GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition
In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore,...
Saved in:
Published in | IEEE access Vol. 7; pp. 137122 - 137135 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore, they have attractive properties for ubiquitous deployment and can be conveniently embedded into different devices. In this scope, current recognition methods still rely in deep CNN-LSTM and 3D CNN-LSTM structures that require sufficient labelled data to optimize millions of parameters and significant amount of computational resources for inference; which limits their deployment. Indeed, subtle gestures recognition is a challenging task due to the high variability of gestures among different subjects. To overcome the challenges in the recognition task and the limitations of the current methods, we propose a shallow learning approach for gesture recognition, that is based on unsupervised range-Doppler features representation, along with a learnable pooling aggregation via NetVLAD. The proposed framework can encode extremely valuable information across time, and results in features that are highly discriminative for hand gesture recognition. Experimentation on publicly available Doppler-radar data shows that the proposed framework outperforms state-of-the-art approaches in terms of recognition accuracy and speed for sequence-level hand gesture classification. |
---|---|
AbstractList | In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore, they have attractive properties for ubiquitous deployment and can be conveniently embedded into different devices. In this scope, current recognition methods still rely in deep CNN-LSTM and 3D CNN-LSTM structures that require sufficient labelled data to optimize millions of parameters and significant amount of computational resources for inference; which limits their deployment. Indeed, subtle gestures recognition is a challenging task due to the high variability of gestures among different subjects. To overcome the challenges in the recognition task and the limitations of the current methods, we propose a shallow learning approach for gesture recognition, that is based on unsupervised range-Doppler features representation, along with a learnable pooling aggregation via NetVLAD. The proposed framework can encode extremely valuable information across time, and results in features that are highly discriminative for hand gesture recognition. Experimentation on publicly available Doppler-radar data shows that the proposed framework outperforms state-of-the-art approaches in terms of recognition accuracy and speed for sequence-level hand gesture classification. |
Author | Khalid, Habib-Ur-Rehman Bourdoux, Andre Alioscha-Perez, Mitchel Oveneke, Meshia Cedric Sahli, Hichem Berenguer, Abel Diaz |
Author_xml | – sequence: 1 givenname: Abel Diaz orcidid: 0000-0003-4970-6517 surname: Berenguer fullname: Berenguer, Abel Diaz email: aberengu@etrovub.be organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 2 givenname: Meshia Cedric surname: Oveneke fullname: Oveneke, Meshia Cedric organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 3 givenname: Habib-Ur-Rehman surname: Khalid fullname: Khalid, Habib-Ur-Rehman organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 4 givenname: Mitchel surname: Alioscha-Perez fullname: Alioscha-Perez, Mitchel organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 5 givenname: Andre surname: Bourdoux fullname: Bourdoux, Andre organization: Interuniversity Microelectronics Centre (IMEC), Heverlee, Belgium – sequence: 6 givenname: Hichem orcidid: 0000-0002-1774-2970 surname: Sahli fullname: Sahli, Hichem organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium |
BookMark | eNp9UU1v1DAQjVCRKKW_oJdInLPYcezY3FbpB5VWQuq2XK2JM468ytrBySJx5J_jkAUhDtiHGY3fe56Z9za78MFjlt1QsqGUqA_bprnb7zcloWpTqqpkhL_KLksqVME4Exd_5W-y62k6kHRkKvH6MvvxgNN8ivhlt739mDfh2DrvfJ-_-Ok0YvzmJuzye4QFM-VPOKaAfobZBZ-D7_L9uOTFMx7HEGHIt30fsV_fbYj5bRjHAWPxBB3E_PxbEjKh925BvcteWxgmvD7Hq-zl_u65-VTsPj88NttdYSoi54IaYWUrDDCiaqsMlJYBZ9Zww4nhIK0hLWdAOyKAo2CtQmBgLXCZLmdX2eOq2wU46DG6I8TvOoDTvwoh9hri7MyAuhO849iJjmJdGUpkW9fUSmlUJZhikLTer1pjDF9PaSZ9CKfoU_u6rDgXFReUJpRaUSaGaYpotXHr5uYIbtCU6MVAvRqoFwP12cDEZf9wf3f8f9bNynKI-IchZVWJWrGfUG2rYA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_JSEN_2022_3229764 crossref_primary_10_1109_TMC_2022_3153717 crossref_primary_10_1145_3448110 crossref_primary_10_1145_3593231 crossref_primary_10_1049_rsn2_12280 crossref_primary_10_3390_s23177478 crossref_primary_10_1016_j_compeleceng_2022_107836 crossref_primary_10_1109_LSENS_2023_3270894 crossref_primary_10_1016_j_neucom_2022_04_035 crossref_primary_10_1109_TIM_2024_3396828 crossref_primary_10_1109_JIOT_2021_3072169 crossref_primary_10_3390_rs16132267 crossref_primary_10_1109_ACCESS_2024_3366667 crossref_primary_10_1007_s12652_023_04606_9 crossref_primary_10_1145_3589645 crossref_primary_10_1109_JSEN_2022_3163449 crossref_primary_10_1109_JSEN_2023_3319339 crossref_primary_10_1109_TGRS_2021_3122332 |
Cites_doi | 10.1109/TPAMI.2015.2496141 10.1109/CVPR.2018.00745 10.1093/oso/9780198799603.001.0001 10.1109/LSENS.2018.2810093 10.1109/RADAR.2017.7944336 10.1093/imaiai/iaw009 10.1109/ACCESS.2019.2903586 10.1109/TNNLS.2015.2496947 10.1109/ACCESS.2019.2897060 10.1109/ICCV.2003.1238663 10.1007/s13042-017-0705-5 10.1109/CVPR.2013.207 10.1109/CVPRW.2014.131 10.1109/TPAMI.2013.50 10.1016/j.patcog.2017.12.023 10.1109/ISACV.2018.8354082 10.1007/978-3-642-23783-6_41 10.1007/BFb0052990 10.1016/j.neucom.2005.12.126 10.1145/2733373.2807412 10.3390/s18010010 10.1109/RADAR.2017.7944488 10.1109/CAMA.2017.8273461 10.1109/TPAMI.2011.235 10.1109/TAES.2018.2799758 10.1145/2984511.2984565 10.1007/s11263-013-0636-x 10.1145/2897824.2925953 10.1109/JSEN.2019.2892073 10.1109/JSEN.2019.2917375 10.1145/1390156.1390294 10.1109/CVPR.2017.337 10.1109/ICRA.2015.7139614 10.1109/ACCESS.2016.2617282 10.3390/s17040833 10.1109/JSEN.2018.2808688 10.1007/978-3-030-00692-1_38 10.1007/978-3-319-46466-4_50 10.1109/ICCVW.2013.69 10.1109/CVPR.2016.572 10.1109/ICMIM.2018.8443507 10.1109/CVPR.1993.341109 10.1109/CVPR.2017.502 10.1049/iet-rsn.2017.0570 10.1109/TAES.2017.2761229 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2942305 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 137135 |
ExternalDocumentID | oai_doaj_org_article_d65d5ed6d1e74c108b771f88c946393a 10_1109_ACCESS_2019_2942305 8844679 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-1c6f8b6ca3097f9ca2f3a53fc5c50c5a8fc0b53a1d06a5e63b9ea3affa5858553 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:16:20 EDT 2025 Sun Jun 29 15:42:14 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 02:41:58 EDT 2025 Wed Aug 27 05:51:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-1c6f8b6ca3097f9ca2f3a53fc5c50c5a8fc0b53a1d06a5e63b9ea3affa5858553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4970-6517 0000-0002-1774-2970 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8844679 |
PQID | 2455645611 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2942305 proquest_journals_2455645611 crossref_primary_10_1109_ACCESS_2019_2942305 doaj_primary_oai_doaj_org_article_d65d5ed6d1e74c108b771f88c946393a ieee_primary_8844679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | bengio (ref39) 2013 ref57 ref13 ref56 ref12 ref59 ref14 ref53 ref52 ref55 tang (ref58) 2016 ref10 jirak (ref15) 2015; 475 ref17 peng (ref54) 2013; 13 ref19 molchanov (ref4) 2015; 1 bernardo (ref11) 2017 ref51 ref50 ngiam (ref45) 2011 ref48 tsironi (ref16) 2016 ref47 ref42 ref44 wan (ref34) 2014 golub (ref66) 2012; 3 ref8 ref7 ref9 ref3 ref6 maghoumi (ref49) 2018 ref5 abu-el-haija (ref46) 2016 ref35 ref37 ref36 kmiec (ref72) 2018 ref30 ref33 alain (ref40) 2014; 15 ref32 abadi (ref69) 2016 ref2 dauphin (ref60) 2017; 70 ref1 ref38 zhang (ref18) 2017 oveneke (ref43) 2016 kammler (ref65) 2007 kavukcuoglu (ref21) 2010 ref70 ref68 zhong (ref71) 2018 ref23 ref26 ref25 ref64 ref20 sohn (ref24) 2012 ref63 donahue (ref62) 2014 ref28 ref27 ref29 masci (ref41) 2011 hefny (ref67) 2015 miech (ref31) 2017 ref61 rifai (ref22) 2011 |
References_xml | – start-page: 1096 year: 2017 ident: ref18 article-title: Doppler-radar based hand gesture recognition system using convolutional neural networks publication-title: Proc Int Conf Signal Process Commun – volume: 13 start-page: 109 year: 2013 ident: ref54 article-title: Hybrid super vector with improved dense trajectories for action recognition publication-title: Proc ICCV Workshops – start-page: 1090 year: 2010 ident: ref21 article-title: Learning convolutional feature hierarchies for visual recognition publication-title: Advances in neural information processing systems – year: 2018 ident: ref72 article-title: Learnable pooling methods for video classification publication-title: arXiv 1810 00530 – ident: ref26 doi: 10.1109/TPAMI.2015.2496141 – ident: ref61 doi: 10.1109/CVPR.2018.00745 – ident: ref19 doi: 10.1093/oso/9780198799603.001.0001 – ident: ref33 doi: 10.1109/LSENS.2018.2810093 – ident: ref7 doi: 10.1109/RADAR.2017.7944336 – year: 2017 ident: ref31 article-title: Learnable pooling with context gating for video classification publication-title: arXiv 1706 06905 – ident: ref25 doi: 10.1093/imaiai/iaw009 – ident: ref27 doi: 10.1109/ACCESS.2019.2903586 – ident: ref64 doi: 10.1109/TNNLS.2015.2496947 – ident: ref29 doi: 10.1109/ACCESS.2019.2897060 – ident: ref51 doi: 10.1109/ICCV.2003.1238663 – start-page: 265 year: 2011 ident: ref45 article-title: On optimization methods for deep learning publication-title: Proc 28th Int Conf Mach Learn (ICML) – volume: 70 start-page: 933 year: 2017 ident: ref60 article-title: Language modeling with gated convolutional networks publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref1 doi: 10.1007/s13042-017-0705-5 – start-page: 1339 year: 2012 ident: ref24 article-title: Learning invariant representations with local transformations publication-title: Proc 29th Int Conf Mach Learn (ICML) – ident: ref59 doi: 10.1109/CVPR.2013.207 – ident: ref63 doi: 10.1109/CVPRW.2014.131 – ident: ref38 doi: 10.1109/TPAMI.2013.50 – ident: ref50 doi: 10.1016/j.patcog.2017.12.023 – ident: ref55 doi: 10.1109/ISACV.2018.8354082 – ident: ref23 doi: 10.1007/978-3-642-23783-6_41 – ident: ref12 doi: 10.1007/BFb0052990 – start-page: 52 year: 2011 ident: ref41 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: Artificial Neural Networks in Machine Learning – year: 2016 ident: ref58 article-title: Deep FisherNet for object classification publication-title: arXiv 1608 00182 – ident: ref70 doi: 10.1016/j.neucom.2005.12.126 – ident: ref68 doi: 10.1145/2733373.2807412 – volume: 15 start-page: 3563 year: 2014 ident: ref40 article-title: What regularized auto-encoders learn from the data-generating distribution publication-title: J Mach Learn Res – ident: ref5 doi: 10.3390/s18010010 – year: 2018 ident: ref49 article-title: DeepGRU: Deep gesture recognition utility publication-title: arXiv 1810 12514 – ident: ref44 doi: 10.1109/RADAR.2017.7944488 – ident: ref9 doi: 10.1109/CAMA.2017.8273461 – year: 2018 ident: ref71 article-title: GhostVLAD for set-based face recognition publication-title: arXiv 1810 09951 – ident: ref52 doi: 10.1109/TPAMI.2011.235 – start-page: 6414 year: 2014 ident: ref34 article-title: Gesture recognition for smart home applications using portable radar sensors publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref42 doi: 10.1109/TAES.2018.2799758 – year: 2007 ident: ref65 publication-title: A First Course in Fourier Analysis – start-page: 833 year: 2011 ident: ref22 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Proc 28th Int Conf Mach Learn – ident: ref10 doi: 10.1145/2984511.2984565 – ident: ref53 doi: 10.1007/s11263-013-0636-x – start-page: 899 year: 2013 ident: ref39 article-title: Generalized denoising auto-encoders as generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1145/2897824.2925953 – volume: 1 start-page: 1 year: 2015 ident: ref4 article-title: Multi-sensor system for driver's hand-gesture recognition publication-title: Proc 11th IEEE Int Conf Workshops Autom Face Gesture Recognit (FG) – volume: 3 year: 2012 ident: ref66 publication-title: Matrix Computations – year: 2015 ident: ref67 article-title: Rows vs. columns: Randomized Kaczmarz or gauss-seidel for ridge regression publication-title: arXiv 1507 05844 – ident: ref3 doi: 10.1109/JSEN.2019.2892073 – ident: ref37 doi: 10.1109/JSEN.2019.2917375 – volume: 475 start-page: 591 year: 2015 ident: ref15 article-title: Dynamic gesture recognition using echo state networks publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN) – ident: ref20 doi: 10.1145/1390156.1390294 – ident: ref30 doi: 10.1109/CVPR.2017.337 – ident: ref57 doi: 10.1109/ICRA.2015.7139614 – ident: ref17 doi: 10.1109/ACCESS.2016.2617282 – ident: ref8 doi: 10.3390/s17040833 – start-page: 1 year: 2016 ident: ref16 article-title: Gesture recognition with a convolutional long short-term memory recurrent neural network publication-title: Proc ESANN – ident: ref28 doi: 10.1109/JSEN.2018.2808688 – ident: ref56 doi: 10.1007/978-3-030-00692-1_38 – ident: ref47 doi: 10.1007/978-3-319-46466-4_50 – start-page: 1 year: 2016 ident: ref43 article-title: Efficient convolutional auto-encoding via random convexification and frequency-domain minimization publication-title: Proc NIPS Workshop Efficient Methods Deep Neural Netw – start-page: 283 year: 2017 ident: ref11 article-title: O soli mio: Exploring millimeter wave radar for musical interaction publication-title: Proc Intl Conf on New Interfaces for Musical Expression (NIME07) – ident: ref14 doi: 10.1109/ICCVW.2013.69 – start-page: 265 year: 2016 ident: ref69 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc 12th USENIX Conf Oper Syst Design Implement (OSDI) – year: 2016 ident: ref46 article-title: YouTube-8M: A large-scale video classification benchmark publication-title: arXiv 1609 08675 – ident: ref32 doi: 10.1109/CVPR.2016.572 – ident: ref6 doi: 10.1109/ICMIM.2018.8443507 – ident: ref13 doi: 10.1109/CVPR.1993.341109 – start-page: 647 year: 2014 ident: ref62 article-title: DeCAF: A deep convolutional activation feature for generic visual recognition publication-title: Proc Int Conf Mach Learn – ident: ref48 doi: 10.1109/CVPR.2017.502 – ident: ref36 doi: 10.1049/iet-rsn.2017.0570 – ident: ref35 doi: 10.1109/TAES.2017.2761229 |
SSID | ssj0000816957 |
Score | 2.278137 |
Snippet | In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137122 |
SubjectTerms | Agglomeration Cameras Convolution Convolutional neural networks Doppler-radar Experimentation feature aggregation Feature extraction Gesture recognition hand gesture recognition Radar Radar data Representations Sensors Signal processing Task analysis unsupervised representation learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BA0IJYKJUPHGtqx7Fjc1u2lKoCDksX9WaNx04vKFvtxw_gn2M73tVKSHDhmthx7BnPvEnGbwh5p2SAZPUlaxADa1FK5o23jMcgjY_QaZsPCn_9pq8X7c2dujso9ZVzwkZ64HHhLoJWQcWgg4hdi4Ib33WiNwZtm5yrLNAo-byDYKrYYCO0VV2lGRLcXkxnszSjnMtl3zc2gYhcsO7AFRXG_lpi5Q-7XJzN1TPytKJEOh3f7jl5FIdj8uSAO_CE_Pqc-m1X8ceX6eUHmra1L6Ue6GJYbx-yAVjHQDPAS23WdF4SXus5o4HCEOj3kkvNbkduqjTYfQq978f7CcnSy2UCqHHF5hBgRetodL5LOFoOL8ji6tPt7JrVegoMW242TKDujdcIktuutwhNL0HJHhUqjgpMj9wrCSJwDSpq6W0ECX0PKv89VPIlORqWQ3xFKAT0KLRHiLaVqa_qLISE7QJGBaGdkGa3tA4r2XiuefHTlaCDWzfKw2V5uCqPCTnfd3oYuTb-3vxjltm-aSbKLheS-riqPu5f6jMhJ1ni-4cYk-Ljzk7I6U4DXN3Ua9e0KnPvaCFe_4-h35DHeTrj95xTcrRZbePbhHA2_qwo829nDvkK priority: 102 providerName: Directory of Open Access Journals |
Title | GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition |
URI | https://ieeexplore.ieee.org/document/8844679 https://www.proquest.com/docview/2455645611 https://doaj.org/article/d65d5ed6d1e74c108b771f88c946393a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWSuUDx3qbxLFjc1u2lApRDksX9WaNx04PRdlqd3Phxj_HdrxRBQhxixI7nmgm45nxzDeEvBXcQdD6nFWIjtXIObPKalZ4x5X10EgdC4Uvv8iLZf3pWlzvkZOxFsZ7n5LP_DReprN8t8I-hspOlQrOS6P3yX5w3IZarTGeEhtIaNFkYKGy0Kez-Tx8Q8ze0tNKB7Mhtqi7t_kkjP7cVOUPTZy2l_PH5HJH2JBVcjvtt3aKP37DbPxfyp-QR9nOpLNBMJ6SPd89Iw_voQ8ekp8fAx392n_7PDt7R4NisKlZBF12m_4uqpCNdzSaiGHMhi5SymyuVOoodI5-TdnY7GpAtwqL3QTn_WZ4HmxherYKJq5fswU4WNO8Gl3sUpZW3XOyPP9wNb9guSMDw7pQW1aibJWVCLzQTasRqpaD4C0KFAUKUC0WVnAoXSFBeMmt9sChbUHE80fBX5CDbtX5l4SCQ4ultAhe1zzMFY0GF6xDh16Aqyek2rHKYIYrj10zvpvkthTaDPw1kb8m83dCTsZJdwNax7-Hv48yMA6NUNvpRuCdyX-ucVI44Z10pW9qLAtlm6ZslUJdB-uOw4QcRn6PL8msnpCjnUSZrBY2pqpFRO-RZfnq77NekweRwCHGc0QOtuvevwlWz9Yep2jBcRL6X2MOA9k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENWUcgAOfBWGQAEdONapbVmyxC2klABJDyFhetOsVnIPME4niS_c-OdIspLpAMNw89iStZ5dr56k3beEvOHMgvf6LCsRbVYhY5mRRmW5s0waB7VQIVF4diEmy-rTJb88ICf7XBjnXAw-c8NwGc_y7Qq7sFV2KqVfvNTqFrnt531e9Nla-x2VUEJC8TpRCxW5Oh2Nx_4rQvyWGpbKA4dQpO7G9BNZ-lNZlT98cZxgzh-Q2U60Pq7k27DbmiH--I218X9lf0juJ6RJR71pPCIHrn1M7t3gHzwiPz94Obq1-zodnb2l3jWYWC6CLttNdx2cyMZZGkCib7Oh8xg0m3KVWgqtpV9iPHa26Pmt_GBXfvl-1T_3aJierTzIdetsDhbWNI1G57ugpVX7hCzP3y_GkyzVZMiwyuU2K1A00ggElqu6UQhlw4CzBjnyHDnIBnPDGRQ2F8CdYEY5YNA0wMMJJGdPyWG7at0zQsGiwUIYBKcq5vvyWoH1-NCi42CrASl3qtKYCMtD3YzvOi5ccqV7_eqgX530OyAn-07XPV_Hv5u_CzawbxrItuMNrzud_l1tBbfcWWELV1dY5NLUddFIiary-I7BgBwFfe9fklQ9IMc7i9LJMWx06Q1XBNBaPP97r9fkzmQxm-rpx4vPL8jdIGy_43NMDrfrzr30GGhrXkXT_wXrNwYt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GestureVLAD%3A+Combining+Unsupervised+Features+Representation+and+Spatio-Temporal+Aggregation+for+Doppler-Radar+Gesture+Recognition&rft.jtitle=IEEE+access&rft.au=Berenguer%2C+Abel+Diaz&rft.au=Oveneke%2C+Meshia+Cedric&rft.au=Khalid%2C+Habib-Ur-Rehman&rft.au=Alioscha-Perez%2C+Mitchel&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=137122&rft.epage=137135&rft_id=info:doi/10.1109%2FACCESS.2019.2942305&rft.externalDocID=8844679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |