Automatic Detection of Algal Blooms Using Sentinel-2 MSI and Landsat OLI Images
Algal bloom is a serious global issue for inland waters, posing poses a serious threat to aquatic ecosystems. The timely and accurate detection of algal blooms is critical for their control, management and forecasting. Optical satellite imagery with short revisit times has been widely used to monito...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 8497 - 8511 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Algal bloom is a serious global issue for inland waters, posing poses a serious threat to aquatic ecosystems. The timely and accurate detection of algal blooms is critical for their control, management and forecasting. Optical satellite imagery with short revisit times has been widely used to monitor algal blooms in marine and large inland waters. However, such images typically are of coarse resolution, limiting their utility to map algal blooms in small inland waters. We developed a new method to map the spatial extent of algal blooms using sentinel-2 multispectral instrument (MSI) and Landsat operational land imager (OLI) images with higher spatial resolution but lower temporal resolution based on the concept of local indicator of spatial association. The mapping results was applied to measure the duration and frequency of algal blooms in Lake Taihu from 2017 to 2020. Our results show that the developed methodology is able to extract the spatial distribution of moderate algal blooms using near-infrared and red-edge bands (bands 6, 7, 8, and 8a of sentinel-2 MSI images or band 5 of Landsat OLI images) by comparison with MODIS FAI data ( R 2 = 0.888 for sentinel-2 MSI and R 2 = 0.85 for Landsat OLI, P < 0.05). However, the temporal resolution of combined Landsat OLI and sentinel-2 MSI images (i.e., up to 2-3 days) is insufficient to monitor algal blooms during the summer time in Lake Taihu due to cloud effects and rapid algal change. Our research has benefits for the management of small inland waters with complex water conditions. |
---|---|
AbstractList | Algal bloom is a serious global issue for inland waters, posing poses a serious threat to aquatic ecosystems. The timely and accurate detection of algal blooms is critical for their control, management and forecasting. Optical satellite imagery with short revisit times has been widely used to monitor algal blooms in marine and large inland waters. However, such images typically are of coarse resolution, limiting their utility to map algal blooms in small inland waters. We developed a new method to map the spatial extent of algal blooms using sentinel-2 multispectral instrument (MSI) and Landsat operational land imager (OLI) images with higher spatial resolution but lower temporal resolution based on the concept of local indicator of spatial association. The mapping results was applied to measure the duration and frequency of algal blooms in Lake Taihu from 2017 to 2020. Our results show that the developed methodology is able to extract the spatial distribution of moderate algal blooms using near-infrared and red-edge bands (bands 6, 7, 8, and 8a of sentinel-2 MSI images or band 5 of Landsat OLI images) by comparison with MODIS FAI data ( R 2 = 0.888 for sentinel-2 MSI and R 2 = 0.85 for Landsat OLI, P < 0.05). However, the temporal resolution of combined Landsat OLI and sentinel-2 MSI images (i.e., up to 2–3 days) is insufficient to monitor algal blooms during the summer time in Lake Taihu due to cloud effects and rapid algal change. Our research has benefits for the management of small inland waters with complex water conditions. Algal bloom is a serious global issue for inland waters, posing poses a serious threat to aquatic ecosystems. The timely and accurate detection of algal blooms is critical for their control, management and forecasting. Optical satellite imagery with short revisit times has been widely used to monitor algal blooms in marine and large inland waters. However, such images typically are of coarse resolution, limiting their utility to map algal blooms in small inland waters. We developed a new method to map the spatial extent of algal blooms using sentinel-2 multispectral instrument (MSI) and Landsat operational land imager (OLI) images with higher spatial resolution but lower temporal resolution based on the concept of local indicator of spatial association. The mapping results was applied to measure the duration and frequency of algal blooms in Lake Taihu from 2017 to 2020. Our results show that the developed methodology is able to extract the spatial distribution of moderate algal blooms using near-infrared and red-edge bands (bands 6, 7, 8, and 8a of sentinel-2 MSI images or band 5 of Landsat OLI images) by comparison with MODIS FAI data (R2 = 0.888 for sentinel-2 MSI and R2 = 0.85 for Landsat OLI, P < 0.05). However, the temporal resolution of combined Landsat OLI and sentinel-2 MSI images (i.e., up to 2-3 days) is insufficient to monitor algal blooms during the summer time in Lake Taihu due to cloud effects and rapid algal change. Our research has benefits for the management of small inland waters with complex water conditions. |
Author | Zhu, Mengyuan Luan, Zhaoqing Pu, Yihan Xu, Dandan Shi, Kun |
Author_xml | – sequence: 1 givenname: Dandan orcidid: 0000-0002-0033-2262 surname: Xu fullname: Xu, Dandan email: dandan.xu@njfu.edu.cn organization: Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China – sequence: 2 givenname: Yihan surname: Pu fullname: Pu, Yihan email: pyh1997@njfu.edu.cn organization: Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China – sequence: 3 givenname: Mengyuan surname: Zhu fullname: Zhu, Mengyuan email: myzhu@niglas.ac.cn organization: Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing, China – sequence: 4 givenname: Zhaoqing orcidid: 0000-0002-7648-3657 surname: Luan fullname: Luan, Zhaoqing email: luanzhaoqing@njfu.edu.cn organization: Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China – sequence: 5 givenname: Kun surname: Shi fullname: Shi, Kun email: kshi@niglas.ac.cn organization: Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing, China |
BookMark | eNqFkU1v2zAMhoWhBZa2-wW9COjZmWhJlnVMu496yBBgac8CI1OBA8fqLOWwfz9nLnrYpRcSIPi-_Hiu2MUQB2LsFsQSQNjPP7ZPq1_bZSlKWEoQ2qjqA1uUoKEALfUFW4CVtgAl1Ed2ldJBiKo0Vi7YZnXK8Yi58_wLZfK5iwOPga_6Pfb8vo_xmPhz6oY939KQu4H6ouQ_tw3HoeXrKSTMfLNueHPEPaUbdhmwT_TpNV-z529fnx4ei_Xme_OwWhdeiToX0Kqw07X0vmzVDgFFjVUZ0ASyQaCw6GsDdS0teWGhDZI8GAOaWhOwUvKaNbNvG_HgXsbuiOMfF7Fz_wpx3Dscp6t6cgZEICGCp6CVsFQrLEFWlVYAcqfl5HU3e72M8feJUnaHeBqHaX1XaiPAitqaqUvOXX6MKY0U3qaCcGcKbqbgzhTcK4VJZf9T-S7j-ct5xK5_R3s7azsieptmNVR2YvcX-hWVZw |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1016_j_future_2024_04_056 crossref_primary_10_3390_rs15174157 crossref_primary_10_1016_j_rsma_2024_103666 crossref_primary_10_1109_JSTARS_2024_3476938 crossref_primary_10_1109_JSTARS_2022_3208620 crossref_primary_10_3390_rs16040647 crossref_primary_10_1016_j_jag_2023_103605 crossref_primary_10_3390_rs14194763 crossref_primary_10_1007_s00477_023_02648_1 crossref_primary_10_3390_rs15164006 crossref_primary_10_1007_s11356_023_25230_2 crossref_primary_10_1109_JSTARS_2023_3257142 crossref_primary_10_3390_rs14143305 crossref_primary_10_3390_rs17071128 crossref_primary_10_3390_land14030592 crossref_primary_10_1016_j_eswa_2025_126541 |
Cites_doi | 10.1109/JSTARS.2012.2227993 10.3390/w12082278 10.1016/j.marpolbul.2020.110889 10.1016/j.rse.2014.04.031 10.3390/rs10101656 10.3390/jmse7090314 10.2112/JCOASTRES-D-11-00051.1 10.1117/1.JRS.7.073465 10.1109/JSTARS.2017.2723079 10.1590/1519-6984.23814 10.1016/j.scitotenv.2020.139497 10.1016/j.asr.2016.06.005 10.1364/OE.26.026810 10.1016/j.rse.2009.05.012 10.1080/01431161.2015.1070323 10.1016/j.jglr.2019.03.006 10.1016/j.jglr.2011.06.009 10.1016/j.scib.2019.07.002 10.2175/106143014X13975035526149 10.1016/j.ecolind.2020.106073 10.1109/JSTARS.2017.2757006 10.1080/01431161.2018.1533657 10.1007/s10750-017-3462-2 10.1016/j.marpolbul.2014.04.015 10.1016/j.jglr.2019.01.005 10.1016/j.scitotenv.2017.02.182 10.1109/JSTARS.2016.2601083 10.1117/1.JRS.12.026003 10.1080/01431160802581958 10.3390/ijgi6100292 10.1016/j.hal.2013.11.003 10.1016/j.rse.2017.05.027 10.3390/s8063988 10.1016/j.jag.2020.102090 10.1016/j.jag.2018.03.008 10.3390/rs10020333 10.1016/j.rse.2016.02.065 10.1016/j.jag.2017.11.003 10.3389/fmars.2019.00587 10.1109/JSTARS.2010.2103927 10.3390/ijerph120911560 10.1016/j.rse.2009.02.005 10.1109/LGRS.2011.2182032 10.1109/JSTARS.2016.2555898 10.1007/s12665-016-5686-2 10.3390/rs9070755 10.3390/rs10050767 10.1109/TGRS.2019.2917636 10.1109/JSTARS.2011.2163926 10.1016/j.pocean.2013.12.008 10.1029/2009JC005511 10.3390/rs9020133 10.15666/aeer/1803_46954708 10.1007/s10452-020-09761-1 10.1021/acs.est.8b06887 10.3390/w7051921 10.3390/rs6087442 10.1109/JSTARS.2016.2585142 10.3390/rs11192269 10.1071/MF18429 10.1080/01431161.2016.1207265 10.1117/1.JRS.13.024523 10.3390/w12041035 10.1016/j.watres.2020.115944 10.1038/srep40326 10.1016/j.rse.2015.11.020 10.3390/rs9060624 10.1016/j.rse.2019.111349 10.1109/JSTARS.2020.3001445 10.1088/1054-660X/26/12/125601 10.1016/j.jag.2015.02.002 10.3390/rs12152463 10.3390/w12071928 10.1109/JSTARS.2011.2174339 10.1016/j.rse.2013.07.040 10.3390/rs9121265 10.1002/wer.1220 10.1016/j.jag.2019.102038 10.1117/1.JRS.11.012005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2021.3105746 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 8511 |
ExternalDocumentID | oai_doaj_org_article_710fe00fcef5409e84a2136654113b53 10_1109_JSTARS_2021_3105746 9516979 |
Genre | orig-research |
GeographicLocations | Taihu Lake |
GeographicLocations_xml | – name: Taihu Lake |
GrantInformation_xml | – fundername: Scientific Instrument Developing Project – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180769 funderid: 10.13039/501100004608 – fundername: Chinese Academy of Sciences grantid: YJKYYQ20200071 funderid: 10.13039/501100002367 – fundername: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences; NIGLAS grantid: E1SL002 funderid: 10.13039/501100011193 – fundername: Six Talent Peaks Project in Jiangsu Province grantid: TD-XYDXX-006 funderid: 10.13039/501100010014 – fundername: Jiangsu Agricultural Science and Technology Independent Innovation Fund grantid: CX (18) 2026 funderid: 10.13039/501100012431 – fundername: National Natural Science Foundation of China grantid: 41922005 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-1d4fb583cc2d4ba1a08a62fa7fe9f0a09ac8718839ec091df3ec17715ed7fa643 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:28:30 EDT 2025 Sun Jul 13 04:31:25 EDT 2025 Tue Jul 01 03:16:18 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 27 03:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-1d4fb583cc2d4ba1a08a62fa7fe9f0a09ac8718839ec091df3ec17715ed7fa643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7648-3657 0000-0002-0033-2262 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9516979 |
PQID | 2570190897 |
PQPubID | 75722 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2570190897 crossref_primary_10_1109_JSTARS_2021_3105746 doaj_primary_oai_doaj_org_article_710fe00fcef5409e84a2136654113b53 crossref_citationtrail_10_1109_JSTARS_2021_3105746 ieee_primary_9516979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 bolpagni (ref19) 2017; 76 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref81 bresciani (ref39) 2017; 76 ref40 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref27 doi: 10.1109/JSTARS.2012.2227993 – ident: ref59 doi: 10.3390/w12082278 – ident: ref45 doi: 10.1016/j.marpolbul.2020.110889 – ident: ref3 doi: 10.1016/j.rse.2014.04.031 – ident: ref21 doi: 10.3390/rs10101656 – ident: ref17 doi: 10.3390/jmse7090314 – ident: ref7 doi: 10.2112/JCOASTRES-D-11-00051.1 – ident: ref61 doi: 10.1117/1.JRS.7.073465 – ident: ref28 doi: 10.1109/JSTARS.2017.2723079 – ident: ref40 doi: 10.1590/1519-6984.23814 – ident: ref64 doi: 10.1016/j.scitotenv.2020.139497 – ident: ref24 doi: 10.1016/j.asr.2016.06.005 – ident: ref20 doi: 10.1364/OE.26.026810 – ident: ref51 doi: 10.1016/j.rse.2009.05.012 – ident: ref75 doi: 10.1080/01431161.2015.1070323 – ident: ref78 doi: 10.1016/j.jglr.2019.03.006 – ident: ref44 doi: 10.1016/j.jglr.2011.06.009 – ident: ref1 doi: 10.1016/j.scib.2019.07.002 – ident: ref32 doi: 10.2175/106143014X13975035526149 – ident: ref38 doi: 10.1016/j.ecolind.2020.106073 – ident: ref46 doi: 10.1109/JSTARS.2017.2757006 – ident: ref34 doi: 10.1080/01431161.2018.1533657 – ident: ref37 doi: 10.1007/s10750-017-3462-2 – ident: ref56 doi: 10.1016/j.marpolbul.2014.04.015 – ident: ref42 doi: 10.1016/j.jglr.2019.01.005 – ident: ref2 doi: 10.1016/j.scitotenv.2017.02.182 – ident: ref16 doi: 10.1109/JSTARS.2016.2601083 – ident: ref33 doi: 10.1117/1.JRS.12.026003 – ident: ref67 doi: 10.1080/01431160802581958 – ident: ref54 doi: 10.3390/ijgi6100292 – ident: ref72 doi: 10.1016/j.hal.2013.11.003 – ident: ref74 doi: 10.1016/j.rse.2017.05.027 – ident: ref65 doi: 10.3390/s8063988 – ident: ref11 doi: 10.1016/j.jag.2020.102090 – ident: ref76 doi: 10.1016/j.jag.2018.03.008 – ident: ref63 doi: 10.3390/rs10020333 – ident: ref30 doi: 10.1016/j.rse.2016.02.065 – ident: ref35 doi: 10.1016/j.jag.2017.11.003 – ident: ref5 doi: 10.3389/fmars.2019.00587 – ident: ref50 doi: 10.1109/JSTARS.2010.2103927 – ident: ref43 doi: 10.3390/ijerph120911560 – ident: ref41 doi: 10.1016/j.rse.2009.02.005 – ident: ref49 doi: 10.1109/LGRS.2011.2182032 – ident: ref29 doi: 10.1109/JSTARS.2016.2555898 – ident: ref77 doi: 10.1007/s12665-016-5686-2 – ident: ref68 doi: 10.3390/rs9070755 – ident: ref81 doi: 10.3390/rs10050767 – volume: 76 start-page: 127 year: 2017 ident: ref39 article-title: Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes publication-title: Limnology – ident: ref23 doi: 10.1109/TGRS.2019.2917636 – ident: ref26 doi: 10.1109/JSTARS.2011.2163926 – ident: ref47 doi: 10.1016/j.pocean.2013.12.008 – ident: ref71 doi: 10.1029/2009JC005511 – ident: ref48 doi: 10.3390/rs9020133 – ident: ref60 doi: 10.15666/aeer/1803_46954708 – ident: ref10 doi: 10.1007/s10452-020-09761-1 – ident: ref80 doi: 10.1021/acs.est.8b06887 – ident: ref79 doi: 10.3390/w7051921 – ident: ref66 doi: 10.3390/rs6087442 – ident: ref25 doi: 10.1109/JSTARS.2016.2585142 – ident: ref58 doi: 10.3390/rs11192269 – ident: ref36 doi: 10.1071/MF18429 – ident: ref22 doi: 10.1080/01431161.2016.1207265 – ident: ref53 doi: 10.1117/1.JRS.13.024523 – ident: ref13 doi: 10.3390/w12041035 – volume: 76 start-page: 1 year: 2017 ident: ref19 article-title: Aquatic biomonitoring: Lessons from the past, challenges for the future publication-title: Limnology – ident: ref4 doi: 10.1016/j.watres.2020.115944 – ident: ref70 doi: 10.1038/srep40326 – ident: ref55 doi: 10.1016/j.rse.2015.11.020 – ident: ref62 doi: 10.3390/rs9060624 – ident: ref73 doi: 10.1016/j.rse.2019.111349 – ident: ref15 doi: 10.1109/JSTARS.2020.3001445 – ident: ref9 doi: 10.1088/1054-660X/26/12/125601 – ident: ref52 doi: 10.1016/j.jag.2015.02.002 – ident: ref18 doi: 10.3390/rs12152463 – ident: ref69 doi: 10.3390/w12071928 – ident: ref31 doi: 10.1109/JSTARS.2011.2174339 – ident: ref12 doi: 10.1016/j.rse.2013.07.040 – ident: ref6 doi: 10.3390/rs9121265 – ident: ref8 doi: 10.1002/wer.1220 – ident: ref57 doi: 10.1016/j.jag.2019.102038 – ident: ref14 doi: 10.1117/1.JRS.11.012005 |
SSID | ssj0062793 |
Score | 2.3658416 |
Snippet | Algal bloom is a serious global issue for inland waters, posing poses a serious threat to aquatic ecosystems. The timely and accurate detection of algal blooms... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8497 |
SubjectTerms | Algae Algal bloom Algal blooms Aquatic ecosystems Artificial satellites cyanobacteria Detection Eutrophication Imagery Inland waters Lakes Landsat Landsat operational land imager (OLI) Landsat satellites Microorganisms Monitoring Remote sensing Resolution Satellite imagery sentinel-2 multispectral instrument (MSI) Spaceborne remote sensing spatial autocorrelation Spatial discrimination Spatial distribution Spatial resolution Temporal resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqJKReEJQiQqHyoceu8NfG9jHQAqlokZoicbO89vgUNohsDv33jL2bCAkJLlwjZz-eZz1v1rPvEfKtSY1VtYSqxgGVAi0r72uoAJNliNZIE0u3xZ_x1a36dVffPbP6yj1hvTxwD9wpZsAEjKUACcmFBaO84DJ75nIum7rofGLOWxdT_Ro8Fhh2g8YQZ_YUg3zyd4bVoOBYpCJFyXz3WR4qcv2Dv8qLRblkmotdsjNQRDrpL22PfID2E9m-LBa8__fJzWTVLYrQKv0BXemkauki0UneRKdnc2TCS1o6AegstwK1MK8E_T2bUt9Gep0_7fUdvbme0uk9LibLz-T24ue_86tqsEWogmKmq3hUqamNDEFE1XjumfFjkbxOYBPzzPqAVZBB5gMBkYlJQuBa8xqiTh4ZyAHZahctHBKKE9FoMBoSU0pKncXOGBKMBoyIIoYREWuQXBg0w7N1xdyV2oFZ1yPrMrJuQHZEvm_-9NBLZrw-_Cyjvxma9a7LDxgFbogC91YUjMh-nrvNQWze_tN2RI7Xc-mGZ3Ppsm8fz9ud-ug9Tv2FfMy307-WOSZb3eMKTpCodM3XEpNPmQrfUw priority: 102 providerName: Directory of Open Access Journals |
Title | Automatic Detection of Algal Blooms Using Sentinel-2 MSI and Landsat OLI Images |
URI | https://ieeexplore.ieee.org/document/9516979 https://www.proquest.com/docview/2570190897 https://doaj.org/article/710fe00fcef5409e84a2136654113b53 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB21lZC4QEtBLJTKB4711o6TtX3cAqWLWiqxVOotcuzxpUsWsdkDfH3HTnaFAKHeosiOkryx_cYzfgPwtomNLSuFvKIGvEStuHMVcqTF0gdrlAk52-Lz5OKm_HRb3e7AyfYsDCLm5DMcp8scyw9Lv05bZac2BXW03YVdctz6s1qbWXdS6CywS3zE8iQZMygMSWFPycSnX-bkCxaSXFQiKInt_rYKZbH-obrKX1NyXmfOn8LV5g379JK78bprxv7XH-KND_2EfXgyEE427S3kAHawfQaPPuaCvj8P4Xq67pZZtpW9xy7nZbVsGdk0heTZ2YJ49YrlvAI2T4lFLS54wa7mM-bawC7TQWHXsevLGZt9o6lp9Rxuzj98fXfBhyIL3JfCdFyGMjaVUd4XoWycdMK4SRGdjmijcMI6Tz6VIR6FnrhFiAq91FpWGHR0xGdewF67bPElMIK10Wg0RlGWSukknSaIrjRoilAEP4Ji89NrPyiQp0IYizp7IsLWPVJ1QqoekBrBybbT916A4__NzxKa26ZJPTvfIBTqYTDWxKoiChE9RiKsFk3pCqlSHWYpVVOpERwm5LYPGUAbwdHGNuphpK_qVAVQpuCpfvXvXq_hcXrBftvmCPa6H2t8Q0Sma47zBsBxtuN7-PLs7g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGEIILv8ZEYYAPHJfOv1LHxw4YLbSbRDdpN8uxny-UFNH0sP31PDtphQAhblFkR0m-Z7_Pfs_fI-RtHWujSglFiQ0KBVoWzpVQADpLH0wlq5CzLc5Hkyv16bq83iPHu7MwAJCTz2CYLnMsP6z8Jm2VnZgU1NHmDrmLfr8U3Wmt7bw7EjpL7CIjMUUSjek1hjgzJ2jk4y8LXA0KjotUpCiJ7_7ih7Jcf19f5Y9JOXuas0dkvn3HLsHk63DT1kN_-5t84_9-xGPysKecdNzZyBOyB81Tcu9jLul7c0Auxpt2lYVb6Xtoc2ZWQ1eRjlNQnp4ukVmvac4soIuUWtTAshB0vphS1wQ6S0eFXUsvZlM6_YaT0_oZuTr7cPluUvRlFgqvWNUWPKhYl5X0XgRVO-5Y5UYiOh3BROaYcR5XVRUyKfDILkKU4LnWvISgo0NGc0j2m1UDzwlFYGsNlYbIlJJSJ_E0hoSlhkoEEfyAiO1Pt77XIE-lMJY2r0WYsR1SNiFle6QG5HjX6XsnwfHv5qcJzV3TpJ-dbyAKth-OFnlVBMaih4iU1UClnOAyVWLmXNalHJCDhNzuIT1oA3K0tQ3bj_W1TXUAeQqf6hd_7_WG3J9czmd2Nj3__JI8SC_bbeIckf32xwZeIa1p69fZmn8C6tnvQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Algal+Blooms+Using+Sentinel-2+MSI+and+Landsat+OLI+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Xu%2C+Dandan&rft.au=Pu%2C+Yihan&rft.au=Zhu%2C+Mengyuan&rft.au=Luan%2C+Zhaoqing&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=8497&rft.epage=8511&rft_id=info:doi/10.1109%2FJSTARS.2021.3105746&rft.externalDocID=9516979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |