypothesize that when upscaling to farm/regional levels the yield gap will be larger. ► In that context, research is needed at farm and regional level and on nutrient availability. A key issue in the debate on the contribution of organic agriculture to the future of world agriculture is whether organic agriculture can produce sufficient food to feed the world. Comparisons of organic and conventional yields play a central role in this debate. We therefore compiled and analyzed a meta-dataset of 362 published organic–conventional comparative crop yields. Our results show that organic yields of individual crops are on average 80% of conventional yields, but variation is substantial (standard deviation 21%). In our dataset, the organic yield gap significantly differed between crop groups and regions. The analysis gave some support to our hypothesis that the organic–conventional yield gap increases as conventional yields increase, but this relationship was only rather weak. The rationale behind this hypothesis is that when conventional yields are high and relatively close to the potential or water-limited level, nutrient stress must, as per definition of the potential or water-limited yield levels, be low and pests and diseases well controlled, which are conditions more difficult to attain in organic agriculture. We discuss our findings in the context of the literature on this subject and address the issue of upscaling our results to higher system levels. Our analysis was at field and crop level. We hypothesize that due to challenges in the maintenance of nutrient availability in organic systems at crop rotation, farm and regional level, the average yield gap between conventional and organic systems may be larger than 20% at higher system levels. This relates in particular to the role of legumes in the rotation and the farming system, and to the availability of (organic) manure at the farm and regional levels. Future research should therefore focus on assessing the relative performance of both types of agriculture at higher system levels, i.e. the farm, regional and global system levels, and should in that context pay particular attention to nutrient availability in both organic and conventional agriculture.
A key issue in the debate on the contribution of organic agriculture to the future of world agriculture is whether organic agriculture can produce sufficient food to feed the world. Comparisons of organic and conventional yields play a central role in this debate. We therefore compiled and analyzed a meta-dataset of 362 published organic–conventional comparative crop yields. Our results show that organic yields of individual crops are on average 80% of conventional yields, but variation is substantial (standard deviation 21%). In our dataset, the organic yield gap significantly differed between crop groups and regions. The analysis gave some support to our hypothesis that the organic–conventional yield gap increases as conventional yields increase, but this relationship was only rather weak. The rationale behind this hypothesis is that when conventional yields are high and relatively close to the potential or water-limited level, nutrient stress must, as per definition of the potential or water-limited yield levels, be low and pests and diseases well controlled, which are conditions more difficult to attain in organic agriculture. We discuss our findings in the context of the literature on this subject and address the issue of upscaling our results to higher system levels. Our analysis was at field and crop level. We hypothesize that due to challenges in the maintenance of nutrient availability in organic systems at crop rotation, farm and regional level, the average yield gap between conventional and organic systems may be larger than 20% at higher system levels. This relates in particular to the role of legumes in the rotation and the farming system, and to the availability of (organic) manure at the farm and regional levels. Future research should therefore focus on assessing the relative performance of both types of agriculture at higher system levels, i.e. the farm, regional and global system levels, and should in that context pay particular attention to nutrient availability in both organic and conventional agriculture
Author de Ponti, Tomek
Rijk, Bert
van Ittersum, Martin K.
Author_xml – sequence: 1
  givenname: Tomek
  surname: de Ponti
  fullname: de Ponti, Tomek
  email: TomekdePonti@yahoo.com
– sequence: 2
  givenname: Bert
  surname: Rijk
  fullname: Rijk, Bert
  email: Hubertus.Rijk@wur.nl
– sequence: 3
  givenname: Martin K.
  surname: van Ittersum
  fullname: van Ittersum, Martin K.
  email: Martin.vanIttersum@wur.nl
BookMark eNp9kU1v1DAQQC1UJLaFP8CFHLkkeJwvByEhVAGtVIkDrcRtZDuT4FVqBzvpav89jsKJQy8zl_fG0vMlu3DeEWNvgRfAoflwLNQYz4XgAAWIgvPqBTuAbMtciKa9YAdecpnXAn69YpcxHjnnHXB5YJ_vf1Nmgp-zs6Wpz0Y1Z5qWE5HLfBiVsyZTrs-Md0_kFuudmjI1BmvWaVkDvWYvBzVFevNvX7GHb1_vr2_yux_fb6-_3OWm4nLJgbqha2qtqIGmbYeuT2MA02jFa2lq0kJ3RkrVc80b0auSeNWDBtEP0ApdXrGP-92TGslZlwY6FYyN6JXFyeqgwhlPa0A3bWtedcRKiKprkvx-l-fg_6wUF3y00dA0KUd-jQi1qKAuJUBCxY6mJjEGGnAO9nE7DRy31HjELTVuqREEptRJkv9Jxi5qi7UEZafn1Xe7OiiPW9eIDz8TUKUfqjreyUR82glKeZ8sBYzGkjPU20Bmwd7b5x74C52hp4A
CitedBy_id crossref_primary_10_1016_j_ecolind_2017_07_047
crossref_primary_10_3390_foods12061209
crossref_primary_10_1007_s11367_022_02044_x
crossref_primary_10_1146_annurev_environ_121912_094620
crossref_primary_10_1038_s41467_024_48311_3
crossref_primary_10_3390_agronomy11101904
crossref_primary_10_3390_agriculture14081267
crossref_primary_10_1016_j_agee_2018_03_020
crossref_primary_10_1016_j_jclepro_2015_12_073
crossref_primary_10_1073_pnas_1423674112
crossref_primary_10_1016_j_scitotenv_2018_12_050
crossref_primary_10_1111_1744_7917_12550
crossref_primary_10_3390_rs13010117
crossref_primary_10_1093_erae_jbx003
crossref_primary_10_3390_agriculture14112087
crossref_primary_10_3390_agronomy13061544
crossref_primary_10_1071_SR18113
crossref_primary_10_1016_j_ecolecon_2021_107208
crossref_primary_10_1016_j_jclepro_2019_02_111
crossref_primary_10_1016_j_apsoil_2017_10_014
crossref_primary_10_1111_jzo_12920
crossref_primary_10_1111_ppa_13493
crossref_primary_10_1016_j_fcr_2023_109072
crossref_primary_10_1007_s13165_018_0238_6
crossref_primary_10_1007_s41660_023_00357_4
crossref_primary_10_1016_j_eja_2024_127457
crossref_primary_10_1016_j_jenvman_2021_112131
crossref_primary_10_3390_agronomy14112745
crossref_primary_10_1002_agg2_20221
crossref_primary_10_1016_j_inpa_2015_10_001
crossref_primary_10_1007_s44187_024_00161_0
crossref_primary_10_1088_1748_9326_ac39bd
crossref_primary_10_1111_agec_12534
crossref_primary_10_1007_s11738_017_2564_9
crossref_primary_10_3390_agronomy14091963
crossref_primary_10_3390_su142215057
crossref_primary_10_1016_j_jclepro_2016_04_009
crossref_primary_10_1016_j_ecolecon_2024_108357
crossref_primary_10_1016_j_fcr_2018_01_006
crossref_primary_10_1021_acsestengg_2c00438
crossref_primary_10_1038_ncomms11382
crossref_primary_10_1007_s41247_016_0010_z
crossref_primary_10_2478_euco_2022_0006
crossref_primary_10_1080_14735903_2024_2318933
crossref_primary_10_1016_j_agsy_2019_102739
crossref_primary_10_1007_s13165_020_00297_0
crossref_primary_10_3390_agronomy10091269
crossref_primary_10_1016_j_eja_2017_03_002
crossref_primary_10_4155_cmt_12_70
crossref_primary_10_1007_s13165_018_0228_8
crossref_primary_10_1126_sciadv_1602638
crossref_primary_10_1016_j_eja_2019_125920
crossref_primary_10_1051_bioconf_20191501031
crossref_primary_10_1007_s00003_024_01506_8
crossref_primary_10_1007_s13593_018_0489_3
crossref_primary_10_1016_j_njas_2013_12_003
crossref_primary_10_5194_soil_2_111_2016
crossref_primary_10_1016_j_jclepro_2020_123883
crossref_primary_10_3389_fnut_2023_1127970
crossref_primary_10_3390_agronomy10010138
crossref_primary_10_1016_j_wre_2018_07_001
crossref_primary_10_1890_15_0856
crossref_primary_10_3390_su10010272
crossref_primary_10_1016_j_eja_2013_03_004
crossref_primary_10_1007_s11248_024_00414_9
crossref_primary_10_1016_j_fcr_2015_11_006
crossref_primary_10_1016_j_pedsph_2022_06_045
crossref_primary_10_1093_ee_nvab105
crossref_primary_10_3390_su14105815
crossref_primary_10_1016_j_scitotenv_2017_11_296
crossref_primary_10_3390_su9050821
crossref_primary_10_1016_j_isci_2021_102280
crossref_primary_10_3390_agriculture14040600
crossref_primary_10_1038_nplants_2016_100
crossref_primary_10_3390_agriculture10050168
crossref_primary_10_1080_01904167_2022_2093746
crossref_primary_10_1007_s13165_021_00381_z
crossref_primary_10_3389_fsufs_2024_1402849
crossref_primary_10_1002_agg2_20200
crossref_primary_10_1080_09593330_2015_1077897
crossref_primary_10_1017_S1742170518000443
crossref_primary_10_3390_agronomy12102435
crossref_primary_10_1007_s13412_015_0321_1
crossref_primary_10_1073_pnas_1612311114
crossref_primary_10_1016_j_jenvman_2020_110944
crossref_primary_10_3390_su13116289
crossref_primary_10_5604_01_3001_0054_5123
crossref_primary_10_1016_j_agsy_2017_10_016
crossref_primary_10_1080_09064710_2012_733020
crossref_primary_10_4000_economierurale_5309
crossref_primary_10_3389_fpls_2022_936596
crossref_primary_10_1016_j_scitotenv_2021_145079
crossref_primary_10_3390_biology11010041
crossref_primary_10_3390_agriculture3030464
crossref_primary_10_1016_j_jclepro_2017_07_008
crossref_primary_10_1016_S1002_0160_15_60025_X
crossref_primary_10_3390_su12218965
crossref_primary_10_1111_1541_4337_13363
crossref_primary_10_3390_su8100971
crossref_primary_10_5874_jfsr_23_30_3_3
crossref_primary_10_1016_j_scienta_2021_110855
crossref_primary_10_1017_S0029665114001438
crossref_primary_10_35516_jjas_v19i1_1238
crossref_primary_10_1111_gcb_13986
crossref_primary_10_1016_j_jclepro_2017_07_132
crossref_primary_10_3390_su10072344
crossref_primary_10_3390_plants10040643
crossref_primary_10_1080_21683565_2022_2104419
crossref_primary_10_1108_BFJ_12_2022_1067
crossref_primary_10_1002_wow3_139
crossref_primary_10_1016_j_biocon_2013_12_009
crossref_primary_10_1007_s13165_014_0075_1
crossref_primary_10_1016_j_indic_2021_100132
crossref_primary_10_1016_j_geoderma_2016_07_008
crossref_primary_10_1080_00380768_2024_2443162
crossref_primary_10_3390_s25071966
crossref_primary_10_1016_j_scienta_2021_110723
crossref_primary_10_1007_s41348_024_00878_1
crossref_primary_10_1080_21683565_2017_1410874
crossref_primary_10_1016_j_scitotenv_2017_09_178
crossref_primary_10_3389_fpls_2018_00759
crossref_primary_10_3390_soilsystems6020034
crossref_primary_10_1017_S1742170521000338
crossref_primary_10_3390_agriculture14040625
crossref_primary_10_1080_01904167_2017_1346128
crossref_primary_10_3389_fagro_2023_1141608
crossref_primary_10_3390_su16104186
crossref_primary_10_1007_s13593_023_00931_7
crossref_primary_10_1016_j_orl_2021_07_003
crossref_primary_10_1111_ejss_13475
crossref_primary_10_3390_su16209043
crossref_primary_10_3390_su10114279
crossref_primary_10_3362_2046_1887_00003
crossref_primary_10_1016_j_spc_2017_12_003
crossref_primary_10_14512_gaia_30_2_8
crossref_primary_10_1007_s13280_017_0965_z
crossref_primary_10_1051_cagri_2024026
crossref_primary_10_1007_s10333_019_00770_x
crossref_primary_10_17221_46_2014_HORTSCI
crossref_primary_10_3390_su11205621
crossref_primary_10_1007_s13165_016_0155_5
crossref_primary_10_1590_S0100_204X2015000900008
crossref_primary_10_31676_2073_4948_2024_76_71_87
crossref_primary_10_1002_agj2_20063
crossref_primary_10_1016_j_scitotenv_2017_03_251
crossref_primary_10_4236_jacen_2020_94023
crossref_primary_10_1016_j_landusepol_2020_105225
crossref_primary_10_1186_s40100_023_00266_7
crossref_primary_10_4236_jacen_2020_94024
crossref_primary_10_1093_erae_jbz011
crossref_primary_10_1016_j_agsy_2015_06_006
crossref_primary_10_1080_14735903_2018_1440465
crossref_primary_10_1016_j_eja_2021_126407
crossref_primary_10_3934_agrfood_2016_2_157
crossref_primary_10_7717_peerj_15000
crossref_primary_10_1016_j_jenvman_2016_11_080
crossref_primary_10_2135_cropsci2013_09_0596
crossref_primary_10_1002_aepp_13470
crossref_primary_10_3390_agronomy15010089
crossref_primary_10_1038_srep41911
crossref_primary_10_1016_j_agsy_2024_104176
crossref_primary_10_1016_j_agsy_2024_104057
crossref_primary_10_3390_agronomy12020237
crossref_primary_10_1007_s10705_019_10001_8
crossref_primary_10_1016_j_agsy_2015_12_009
crossref_primary_10_1038_s43016_024_00921_2
crossref_primary_10_1007_s11367_016_1204_8
crossref_primary_10_1111_een_12247
crossref_primary_10_3390_su12062193
crossref_primary_10_1007_s13165_023_00426_5
crossref_primary_10_1016_j_bioeco_2022_100035
crossref_primary_10_1016_j_scienta_2015_04_027
crossref_primary_10_1007_s10681_014_1198_x
crossref_primary_10_3390_su9040510
crossref_primary_10_1073_pnas_1809707115
crossref_primary_10_1038_nplants_2015_221
crossref_primary_10_1017_S1742170517000412
crossref_primary_10_3390_agronomy12102494
crossref_primary_10_1016_j_jfca_2014_06_009
crossref_primary_10_3390_agronomy8100214
crossref_primary_10_1016_j_agsy_2022_103579
crossref_primary_10_1016_j_fooweb_2016_04_003
crossref_primary_10_1080_01448765_2023_2253778
crossref_primary_10_1556_AAlim_43_2014_2_11
crossref_primary_10_1016_j_agsy_2023_103732
crossref_primary_10_5424_sjar_2023212_19857
crossref_primary_10_1016_j_biocon_2024_110624
crossref_primary_10_1088_1742_6596_1244_1_012027
crossref_primary_10_1016_j_biocon_2018_03_003
crossref_primary_10_1016_j_jhydrol_2023_130035
crossref_primary_10_1016_j_jclepro_2014_07_030
crossref_primary_10_1093_erae_jbad024
crossref_primary_10_1038_s41893_019_0259_5
crossref_primary_10_3390_foods10050999
crossref_primary_10_1016_j_foodpol_2024_102622
crossref_primary_10_1007_s12571_020_01090_3
crossref_primary_10_1016_j_ssaho_2022_100335
crossref_primary_10_1080_23754931_2018_1448715
crossref_primary_10_1016_j_agsy_2022_103463
crossref_primary_10_1002_pa_2208
crossref_primary_10_1111_1365_2664_12035
crossref_primary_10_3390_agronomy12092001
crossref_primary_10_3390_agronomy10091420
crossref_primary_10_1016_j_ecolind_2016_02_004
crossref_primary_10_1016_j_jksus_2022_102107
crossref_primary_10_3389_fsufs_2023_1114617
crossref_primary_10_1016_j_spc_2024_05_020
crossref_primary_10_1016_j_agee_2021_107673
crossref_primary_10_1017_S1742170518000613
crossref_primary_10_1080_03066150_2021_1923010
crossref_primary_10_1108_IJOEM_03_2023_0390
crossref_primary_10_1073_pnas_1906909117
crossref_primary_10_1016_j_ecolind_2018_06_018
crossref_primary_10_1080_13505033_2016_1175909
crossref_primary_10_17660_ActaHortic_2016_1137_43
crossref_primary_10_3390_su5073172
crossref_primary_10_3390_su6074273
crossref_primary_10_1007_s11356_021_16236_9
crossref_primary_10_1016_j_heliyon_2024_e32761
crossref_primary_10_7717_peerj_9668
crossref_primary_10_3390_agriculture12040464
crossref_primary_10_1016_j_biocon_2018_11_020
crossref_primary_10_3390_su8090957
crossref_primary_10_17221_768_2017_PSE
crossref_primary_10_21833_ijaas_2017_012_038
crossref_primary_10_4081_ija_2013_e2
crossref_primary_10_1016_j_agee_2018_05_013
crossref_primary_10_3390_su13095068
crossref_primary_10_1016_j_scienta_2015_12_008
crossref_primary_10_1016_j_gfs_2022_100617
crossref_primary_10_1016_j_jclepro_2023_135851
crossref_primary_10_3390_agronomy11050997
crossref_primary_10_1007_s13593_013_0179_0
crossref_primary_10_4236_fns_2014_515166
crossref_primary_10_3390_agronomy9040192
crossref_primary_10_3390_su13147536
crossref_primary_10_1080_01448765_2020_1850351
crossref_primary_10_1016_j_eja_2016_09_009
crossref_primary_10_1038_s41467_017_01410_w
crossref_primary_10_3390_en14216959
crossref_primary_10_1016_j_landusepol_2023_106929
crossref_primary_10_1080_03650340_2017_1341045
crossref_primary_10_1016_j_gfs_2020_100373
crossref_primary_10_1016_j_agee_2017_12_023
crossref_primary_10_1139_cjss_2018_0049
crossref_primary_10_1002_agj2_20798
crossref_primary_10_1007_s13593_017_0427_9
crossref_primary_10_1016_j_fcr_2015_02_021
crossref_primary_10_3389_fpls_2018_01342
crossref_primary_10_3390_agriculture6020013
crossref_primary_10_1088_1748_9326_10_2_025002
crossref_primary_10_1016_j_agsy_2017_06_005
crossref_primary_10_1016_j_eja_2015_07_003
crossref_primary_10_1080_03066150_2014_945166
crossref_primary_10_1002_2688_8319_12349
crossref_primary_10_17660_ActaHortic_2021_1320_14
crossref_primary_10_3390_agronomy11050822
crossref_primary_10_1016_j_gfs_2020_100487
crossref_primary_10_3390_su10124424
crossref_primary_10_1007_s11367_022_02112_2
crossref_primary_10_3389_fenvs_2020_575466
crossref_primary_10_3390_plants11182382
crossref_primary_10_1080_21683565_2015_1128508
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1016_j_fcr_2012_12_013
crossref_primary_10_1016_j_jclepro_2020_124043
crossref_primary_10_1007_s10705_018_9935_5
crossref_primary_10_1016_j_landurbplan_2020_103905
crossref_primary_10_1111_gcbb_12618
crossref_primary_10_1016_j_landusepol_2024_107068
crossref_primary_10_1017_S0021859613000853
crossref_primary_10_1111_1365_2664_14650
crossref_primary_10_1002_jpln_201700128
crossref_primary_10_3390_agronomy14010113
crossref_primary_10_3390_su10062023
crossref_primary_10_1016_j_agsy_2021_103129
crossref_primary_10_1017_S0014479719000012
crossref_primary_10_1007_s11367_021_01977_z
crossref_primary_10_3390_su16156668
crossref_primary_10_1016_j_agee_2021_107356
crossref_primary_10_1007_s13165_019_00249_3
crossref_primary_10_1016_j_ecolecon_2016_10_016
crossref_primary_10_17660_ActaHortic_2022_1355_47
crossref_primary_10_2298_JAS2303347
crossref_primary_10_1016_j_jclepro_2020_123046
crossref_primary_10_1007_s11367_024_02317_7
crossref_primary_10_31015_jaefs_2019_2_2
crossref_primary_10_3389_fagro_2020_615470
crossref_primary_10_1007_s13593_018_0528_0
crossref_primary_10_1007_s13593_019_0560_8
crossref_primary_10_2139_ssrn_4000332
crossref_primary_10_3390_agronomy9090505
crossref_primary_10_19159_tutad_980688
crossref_primary_10_3923_ajsr_2019_390_395
crossref_primary_10_3389_fagro_2022_957011
crossref_primary_10_1016_j_agsy_2023_103634
crossref_primary_10_4081_ija_2016_726
crossref_primary_10_1088_1748_9326_ac065f
crossref_primary_10_1016_j_cropro_2023_106266
crossref_primary_10_3917_redp_331_0105
crossref_primary_10_1017_S1742170513000501
crossref_primary_10_15421_011811
crossref_primary_10_1016_j_ccs_2017_06_002
crossref_primary_10_1016_j_spc_2021_01_017
crossref_primary_10_1111_1365_2664_12219
crossref_primary_10_1186_s40066_021_00298_6
crossref_primary_10_3390_su16041530
crossref_primary_10_1016_j_soilbio_2017_06_015
crossref_primary_10_1007_s11157_019_09500_5
crossref_primary_10_1080_14735903_2016_1174810
crossref_primary_10_3934_agrfood_2021009
crossref_primary_10_1007_s10681_014_1162_9
crossref_primary_10_17660_ActaHortic_2017_1164_2
crossref_primary_10_3390_agronomy13071732
crossref_primary_10_1007_s10333_016_0563_x
crossref_primary_10_1088_1748_9326_ab7029
crossref_primary_10_3389_fmicb_2016_01207
crossref_primary_10_4236_jacen_2016_52010
crossref_primary_10_3389_fpls_2023_1232288
crossref_primary_10_1038_s41893_018_0138_5
crossref_primary_10_1016_j_scs_2021_103636
crossref_primary_10_1038_s43016_023_00834_6
crossref_primary_10_1007_s10460_014_9581_8
crossref_primary_10_1146_annurev_environ_110615_085750
crossref_primary_10_1017_S0021859623000084
crossref_primary_10_3390_nu11092248
crossref_primary_10_1016_j_eja_2018_01_013
crossref_primary_10_3390_agriculture14030477
crossref_primary_10_1007_s13165_023_00422_9
crossref_primary_10_1051_bioconf_20213405004
crossref_primary_10_55643_fcaptp_2_55_2024_4347
crossref_primary_10_1051_bioconf_20213405006
crossref_primary_10_3390_agronomy4020242
crossref_primary_10_1007_s10681_014_1181_6
crossref_primary_10_1146_annurev_resource_100516_053623
crossref_primary_10_1017_S0021859622000661
crossref_primary_10_3390_horticulturae9050591
crossref_primary_10_1515_boku_2017_0018
crossref_primary_10_1186_2193_1801_3_418
crossref_primary_10_1016_j_landusepol_2019_02_023
crossref_primary_10_1016_j_jenvman_2024_121022
crossref_primary_10_3390_agronomy9090483
crossref_primary_10_3390_agronomy9090486
crossref_primary_10_3390_fib11020012
crossref_primary_10_1002_saj2_20279
crossref_primary_10_17660_ActaHortic_2019_1233_19
crossref_primary_10_1051_bioconf_202411904005
crossref_primary_10_1007_s13165_016_0171_5
crossref_primary_10_1016_j_scienta_2017_02_006
crossref_primary_10_1016_j_eja_2023_126785
crossref_primary_10_1016_j_jclepro_2019_07_054
crossref_primary_10_1016_j_scitotenv_2024_171693
crossref_primary_10_3390_agronomy10111626
crossref_primary_10_1080_21683565_2019_1631934
crossref_primary_10_4081_ija_2022_1926
crossref_primary_10_1016_j_landusepol_2018_07_012
crossref_primary_10_32615_bp_2024_007
crossref_primary_10_1017_S1742170514000313
crossref_primary_10_1016_j_agee_2019_106596
crossref_primary_10_1088_1748_9326_abd65e
crossref_primary_10_3390_agronomy12071484
crossref_primary_10_4236_jacen_2018_73011
crossref_primary_10_1080_17583004_2021_1893130
crossref_primary_10_1007_s10705_023_10297_7
crossref_primary_10_1094_CM_2013_0429_01_RS
crossref_primary_10_3390_su9040580
crossref_primary_10_1146_annurev_resource_100517_023252
crossref_primary_10_1016_j_scienta_2016_01_033
crossref_primary_10_5424_sjar_2013111_3282
crossref_primary_10_1371_journal_pone_0161673
crossref_primary_10_1016_j_eja_2012_04_004
crossref_primary_10_1017_S0014479716000417
crossref_primary_10_1016_j_foodchem_2023_137278
crossref_primary_10_1038_s41467_020_19474_6
crossref_primary_10_1016_j_ecoinf_2023_102347
crossref_primary_10_1111_1365_2664_13292
crossref_primary_10_1007_s13165_022_00403_4
crossref_primary_10_1016_j_tplants_2015_04_011
crossref_primary_10_1007_s11192_015_1677_4
crossref_primary_10_1016_j_foodcont_2018_07_013
crossref_primary_10_1016_j_scitotenv_2024_172625
crossref_primary_10_1016_j_fcr_2013_03_002
crossref_primary_10_1016_j_geoderma_2023_116619
crossref_primary_10_1007_s13165_016_0172_4
crossref_primary_10_3390_su8060529
crossref_primary_10_1016_j_scienta_2012_08_022
crossref_primary_10_1080_10454446_2013_856054
crossref_primary_10_1016_j_ufug_2018_10_009
crossref_primary_10_1177_0734242X20920350
crossref_primary_10_3390_agronomy10071045
crossref_primary_10_1111_ajae_12465
crossref_primary_10_32006_eeep_2021_2_6675
crossref_primary_10_7896_j_1724
crossref_primary_10_1016_j_gloenvcha_2021_102313
crossref_primary_10_1177_0030727019831702
crossref_primary_10_1007_s10113_018_1447_y
crossref_primary_10_1038_s41598_018_38207_w
crossref_primary_10_3390_agriculture11050445
crossref_primary_10_17660_ActaHortic_2023_1367_33
crossref_primary_10_3390_ijms14024203
crossref_primary_10_1016_j_foodqual_2019_103754
crossref_primary_10_1080_13102818_2018_1427509
crossref_primary_10_3389_fsufs_2023_1115521
crossref_primary_10_1007_s10705_021_10126_9
crossref_primary_10_1111_1365_2664_14484
crossref_primary_10_3389_fsufs_2023_1189952
crossref_primary_10_1080_00439339_2021_1904314
crossref_primary_10_2134_agronj2016_06_0372
crossref_primary_10_2139_ssrn_3765425
crossref_primary_10_1016_j_biombioe_2016_01_015
crossref_primary_10_1016_j_crsust_2021_100054
crossref_primary_10_1016_j_gloenvcha_2021_102325
crossref_primary_10_1002_2017EF000629
crossref_primary_10_1016_j_fcr_2013_10_012
crossref_primary_10_1016_j_jenvman_2021_113946
crossref_primary_10_1016_j_agee_2020_106838
crossref_primary_10_3390_horticulturae9121314
crossref_primary_10_1038_s41598_023_29480_5
crossref_primary_10_1016_j_cropro_2017_10_014
crossref_primary_10_1016_j_jclepro_2017_03_237
crossref_primary_10_3390_su12083240
crossref_primary_10_1016_j_scitotenv_2013_08_098
crossref_primary_10_3390_su12124859
crossref_primary_10_4081_ija_2015_630
crossref_primary_10_1007_s10343_022_00622_5
crossref_primary_10_1051_cagri_2017028
crossref_primary_10_18261_ntfe_22_2_4
crossref_primary_10_1002_eap_2943
crossref_primary_10_1016_j_heliyon_2020_e03226
crossref_primary_10_1007_s13165_021_00362_2
crossref_primary_10_6090_jarq_53_127
crossref_primary_10_18016_ksudobil_286699
crossref_primary_10_1017_S1742170520000307
crossref_primary_10_1016_j_scienta_2019_108592
crossref_primary_10_1016_j_jclepro_2022_132064
crossref_primary_10_2134_agronj2015_0512
crossref_primary_10_1016_j_agee_2023_108509
crossref_primary_10_3390_su10030777
crossref_primary_10_1002_jsfa_8088
crossref_primary_10_1002_plr2_20092
crossref_primary_10_1080_15427528_2020_1824951
crossref_primary_10_1371_journal_pone_0169133
crossref_primary_10_3390_agriculture11040340
crossref_primary_10_1080_14735903_2023_2242181
crossref_primary_10_3390_horticulturae7070191
crossref_primary_10_1038_srep04405
crossref_primary_10_1016_j_jclepro_2018_11_002
crossref_primary_10_1080_21683565_2018_1547941
crossref_primary_10_1016_j_jafr_2024_101499
crossref_primary_10_1016_j_jenvman_2014_10_006
crossref_primary_10_1371_journal_pone_0285377
crossref_primary_10_2478_boku_2022_0011
crossref_primary_10_1093_biosci_biv033
crossref_primary_10_3390_agronomy13020338
crossref_primary_10_1007_s13165_022_00405_2
crossref_primary_10_1016_j_agsy_2024_103991
crossref_primary_10_5424_sjar_2022203_18828
crossref_primary_10_1017_wsc_2020_57
crossref_primary_10_17660_ActaHortic_2019_1242_9
crossref_primary_10_1016_j_cosust_2013_07_003
crossref_primary_10_1111_1365_2435_12657
crossref_primary_10_1007_s41870_024_02158_5
crossref_primary_10_1016_j_landusepol_2019_03_035
crossref_primary_10_1038_s41598_019_48747_4
crossref_primary_10_1093_erae_jbad044
crossref_primary_10_1016_j_scienta_2018_04_039
crossref_primary_10_1016_j_iswcr_2020_11_003
crossref_primary_10_1111_pbr_13117
crossref_primary_10_3390_world1020010
crossref_primary_10_3390_agronomy9010012
crossref_primary_10_51252_raa_v5i1_775
crossref_primary_10_1080_14735903_2024_2338028
crossref_primary_10_1080_09064710_2016_1225812
crossref_primary_10_3280_ecag2021oa12766
crossref_primary_10_1080_01904167_2022_2027976
crossref_primary_10_1002_wcc_404
crossref_primary_10_1016_j_scitotenv_2024_174859
crossref_primary_10_1016_j_eja_2017_08_002
crossref_primary_10_1038_s44264_024_00034_0
crossref_primary_10_3389_fsufs_2022_706271
crossref_primary_10_1007_s10113_023_02092_5
crossref_primary_10_2478_euco_2023_0022
crossref_primary_10_3390_agriculture13020297
crossref_primary_10_3390_agronomy14040778
crossref_primary_10_1186_s40100_023_00292_5
crossref_primary_10_1098_rspb_2015_0002
crossref_primary_10_59267_ekoPolj2403853D
crossref_primary_10_1088_1755_1315_745_1_012020
crossref_primary_10_3390_agronomy13051225
crossref_primary_10_1016_j_agsy_2016_09_004
crossref_primary_10_1038_srep23816
crossref_primary_10_3390_land4030737
crossref_primary_10_5897_AJAR2016_10819
crossref_primary_10_1016_j_biocon_2023_110343
crossref_primary_10_3390_agriculture13040901
crossref_primary_10_1017_S1742170523000340
crossref_primary_10_5187_jast_2021_e33
crossref_primary_10_3390_agronomy9070372
crossref_primary_10_3390_plants12051022
crossref_primary_10_1016_j_spc_2021_06_006
crossref_primary_10_1007_s11540_015_9288_2
crossref_primary_10_1007_s13165_020_00343_x
crossref_primary_10_1016_j_worlddev_2014_10_005
crossref_primary_10_3389_fsufs_2023_1253063
crossref_primary_10_1098_rspb_2014_1396
crossref_primary_10_1038_s41467_018_05956_1
crossref_primary_10_1038_s41467_021_25502_w
crossref_primary_10_7717_peerj_762
crossref_primary_10_1016_j_agee_2016_08_010
crossref_primary_10_3390_agriculture14111944
crossref_primary_10_1088_1755_1315_1229_1_012003
crossref_primary_10_59267_ekoPolj240199D
crossref_primary_10_1080_00380768_2012_733869
crossref_primary_10_1017_S174217052100048X
crossref_primary_10_1088_1748_9326_acdf04
crossref_primary_10_7717_peerj_4428
crossref_primary_10_18775_ijied_1849_7551_7020_2015_54_2002
crossref_primary_10_1016_j_jclepro_2023_137134
crossref_primary_10_1016_j_landusepol_2023_106558
crossref_primary_10_3390_su16167179
crossref_primary_10_1016_j_biocontrol_2019_104095
crossref_primary_10_1007_s13165_025_00486_9
crossref_primary_10_3390_agronomy11091710
crossref_primary_10_1016_j_apsoil_2022_104450
crossref_primary_10_1371_journal_pone_0081039
crossref_primary_10_1016_j_rspp_2024_100036
crossref_primary_10_3390_su13041927
crossref_primary_10_3390_ijerph19169817
crossref_primary_10_5937_MegRev2203183D
crossref_primary_10_1002_agg2_20176
crossref_primary_10_1016_j_agsy_2014_05_014
crossref_primary_10_1017_S1742170515000381
crossref_primary_10_5194_bg_16_2795_2019
crossref_primary_10_1016_j_eja_2022_126638
crossref_primary_10_3390_agronomy9020082
crossref_primary_10_1016_j_eiar_2017_01_001
crossref_primary_10_1146_annurev_resource_102422_090105
crossref_primary_10_1021_acs_oprd_9b00383
crossref_primary_10_1016_j_landusepol_2019_04_016
crossref_primary_10_1016_j_resconrec_2020_105379
crossref_primary_10_1111_sum_12288
crossref_primary_10_3390_su142315870
crossref_primary_10_1016_j_agwat_2020_106523
crossref_primary_10_1016_j_ecolecon_2019_05_022
crossref_primary_10_1007_s13593_017_0455_5
crossref_primary_10_1017_S1742170518000042
crossref_primary_10_4236_jacen_2020_93014
crossref_primary_10_4236_jacen_2020_93011
crossref_primary_10_1016_j_landusepol_2015_12_013
crossref_primary_10_4236_jacen_2020_93012
crossref_primary_10_1016_j_ecolmodel_2024_110727
crossref_primary_10_1016_j_cosust_2014_08_006
crossref_primary_10_1016_j_jclepro_2017_05_041
crossref_primary_10_1080_01448765_2018_1506360
crossref_primary_10_1038_s41598_020_79770_5
crossref_primary_10_1088_1748_9326_8_4_044045
crossref_primary_10_48175_IJARSCT_2697
crossref_primary_10_1021_acs_jafc_8b02626
crossref_primary_10_1038_s41598_017_14271_6
crossref_primary_10_1016_j_agsy_2015_07_006
crossref_primary_10_1007_s10681_014_1225_y
crossref_primary_10_1016_j_agee_2020_106964
crossref_primary_10_1080_1343943X_2020_1865823
crossref_primary_10_3390_agriculture14020297
crossref_primary_10_1016_j_fcr_2023_109131
crossref_primary_10_18615_anadolu_727249
crossref_primary_10_1016_j_agsy_2016_02_013
crossref_primary_10_1017_S1742170521000478
crossref_primary_10_17221_44_2023_AGRICECON
crossref_primary_10_1016_j_jclepro_2019_117900
crossref_primary_10_1016_j_ecolind_2016_11_001
crossref_primary_10_1038_s41598_021_91940_7
crossref_primary_10_1371_journal_pone_0095683
crossref_primary_10_3390_agronomy9070380
crossref_primary_10_1016_j_envsci_2022_11_006
crossref_primary_10_1038_s41598_024_51768_3
crossref_primary_10_1016_j_agsy_2015_08_009
crossref_primary_10_1016_j_ejor_2023_05_019
crossref_primary_10_1017_S1479262123000576
crossref_primary_10_1016_j_agee_2019_106665
crossref_primary_10_1017_S1479262123000333
crossref_primary_10_1371_journal_pone_0160729
crossref_primary_10_1007_s13593_023_00877_w
crossref_primary_10_1016_j_eja_2017_07_003
crossref_primary_10_1016_j_catena_2022_106089
crossref_primary_10_1016_j_eja_2017_07_001
crossref_primary_10_1016_j_oneear_2023_09_005
crossref_primary_10_1016_j_heliyon_2024_e39417
crossref_primary_10_1371_journal_pone_0180442
crossref_primary_10_1007_s13165_017_0191_9
crossref_primary_10_3390_agronomy11122494
crossref_primary_10_1007_s10098_024_03053_0
crossref_primary_10_1016_j_gfs_2024_100765
crossref_primary_10_1016_j_eja_2023_126866
crossref_primary_10_1007_s13165_024_00477_2
crossref_primary_10_1002_agj2_21093
crossref_primary_10_1080_09064710_2017_1367834
crossref_primary_10_1016_j_eja_2020_126169
crossref_primary_10_1007_s13593_022_00779_3
crossref_primary_10_3390_agronomy14030422
crossref_primary_10_3390_insects9010002
crossref_primary_10_1007_s11367_012_0493_9
crossref_primary_10_1038_485176a
crossref_primary_10_1080_01448765_2024_2364304
crossref_primary_10_1016_j_jclepro_2017_12_045
crossref_primary_10_3390_biology12101279
crossref_primary_10_5937_ratpov57_26906
crossref_primary_10_1002_agj2_70026
crossref_primary_10_1016_j_fcr_2012_09_005
crossref_primary_10_1016_j_seta_2022_102190
crossref_primary_10_1016_j_scienta_2017_05_037
crossref_primary_10_1007_s10668_021_01679_4
crossref_primary_10_1016_j_ecolind_2023_110496
crossref_primary_10_1088_1755_1315_1038_1_012035
crossref_primary_10_3390_insects12121106
crossref_primary_10_1007_s13165_014_0079_x
crossref_primary_10_1016_j_compag_2017_09_007
crossref_primary_10_3917_lap_045_0001
crossref_primary_10_46592_turkager_1348187
crossref_primary_10_1016_j_jclepro_2014_01_034
crossref_primary_10_1016_j_apsoil_2022_104658
crossref_primary_10_3390_agronomy14112537
crossref_primary_10_1016_j_resconrec_2016_04_002
crossref_primary_10_1080_01448765_2021_1891458
crossref_primary_10_1007_s13165_019_00275_1
crossref_primary_10_1098_rspb_2015_1623
crossref_primary_10_1111_1751_7915_12448
crossref_primary_10_3390_agronomy14040793
crossref_primary_10_47413_53avr823
crossref_primary_10_4236_as_2017_83015
crossref_primary_10_2134_agronj2016_12_0700
crossref_primary_10_56579_rei_v5i7_985
crossref_primary_10_1007_s40974_020_00158_2
crossref_primary_10_1590_1678_4324_2017161229
crossref_primary_10_3390_agronomy11051018
crossref_primary_10_3390_microorganisms11071633
crossref_primary_10_3390_agriculture11100962
crossref_primary_10_1080_03650340_2021_1946040
crossref_primary_10_1016_j_eja_2016_11_003
crossref_primary_10_1016_j_jrurstud_2022_04_001
crossref_primary_10_1016_j_eja_2022_126661
crossref_primary_10_1016_j_agee_2022_108192
crossref_primary_10_3389_fenvs_2016_00005
crossref_primary_10_53098_wir022018_02
crossref_primary_10_22630_PRS_2019_19_2_39
crossref_primary_10_1093_qopen_qoac010
crossref_primary_10_1017_S1742170515000290
crossref_primary_10_1371_journal_pone_0199025
crossref_primary_10_1080_10106049_2022_2106314
crossref_primary_10_1016_j_sajb_2015_05_013
crossref_primary_10_1177_14034948241269763
crossref_primary_10_3390_su9010018
crossref_primary_10_1016_j_jclepro_2023_137678
crossref_primary_10_3390_microorganisms8081204
crossref_primary_10_1007_s10273_022_3160_1
crossref_primary_10_1016_j_scitotenv_2023_168160
crossref_primary_10_3390_agriculture14091591
Cites_doi 10.1626/pps.2.58
10.1016/S0167-8809(02)00087-7
10.1111/j.1475-2743.2003.tb00278.x
10.1017/S1742170507001640
10.1016/S0378-4290(97)00037-3
10.1016/j.fcr.2007.03.011
10.1300/J064v21n04_06
10.1126/science.1071148
10.1098/rstb.1997.0071
10.1146/annurev.environ.041008.093740
10.1016/S0167-8809(99)00057-2
10.1080/01448765.1996.9754756
10.1016/j.wasman.2008.09.011
10.1016/0167-8809(94)00538-P
10.1016/j.fcr.2003.09.002
10.2134/agronj2009.0043
10.1126/science.1185383
10.1016/0167-8809(90)90179-H
10.1016/j.fcr.2007.12.016
10.1626/jcs.71.439
10.1007/s11104-008-9676-3
10.1016/j.fcr.2007.11.010
10.1016/j.agsy.2010.07.002
10.1016/j.agee.2008.03.014
10.1016/S0308-521X(03)00087-8
10.1007/s10681-008-9690-9
10.1007/s11104-007-9198-4
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Wageningen University & Research
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
7S9
L.6
QVL
DOI 10.1016/j.agsy.2011.12.004
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2267
EndPage 9
ExternalDocumentID oai_library_wur_nl_wurpubs_422496
10_1016_j_agsy_2011_12_004
US201400049098
S0308521X1100182X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
3R3
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
0R
1
8P
AAPBV
ABUFD
ADALY
AFRUD
G-
HZ
K
KM
M
QVL
UNR
ID FETCH-LOGICAL-c408t-1e9f965bae61677f9d77ff1c6ba058c5eb2b9c88ad0b062da3e04d1b12df172b3
IEDL.DBID .~1
ISSN 0308-521X
IngestDate Tue Jan 05 18:10:25 EST 2021
Thu Jul 10 18:31:39 EDT 2025
Tue Jul 01 04:29:07 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Wed Dec 27 19:05:40 EST 2023
Fri Feb 23 02:29:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conventional agriculture
Yield gap
Organic agriculture
Potential production
World food security
Farming system design
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1e9f965bae61677f9d77ff1c6ba058c5eb2b9c88ad0b062da3e04d1b12df172b3
Notes http://dx.doi.org/10.1016/j.agsy.2011.12.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1524153811
PQPubID 24069
PageCount 9
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_422496
proquest_miscellaneous_1524153811
crossref_primary_10_1016_j_agsy_2011_12_004
crossref_citationtrail_10_1016_j_agsy_2011_12_004
fao_agris_US201400049098
elsevier_sciencedirect_doi_10_1016_j_agsy_2011_12_004
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Agricultural systems
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Uphoff, Kassam, Stoop (b0170) 2008; 108
Van Ittersum, Rabbinge (b0175) 1997; 52
Goulding, K.W.T, Trewavas, A.J., Giller, K.E., 2009. Can organic farming feed the world? A contribution to the debate on the ability of organic farming systems to provide sustainable supplies of food. In: Paper Presented at the International Fertiliser Society Conference in Cambridge, 11th December, 2009.
Mühlebach, Mühlebach (b0105) 1994
Lampkin (b0080) 1994
Stanhill (b0150) 1990; 30
Cassman (b0015) 2007; 22
Murphy, Campbell, Lyon, Jones (b0110) 2007; 102
Offermann, Nieberg (b0125) 2001; 50
IFOAM, 2005. IFOAM Basic Standards. International Federation of Organic Agriculture Movements (IFOAM), Bonn.
Neera, Katano, Hasegawa (b0115) 1999; 2
Connor (b0025) 2008; 106
Lotter (b0090) 2003; 21
Tittonell, Vanlauwe, Corbeels, Giller (b0165) 2008; 313
Pretty, Morison, Hine (b0145) 2003; 95
Clark, Horwath, Shennan, Scow, Lanini, Ferris (b0020) 1999; 73
Johnston, Richards (b0070) 2003; 19
Adam, Peplinski, Michaelis, Kley, Simon (b0005) 2009; 29
Giller, Tittonell, Rufino, van Wijk, Zingore, Mapfumo, Adjei-Nsiah, Herrero, Chikowo, Corbeels (b0040) 2011; 104
Dobermann (b0030) 2004; 79
Petersen, Drinkwater, Wagoner (b0140) 1999
Penning de Vries, Rabbinge, de Groot (b0135) 1997; 352
Gliessman, Werner, Allison, Cochran (b0045) 1996; 12
Wander, Yun, Goldstein, Aref, Khan (b0180) 2007; 291
Korsaeth (b0075) 2008; 127
Nguyen, Haynes (b0120) 1995; 52
Badgley, Moghtader, Quintero, Zakem, Chappell, Avilés-Vázquez, Samulon, Perfecto (b0010) 2007; 22
Welsh, Tenuta, Flaten, Thiessen-Martens, Entz (b0185) 2009; 101
Eurostat, 2007. Statistics in focus. Different organic farming patterns within EU-25. An overview of the current situation.
Taube, Loges, Kelm, Latacz-Lohmann (b0160) 2005; 83
Padel, Lampkin (b0130) 1994
Lobell, Cassman, Field (b0085) 2009; 34
Wolfe, Baresel, Desclaux, Goldringer, Hoad, Kovacs, Löschenberger, Miedaner, Østergård, Lammerts van Bueren (b0190) 2008; 163
.
Martini, Buyer, Bryant, Hartz, Denison (b0100) 2004; 86
Mäder, Fliessbach, Dubois, Gunst, Fried, Niggli (b0095) 2002; 296
Godfray, Beddington, Crute, Haddad, Lawrence, Muir, Pretty, Robinson, Thomas, Toulmin (b0050) 2010; 327
Jaim, Al Kader (b0065) 1998; 43
Tamaki, Itani, Nakano (b0155) 2002; 71
Korsaeth (10.1016/j.agsy.2011.12.004_b0075) 2008; 127
Lobell (10.1016/j.agsy.2011.12.004_b0085) 2009; 34
Lampkin (10.1016/j.agsy.2011.12.004_b0080) 1994
Cassman (10.1016/j.agsy.2011.12.004_b0015) 2007; 22
Tittonell (10.1016/j.agsy.2011.12.004_b0165) 2008; 313
Jaim (10.1016/j.agsy.2011.12.004_b0065) 1998; 43
Penning de Vries (10.1016/j.agsy.2011.12.004_b0135) 1997; 352
Petersen (10.1016/j.agsy.2011.12.004_b0140) 1999
Van Ittersum (10.1016/j.agsy.2011.12.004_b0175) 1997; 52
Mühlebach (10.1016/j.agsy.2011.12.004_b0105) 1994
10.1016/j.agsy.2011.12.004_b0035
Nguyen (10.1016/j.agsy.2011.12.004_b0120) 1995; 52
Murphy (10.1016/j.agsy.2011.12.004_b0110) 2007; 102
Welsh (10.1016/j.agsy.2011.12.004_b0185) 2009; 101
10.1016/j.agsy.2011.12.004_b0055
Offermann (10.1016/j.agsy.2011.12.004_b0125) 2001; 50
Padel (10.1016/j.agsy.2011.12.004_b0130) 1994
Taube (10.1016/j.agsy.2011.12.004_b0160) 2005; 83
Connor (10.1016/j.agsy.2011.12.004_b0025) 2008; 106
Wolfe (10.1016/j.agsy.2011.12.004_b0190) 2008; 163
Gliessman (10.1016/j.agsy.2011.12.004_b0045) 1996; 12
Adam (10.1016/j.agsy.2011.12.004_b0005) 2009; 29
Uphoff (10.1016/j.agsy.2011.12.004_b0170) 2008; 108
Johnston (10.1016/j.agsy.2011.12.004_b0070) 2003; 19
Dobermann (10.1016/j.agsy.2011.12.004_b0030) 2004; 79
Neera (10.1016/j.agsy.2011.12.004_b0115) 1999; 2
Clark (10.1016/j.agsy.2011.12.004_b0020) 1999; 73
Pretty (10.1016/j.agsy.2011.12.004_b0145) 2003; 95
Wander (10.1016/j.agsy.2011.12.004_b0180) 2007; 291
10.1016/j.agsy.2011.12.004_b0060
Lotter (10.1016/j.agsy.2011.12.004_b0090) 2003; 21
Badgley (10.1016/j.agsy.2011.12.004_b0010) 2007; 22
Giller (10.1016/j.agsy.2011.12.004_b0040) 2011; 104
Martini (10.1016/j.agsy.2011.12.004_b0100) 2004; 86
Mäder (10.1016/j.agsy.2011.12.004_b0095) 2002; 296
Godfray (10.1016/j.agsy.2011.12.004_b0050) 2010; 327
Tamaki (10.1016/j.agsy.2011.12.004_b0155) 2002; 71
Stanhill (10.1016/j.agsy.2011.12.004_b0150) 1990; 30
References_xml – volume: 102
  start-page: 172
  year: 2007
  end-page: 177
  ident: b0110
  article-title: Evidence of varietal adaptation to organic farming systems
  publication-title: Field Crops Research
– volume: 163
  start-page: 323
  year: 2008
  end-page: 346
  ident: b0190
  publication-title: Euphytica
– volume: 95
  start-page: 217
  year: 2003
  end-page: 234
  ident: b0145
  article-title: Reducing food poverty by increasing agricultural sustainability in developing countries
  publication-title: Agriculture, Ecosystems & Environment
– volume: 86
  start-page: 255
  year: 2004
  end-page: 266
  ident: b0100
  article-title: Yield increases during the organic transition: improving soil quality or increasing experience?
  publication-title: Field Crops Research
– volume: 50
  start-page: 421
  year: 2001
  end-page: 427
  ident: b0125
  article-title: Wirtschaftliche Situation okologischer Betriebe in ausgewahlten Ländern Europas: Stand, Entwicklung und wichtige Einflussfaktoren
  publication-title: Agrarwirtschaft
– volume: 296
  start-page: 1694
  year: 2002
  end-page: 1697
  ident: b0095
  article-title: Soil fertility and biodiversity in organic farming
  publication-title: Science
– volume: 34
  start-page: 179
  year: 2009
  end-page: 204
  ident: b0085
  article-title: Crop yield gaps: their importance, magnitudes, and causes
  publication-title: Annual Review of Environment and Resources
– reference: Eurostat, 2007. Statistics in focus. Different organic farming patterns within EU-25. An overview of the current situation. <
– volume: 327
  start-page: 812
  year: 2010
  end-page: 818
  ident: b0050
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
– volume: 352
  start-page: 917
  year: 1997
  end-page: 928
  ident: b0135
  article-title: Potential and attainable food production and food security in different regions
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 83
  start-page: 165
  year: 2005
  end-page: 176
  ident: b0160
  article-title: A comparative assessment of the performance of organic and conventional arable farming systems on high-quality soils in northern Germany
  publication-title: Berichte űber Landwirtschaft
– volume: 106
  start-page: 187
  year: 2008
  end-page: 190
  ident: b0025
  article-title: Organic agriculture cannot feed the world
  publication-title: Field Crops Research
– volume: 43
  start-page: 245
  year: 1998
  end-page: 252
  ident: b0065
  article-title: Economics of ecological agricultural practices: an empirical evidence from a micro level study in an area of Bangladesh
  publication-title: Economic Affairs Calcutta
– start-page: 343
  year: 1994
  end-page: 360
  ident: b0080
  article-title: Estimating the impact of widespread conversion to organic farming on land use and physical output in the United Kingdom
  publication-title: The Economics of Organic Farming
– volume: 127
  start-page: 177
  year: 2008
  end-page: 188
  ident: b0075
  article-title: Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study
  publication-title: Agriculture, Ecosystems and Environment
– volume: 73
  start-page: 257
  year: 1999
  end-page: 270
  ident: b0020
  article-title: Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems
  publication-title: Agriculture, Ecosystems & Environment
– start-page: 131
  year: 1994
  end-page: 142
  ident: b0105
  article-title: Economics of organic farming in Switzerland
  publication-title: The Economics of Organic Farming
– start-page: 201
  year: 1994
  end-page: 222
  ident: b0130
  article-title: Farm-level performance of organic farming systems: an overview
  publication-title: The Economics of Organic Farming
– volume: 19
  start-page: 45
  year: 2003
  end-page: 49
  ident: b0070
  article-title: Effectiveness of different precipitated phosphates as phosphorus sources for plants
  publication-title: Soil Use and Management
– volume: 22
  start-page: 83
  year: 2007
  end-page: 84
  ident: b0015
  article-title: Editorial response by Kenneth Cassman: can organic agriculture feed the world—science to the rescue?
  publication-title: Renewable Agriculture and Food Systems
– volume: 52
  start-page: 197
  year: 1997
  end-page: 208
  ident: b0175
  article-title: Concepts in production ecology for analysis and quantification of agricultural input–output combinations
  publication-title: Field Crops Research
– reference: Goulding, K.W.T, Trewavas, A.J., Giller, K.E., 2009. Can organic farming feed the world? A contribution to the debate on the ability of organic farming systems to provide sustainable supplies of food. In: Paper Presented at the International Fertiliser Society Conference in Cambridge, 11th December, 2009.
– year: 1999
  ident: b0140
  article-title: The Rodale Institute Farming Systems Trial: The First 15 Years
– volume: 291
  start-page: 311
  year: 2007
  end-page: 321
  ident: b0180
  article-title: Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application
  publication-title: Plant and Soil
– volume: 12
  start-page: 327
  year: 1996
  end-page: 338
  ident: b0045
  article-title: A comparison of strawberry plant development and yield under organic and conventional management on the central California coast
  publication-title: Biological Agriculture & Horticulture
– volume: 313
  start-page: 19
  year: 2008
  end-page: 37
  ident: b0165
  article-title: Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya
  publication-title: Plant and Soil
– volume: 79
  start-page: 261
  year: 2004
  end-page: 281
  ident: b0030
  article-title: A critical assessment of the system of rice intensification (SRI)
  publication-title: Agricultural Systems
– reference: >.
– volume: 104
  start-page: 191
  year: 2011
  end-page: 203
  ident: b0040
  article-title: Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development
  publication-title: Agricultural Systems
– volume: 52
  start-page: 163
  year: 1995
  end-page: 172
  ident: b0120
  article-title: Energy and labour efficiency for three pairs of conventional and alternative mixed cropping (pasture-arable) farms in Canterbury, New Zealand
  publication-title: Agriculture, Ecosystems and Environment
– reference: IFOAM, 2005. IFOAM Basic Standards. International Federation of Organic Agriculture Movements (IFOAM), Bonn.
– volume: 2
  start-page: 58
  year: 1999
  end-page: 64
  ident: b0115
  article-title: Comparison of rice yield after various years of cultivation by natural farming
  publication-title: Plant Production Science
– volume: 101
  start-page: 1027
  year: 2009
  end-page: 1035
  ident: b0185
  article-title: High yielding organic crop management decreases plant-available but not recalcitrant soil phosphorus
  publication-title: Agronomy Journal
– volume: 29
  start-page: 1122
  year: 2009
  end-page: 1128
  ident: b0005
  article-title: Thermochemical treatment of sewage sludge ashes for phosphorus recovery
  publication-title: Waste Management
– volume: 22
  start-page: 86
  year: 2007
  end-page: 108
  ident: b0010
  article-title: Organic agriculture and the global food supply
  publication-title: Renewable Agriculture and Food Systems
– volume: 30
  start-page: 1
  year: 1990
  end-page: 26
  ident: b0150
  article-title: The comparative productivity of organic agriculture
  publication-title: Agriculture, Ecosystems & Environment
– volume: 108
  start-page: 109
  year: 2008
  end-page: 114
  ident: b0170
  article-title: A critical assessment of a desk study comparing crop production systems: the example of the ‘system of rice intensification’ versus ‘best management practice’
  publication-title: Field Crops Research
– volume: 21
  start-page: 59
  year: 2003
  end-page: 128
  ident: b0090
  article-title: Organic agriculture
  publication-title: Journal of Sustainable Agriculture
– volume: 71
  start-page: 439
  year: 2002
  end-page: 445
  ident: b0155
  article-title: Effect of continuous organic farming on the growth and yield of rice
  publication-title: Japanese Journal of Crop Science
– volume: 2
  start-page: 58
  issue: 1
  year: 1999
  ident: 10.1016/j.agsy.2011.12.004_b0115
  article-title: Comparison of rice yield after various years of cultivation by natural farming
  publication-title: Plant Production Science
  doi: 10.1626/pps.2.58
– volume: 95
  start-page: 217
  year: 2003
  ident: 10.1016/j.agsy.2011.12.004_b0145
  article-title: Reducing food poverty by increasing agricultural sustainability in developing countries
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/S0167-8809(02)00087-7
– volume: 19
  start-page: 45
  year: 2003
  ident: 10.1016/j.agsy.2011.12.004_b0070
  article-title: Effectiveness of different precipitated phosphates as phosphorus sources for plants
  publication-title: Soil Use and Management
  doi: 10.1111/j.1475-2743.2003.tb00278.x
– volume: 22
  start-page: 86
  issue: 2
  year: 2007
  ident: 10.1016/j.agsy.2011.12.004_b0010
  article-title: Organic agriculture and the global food supply
  publication-title: Renewable Agriculture and Food Systems
  doi: 10.1017/S1742170507001640
– start-page: 201
  year: 1994
  ident: 10.1016/j.agsy.2011.12.004_b0130
  article-title: Farm-level performance of organic farming systems: an overview
– volume: 52
  start-page: 197
  year: 1997
  ident: 10.1016/j.agsy.2011.12.004_b0175
  article-title: Concepts in production ecology for analysis and quantification of agricultural input–output combinations
  publication-title: Field Crops Research
  doi: 10.1016/S0378-4290(97)00037-3
– volume: 102
  start-page: 172
  issue: 3
  year: 2007
  ident: 10.1016/j.agsy.2011.12.004_b0110
  article-title: Evidence of varietal adaptation to organic farming systems
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2007.03.011
– year: 1999
  ident: 10.1016/j.agsy.2011.12.004_b0140
– volume: 21
  start-page: 59
  year: 2003
  ident: 10.1016/j.agsy.2011.12.004_b0090
  article-title: Organic agriculture
  publication-title: Journal of Sustainable Agriculture
  doi: 10.1300/J064v21n04_06
– volume: 296
  start-page: 1694
  year: 2002
  ident: 10.1016/j.agsy.2011.12.004_b0095
  article-title: Soil fertility and biodiversity in organic farming
  publication-title: Science
  doi: 10.1126/science.1071148
– volume: 352
  start-page: 917
  year: 1997
  ident: 10.1016/j.agsy.2011.12.004_b0135
  article-title: Potential and attainable food production and food security in different regions
  publication-title: Philosophical Transactions of the Royal Society B
  doi: 10.1098/rstb.1997.0071
– ident: 10.1016/j.agsy.2011.12.004_b0035
– ident: 10.1016/j.agsy.2011.12.004_b0060
– volume: 34
  start-page: 179
  year: 2009
  ident: 10.1016/j.agsy.2011.12.004_b0085
  article-title: Crop yield gaps: their importance, magnitudes, and causes
  publication-title: Annual Review of Environment and Resources
  doi: 10.1146/annurev.environ.041008.093740
– volume: 73
  start-page: 257
  year: 1999
  ident: 10.1016/j.agsy.2011.12.004_b0020
  article-title: Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/S0167-8809(99)00057-2
– volume: 12
  start-page: 327
  year: 1996
  ident: 10.1016/j.agsy.2011.12.004_b0045
  article-title: A comparison of strawberry plant development and yield under organic and conventional management on the central California coast
  publication-title: Biological Agriculture & Horticulture
  doi: 10.1080/01448765.1996.9754756
– start-page: 343
  year: 1994
  ident: 10.1016/j.agsy.2011.12.004_b0080
  article-title: Estimating the impact of widespread conversion to organic farming on land use and physical output in the United Kingdom
– volume: 29
  start-page: 1122
  year: 2009
  ident: 10.1016/j.agsy.2011.12.004_b0005
  article-title: Thermochemical treatment of sewage sludge ashes for phosphorus recovery
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2008.09.011
– volume: 52
  start-page: 163
  year: 1995
  ident: 10.1016/j.agsy.2011.12.004_b0120
  article-title: Energy and labour efficiency for three pairs of conventional and alternative mixed cropping (pasture-arable) farms in Canterbury, New Zealand
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/0167-8809(94)00538-P
– volume: 43
  start-page: 245
  year: 1998
  ident: 10.1016/j.agsy.2011.12.004_b0065
  article-title: Economics of ecological agricultural practices: an empirical evidence from a micro level study in an area of Bangladesh
  publication-title: Economic Affairs Calcutta
– volume: 86
  start-page: 255
  year: 2004
  ident: 10.1016/j.agsy.2011.12.004_b0100
  article-title: Yield increases during the organic transition: improving soil quality or increasing experience?
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2003.09.002
– start-page: 131
  year: 1994
  ident: 10.1016/j.agsy.2011.12.004_b0105
  article-title: Economics of organic farming in Switzerland
– volume: 101
  start-page: 1027
  issue: 5
  year: 2009
  ident: 10.1016/j.agsy.2011.12.004_b0185
  article-title: High yielding organic crop management decreases plant-available but not recalcitrant soil phosphorus
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2009.0043
– volume: 327
  start-page: 812
  year: 2010
  ident: 10.1016/j.agsy.2011.12.004_b0050
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
  doi: 10.1126/science.1185383
– volume: 30
  start-page: 1
  year: 1990
  ident: 10.1016/j.agsy.2011.12.004_b0150
  article-title: The comparative productivity of organic agriculture
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/0167-8809(90)90179-H
– volume: 108
  start-page: 109
  year: 2008
  ident: 10.1016/j.agsy.2011.12.004_b0170
  article-title: A critical assessment of a desk study comparing crop production systems: the example of the ‘system of rice intensification’ versus ‘best management practice’
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2007.12.016
– volume: 71
  start-page: 439
  year: 2002
  ident: 10.1016/j.agsy.2011.12.004_b0155
  article-title: Effect of continuous organic farming on the growth and yield of rice
  publication-title: Japanese Journal of Crop Science
  doi: 10.1626/jcs.71.439
– volume: 313
  start-page: 19
  year: 2008
  ident: 10.1016/j.agsy.2011.12.004_b0165
  article-title: Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9676-3
– ident: 10.1016/j.agsy.2011.12.004_b0055
– volume: 106
  start-page: 187
  year: 2008
  ident: 10.1016/j.agsy.2011.12.004_b0025
  article-title: Organic agriculture cannot feed the world
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2007.11.010
– volume: 83
  start-page: 165
  year: 2005
  ident: 10.1016/j.agsy.2011.12.004_b0160
  article-title: A comparative assessment of the performance of organic and conventional arable farming systems on high-quality soils in northern Germany
  publication-title: Berichte űber Landwirtschaft
– volume: 22
  start-page: 83
  issue: 2
  year: 2007
  ident: 10.1016/j.agsy.2011.12.004_b0015
  article-title: Editorial response by Kenneth Cassman: can organic agriculture feed the world—science to the rescue?
  publication-title: Renewable Agriculture and Food Systems
– volume: 104
  start-page: 191
  year: 2011
  ident: 10.1016/j.agsy.2011.12.004_b0040
  article-title: Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2010.07.002
– volume: 127
  start-page: 177
  year: 2008
  ident: 10.1016/j.agsy.2011.12.004_b0075
  article-title: Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2008.03.014
– volume: 79
  start-page: 261
  year: 2004
  ident: 10.1016/j.agsy.2011.12.004_b0030
  article-title: A critical assessment of the system of rice intensification (SRI)
  publication-title: Agricultural Systems
  doi: 10.1016/S0308-521X(03)00087-8
– volume: 163
  start-page: 323
  year: 2008
  ident: 10.1016/j.agsy.2011.12.004_b0190
  publication-title: Euphytica
  doi: 10.1007/s10681-008-9690-9
– volume: 50
  start-page: 421
  year: 2001
  ident: 10.1016/j.agsy.2011.12.004_b0125
  article-title: Wirtschaftliche Situation okologischer Betriebe in ausgewahlten Ländern Europas: Stand, Entwicklung und wichtige Einflussfaktoren
  publication-title: Agrarwirtschaft
– volume: 291
  start-page: 311
  year: 2007
  ident: 10.1016/j.agsy.2011.12.004_b0180
  article-title: Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9198-4
SSID ssj0009108
Score 2.5562978
Snippet ► We analyzed 362 published organic–conventional comparative crop yields. ► The organic yield gap is 20%, but differs somewhat between crops and regions. ► We...
A key issue in the debate on the contribution of organic agriculture to the future of world agriculture is whether organic agriculture can produce sufficient...
SourceID wageningen
proquest
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms animal manures
Conventional agriculture
crop rotation
crop yield
Farming system design
farming-systems
farms
food security
foods
input
legumes
management
nitrogen
nutrient availability
Organic agriculture
organic production
pests
phosphorus
Potential production
productivity
quality
rice intensification
world
World food security
Yield gap
Title The crop yield gap between organic and conventional agriculture
URI https://dx.doi.org/10.1016/j.agsy.2011.12.004
https://www.proquest.com/docview/1524153811
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F422496
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdd-kOY1s7mm4rGvRW3FiObEunEcpKtrFe2kBuD_1y6AhOiBNKL_vb954tLy2MHnaxsZGE-PT03pP06T3GztAqmMwYm8iQpvgofWJt0ImrdFaGIgtFm3nu53Uxmcrvs3y2xy77uzBEq4y6v9PprbaOf4YRzeHq7m54Q5FW0PjMKOgZeskzusEuS5Lyi987mgeaQ9WdJKiESseLMx3Hy8ybhy6MJ20JxmRt_zBOLyqzfOKCHtzjbK_b60-PzNHVG_Y6-pF83HX1LdsL9Tv2ajxfx1ga4ZB9QRHglKGLPxBNjc_NikdaFu-SOTluas8fE8-52bVwxKZXX28vJ0nMl5A4mapNIoKudJFbgwAXZVlpj49KuMKaNFcux0W01U4p41ObFpk3o5BKL6zIfIV-jB29Z_v1sg7HjOu08k66IGRQ0kmhQm6wnTK4oEbe2wETPVDgYjBxymmxgJ419gsIXCBwQWSA4A7Y-d86qy6UxrOl8x5_eCIQgLr-2XrHOFhAaDUwvcloBdkeb2o1YJ_7EQScRHQyYuqw3DaATowk1S_EgI12Qws15XNqgEJwx001uN-uoV7QC-dLAxKFXRcn_9nZD-wAv7KOCfSR7W_W2_AJnZyNPW2l-JS9HH_7Mbn-AzdR_RU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4S59D0ENIXcdOkKvRWFq_W2odOxYQGp0l8SQy-Cb3WpIS18dqE_PvO7GrrBEoOuezCriTEp9HMSBp9A_AdrYJOtDaR8HGMj9xFxngZ2VImuc8SnzWZ564n2Xgqfs_S2Q6cdXdhKKwy6P5WpzfaOnwZBDQHy7u7wQ0xraDxmRHpGXrJs13YI3aqtAd7o4vL8WTLvcubxHRUPqIK4e5MG-al5_Vjy-RJu4IhX9t_7NNuqRfPvND9B5zwVXMD6olFOj-Eg-BKslHb23ew46v38HY0XwU6Df8BfqIUMErSxR4pUo3N9ZKFyCzW5nOyTFeOPY09Z3rbwkeYnv-6PRtHIWVCZEVcrCPuZSmz1GjEOMvzUjp8lNxmRsdpYVNcRxtpi0K72MRZ4vTQx8JxwxNXoitjhp-gVy0qfwRMxqWzwnoufCGs4IVPNbaTe-uLoXOmD7wDStnAJ05pLe5VFzj2RxG4isBVPFEIbh9-_KuzbNk0XiyddvirZzKhUN2_WO8IB0sRWrWa3iS0iGxOOGXRh2_dCCqcR3Q4oiu_2NQK_RhB2p_zPgy3Q6sqSulUK2LhDvtq6mGzUtU9vXDK1EqgvMvs8ys7-xXejG-vr9TVxeTyGPbxT9IGBn2B3nq18Sfo86zNaZDpv96b_8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+crop+yield+gap+between+organic+and+conventional+agriculture&rft.jtitle=Agricultural+systems&rft.au=de+Ponti%2C+Tomek&rft.au=Rijk%2C+Bert&rft.au=van+Ittersum%2C+Martin+K&rft.date=2012-04-01&rft.issn=0308-521X&rft.volume=108+p.1-9&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.agsy.2011.12.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon