GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition

In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 137122 - 137135
Main Authors Berenguer, Abel Diaz, Oveneke, Meshia Cedric, Khalid, Habib-Ur-Rehman, Alioscha-Perez, Mitchel, Bourdoux, Andre, Sahli, Hichem
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore, they have attractive properties for ubiquitous deployment and can be conveniently embedded into different devices. In this scope, current recognition methods still rely in deep CNN-LSTM and 3D CNN-LSTM structures that require sufficient labelled data to optimize millions of parameters and significant amount of computational resources for inference; which limits their deployment. Indeed, subtle gestures recognition is a challenging task due to the high variability of gestures among different subjects. To overcome the challenges in the recognition task and the limitations of the current methods, we propose a shallow learning approach for gesture recognition, that is based on unsupervised range-Doppler features representation, along with a learnable pooling aggregation via NetVLAD. The proposed framework can encode extremely valuable information across time, and results in features that are highly discriminative for hand gesture recognition. Experimentation on publicly available Doppler-radar data shows that the proposed framework outperforms state-of-the-art approaches in terms of recognition accuracy and speed for sequence-level hand gesture classification.
AbstractList In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over other emerging sensing modalities, including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore, they have attractive properties for ubiquitous deployment and can be conveniently embedded into different devices. In this scope, current recognition methods still rely in deep CNN-LSTM and 3D CNN-LSTM structures that require sufficient labelled data to optimize millions of parameters and significant amount of computational resources for inference; which limits their deployment. Indeed, subtle gestures recognition is a challenging task due to the high variability of gestures among different subjects. To overcome the challenges in the recognition task and the limitations of the current methods, we propose a shallow learning approach for gesture recognition, that is based on unsupervised range-Doppler features representation, along with a learnable pooling aggregation via NetVLAD. The proposed framework can encode extremely valuable information across time, and results in features that are highly discriminative for hand gesture recognition. Experimentation on publicly available Doppler-radar data shows that the proposed framework outperforms state-of-the-art approaches in terms of recognition accuracy and speed for sequence-level hand gesture classification.
Author Khalid, Habib-Ur-Rehman
Bourdoux, Andre
Alioscha-Perez, Mitchel
Oveneke, Meshia Cedric
Sahli, Hichem
Berenguer, Abel Diaz
Author_xml – sequence: 1
  givenname: Abel Diaz
  orcidid: 0000-0003-4970-6517
  surname: Berenguer
  fullname: Berenguer, Abel Diaz
  email: aberengu@etrovub.be
  organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
– sequence: 2
  givenname: Meshia Cedric
  surname: Oveneke
  fullname: Oveneke, Meshia Cedric
  organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
– sequence: 3
  givenname: Habib-Ur-Rehman
  surname: Khalid
  fullname: Khalid, Habib-Ur-Rehman
  organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
– sequence: 4
  givenname: Mitchel
  surname: Alioscha-Perez
  fullname: Alioscha-Perez, Mitchel
  organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
– sequence: 5
  givenname: Andre
  surname: Bourdoux
  fullname: Bourdoux, Andre
  organization: Interuniversity Microelectronics Centre (IMEC), Heverlee, Belgium
– sequence: 6
  givenname: Hichem
  orcidid: 0000-0002-1774-2970
  surname: Sahli
  fullname: Sahli, Hichem
  organization: Department of Electronics and Informatics (ETRO), VUP-NPU Joint Audio-Visual Signal Processing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
BookMark eNp9UU1v1DAQjVCRKKW_oJdInLPYcezY3FbpB5VWQuq2XK2JM468ytrBySJx5J_jkAUhDtiHGY3fe56Z9za78MFjlt1QsqGUqA_bprnb7zcloWpTqqpkhL_KLksqVME4Exd_5W-y62k6kHRkKvH6MvvxgNN8ivhlt739mDfh2DrvfJ-_-Ok0YvzmJuzye4QFM-VPOKaAfobZBZ-D7_L9uOTFMx7HEGHIt30fsV_fbYj5bRjHAWPxBB3E_PxbEjKh925BvcteWxgmvD7Hq-zl_u65-VTsPj88NttdYSoi54IaYWUrDDCiaqsMlJYBZ9Zww4nhIK0hLWdAOyKAo2CtQmBgLXCZLmdX2eOq2wU46DG6I8TvOoDTvwoh9hri7MyAuhO849iJjmJdGUpkW9fUSmlUJZhikLTer1pjDF9PaSZ9CKfoU_u6rDgXFReUJpRaUSaGaYpotXHr5uYIbtCU6MVAvRqoFwP12cDEZf9wf3f8f9bNynKI-IchZVWJWrGfUG2rYA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSEN_2022_3229764
crossref_primary_10_1109_TMC_2022_3153717
crossref_primary_10_1145_3448110
crossref_primary_10_1145_3593231
crossref_primary_10_1049_rsn2_12280
crossref_primary_10_3390_s23177478
crossref_primary_10_1016_j_compeleceng_2022_107836
crossref_primary_10_1109_LSENS_2023_3270894
crossref_primary_10_1016_j_neucom_2022_04_035
crossref_primary_10_1109_TIM_2024_3396828
crossref_primary_10_1109_JIOT_2021_3072169
crossref_primary_10_3390_rs16132267
crossref_primary_10_1109_ACCESS_2024_3366667
crossref_primary_10_1007_s12652_023_04606_9
crossref_primary_10_1145_3589645
crossref_primary_10_1109_JSEN_2022_3163449
crossref_primary_10_1109_JSEN_2023_3319339
crossref_primary_10_1109_TGRS_2021_3122332
Cites_doi 10.1109/TPAMI.2015.2496141
10.1109/CVPR.2018.00745
10.1093/oso/9780198799603.001.0001
10.1109/LSENS.2018.2810093
10.1109/RADAR.2017.7944336
10.1093/imaiai/iaw009
10.1109/ACCESS.2019.2903586
10.1109/TNNLS.2015.2496947
10.1109/ACCESS.2019.2897060
10.1109/ICCV.2003.1238663
10.1007/s13042-017-0705-5
10.1109/CVPR.2013.207
10.1109/CVPRW.2014.131
10.1109/TPAMI.2013.50
10.1016/j.patcog.2017.12.023
10.1109/ISACV.2018.8354082
10.1007/978-3-642-23783-6_41
10.1007/BFb0052990
10.1016/j.neucom.2005.12.126
10.1145/2733373.2807412
10.3390/s18010010
10.1109/RADAR.2017.7944488
10.1109/CAMA.2017.8273461
10.1109/TPAMI.2011.235
10.1109/TAES.2018.2799758
10.1145/2984511.2984565
10.1007/s11263-013-0636-x
10.1145/2897824.2925953
10.1109/JSEN.2019.2892073
10.1109/JSEN.2019.2917375
10.1145/1390156.1390294
10.1109/CVPR.2017.337
10.1109/ICRA.2015.7139614
10.1109/ACCESS.2016.2617282
10.3390/s17040833
10.1109/JSEN.2018.2808688
10.1007/978-3-030-00692-1_38
10.1007/978-3-319-46466-4_50
10.1109/ICCVW.2013.69
10.1109/CVPR.2016.572
10.1109/ICMIM.2018.8443507
10.1109/CVPR.1993.341109
10.1109/CVPR.2017.502
10.1049/iet-rsn.2017.0570
10.1109/TAES.2017.2761229
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2942305
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 137135
ExternalDocumentID oai_doaj_org_article_d65d5ed6d1e74c108b771f88c946393a
10_1109_ACCESS_2019_2942305
8844679
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1c6f8b6ca3097f9ca2f3a53fc5c50c5a8fc0b53a1d06a5e63b9ea3affa5858553
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:16:20 EDT 2025
Sun Jun 29 15:42:14 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 02:41:58 EDT 2025
Wed Aug 27 05:51:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1c6f8b6ca3097f9ca2f3a53fc5c50c5a8fc0b53a1d06a5e63b9ea3affa5858553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4970-6517
0000-0002-1774-2970
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8844679
PQID 2455645611
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2942305
proquest_journals_2455645611
crossref_primary_10_1109_ACCESS_2019_2942305
doaj_primary_oai_doaj_org_article_d65d5ed6d1e74c108b771f88c946393a
ieee_primary_8844679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bengio (ref39) 2013
ref57
ref13
ref56
ref12
ref59
ref14
ref53
ref52
ref55
tang (ref58) 2016
ref10
jirak (ref15) 2015; 475
ref17
peng (ref54) 2013; 13
ref19
molchanov (ref4) 2015; 1
bernardo (ref11) 2017
ref51
ref50
ngiam (ref45) 2011
ref48
tsironi (ref16) 2016
ref47
ref42
ref44
wan (ref34) 2014
golub (ref66) 2012; 3
ref8
ref7
ref9
ref3
ref6
maghoumi (ref49) 2018
ref5
abu-el-haija (ref46) 2016
ref35
ref37
ref36
kmiec (ref72) 2018
ref30
ref33
alain (ref40) 2014; 15
ref32
abadi (ref69) 2016
ref2
dauphin (ref60) 2017; 70
ref1
ref38
zhang (ref18) 2017
oveneke (ref43) 2016
kammler (ref65) 2007
kavukcuoglu (ref21) 2010
ref70
ref68
zhong (ref71) 2018
ref23
ref26
ref25
ref64
ref20
sohn (ref24) 2012
ref63
donahue (ref62) 2014
ref28
ref27
ref29
masci (ref41) 2011
hefny (ref67) 2015
miech (ref31) 2017
ref61
rifai (ref22) 2011
References_xml – start-page: 1096
  year: 2017
  ident: ref18
  article-title: Doppler-radar based hand gesture recognition system using convolutional neural networks
  publication-title: Proc Int Conf Signal Process Commun
– volume: 13
  start-page: 109
  year: 2013
  ident: ref54
  article-title: Hybrid super vector with improved dense trajectories for action recognition
  publication-title: Proc ICCV Workshops
– start-page: 1090
  year: 2010
  ident: ref21
  article-title: Learning convolutional feature hierarchies for visual recognition
  publication-title: Advances in neural information processing systems
– year: 2018
  ident: ref72
  article-title: Learnable pooling methods for video classification
  publication-title: arXiv 1810 00530
– ident: ref26
  doi: 10.1109/TPAMI.2015.2496141
– ident: ref61
  doi: 10.1109/CVPR.2018.00745
– ident: ref19
  doi: 10.1093/oso/9780198799603.001.0001
– ident: ref33
  doi: 10.1109/LSENS.2018.2810093
– ident: ref7
  doi: 10.1109/RADAR.2017.7944336
– year: 2017
  ident: ref31
  article-title: Learnable pooling with context gating for video classification
  publication-title: arXiv 1706 06905
– ident: ref25
  doi: 10.1093/imaiai/iaw009
– ident: ref27
  doi: 10.1109/ACCESS.2019.2903586
– ident: ref64
  doi: 10.1109/TNNLS.2015.2496947
– ident: ref29
  doi: 10.1109/ACCESS.2019.2897060
– ident: ref51
  doi: 10.1109/ICCV.2003.1238663
– start-page: 265
  year: 2011
  ident: ref45
  article-title: On optimization methods for deep learning
  publication-title: Proc 28th Int Conf Mach Learn (ICML)
– volume: 70
  start-page: 933
  year: 2017
  ident: ref60
  article-title: Language modeling with gated convolutional networks
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref1
  doi: 10.1007/s13042-017-0705-5
– start-page: 1339
  year: 2012
  ident: ref24
  article-title: Learning invariant representations with local transformations
  publication-title: Proc 29th Int Conf Mach Learn (ICML)
– ident: ref59
  doi: 10.1109/CVPR.2013.207
– ident: ref63
  doi: 10.1109/CVPRW.2014.131
– ident: ref38
  doi: 10.1109/TPAMI.2013.50
– ident: ref50
  doi: 10.1016/j.patcog.2017.12.023
– ident: ref55
  doi: 10.1109/ISACV.2018.8354082
– ident: ref23
  doi: 10.1007/978-3-642-23783-6_41
– ident: ref12
  doi: 10.1007/BFb0052990
– start-page: 52
  year: 2011
  ident: ref41
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artificial Neural Networks in Machine Learning
– year: 2016
  ident: ref58
  article-title: Deep FisherNet for object classification
  publication-title: arXiv 1608 00182
– ident: ref70
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref68
  doi: 10.1145/2733373.2807412
– volume: 15
  start-page: 3563
  year: 2014
  ident: ref40
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.3390/s18010010
– year: 2018
  ident: ref49
  article-title: DeepGRU: Deep gesture recognition utility
  publication-title: arXiv 1810 12514
– ident: ref44
  doi: 10.1109/RADAR.2017.7944488
– ident: ref9
  doi: 10.1109/CAMA.2017.8273461
– year: 2018
  ident: ref71
  article-title: GhostVLAD for set-based face recognition
  publication-title: arXiv 1810 09951
– ident: ref52
  doi: 10.1109/TPAMI.2011.235
– start-page: 6414
  year: 2014
  ident: ref34
  article-title: Gesture recognition for smart home applications using portable radar sensors
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref42
  doi: 10.1109/TAES.2018.2799758
– year: 2007
  ident: ref65
  publication-title: A First Course in Fourier Analysis
– start-page: 833
  year: 2011
  ident: ref22
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref10
  doi: 10.1145/2984511.2984565
– ident: ref53
  doi: 10.1007/s11263-013-0636-x
– start-page: 899
  year: 2013
  ident: ref39
  article-title: Generalized denoising auto-encoders as generative models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1145/2897824.2925953
– volume: 1
  start-page: 1
  year: 2015
  ident: ref4
  article-title: Multi-sensor system for driver's hand-gesture recognition
  publication-title: Proc 11th IEEE Int Conf Workshops Autom Face Gesture Recognit (FG)
– volume: 3
  year: 2012
  ident: ref66
  publication-title: Matrix Computations
– year: 2015
  ident: ref67
  article-title: Rows vs. columns: Randomized Kaczmarz or gauss-seidel for ridge regression
  publication-title: arXiv 1507 05844
– ident: ref3
  doi: 10.1109/JSEN.2019.2892073
– ident: ref37
  doi: 10.1109/JSEN.2019.2917375
– volume: 475
  start-page: 591
  year: 2015
  ident: ref15
  article-title: Dynamic gesture recognition using echo state networks
  publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN)
– ident: ref20
  doi: 10.1145/1390156.1390294
– ident: ref30
  doi: 10.1109/CVPR.2017.337
– ident: ref57
  doi: 10.1109/ICRA.2015.7139614
– ident: ref17
  doi: 10.1109/ACCESS.2016.2617282
– ident: ref8
  doi: 10.3390/s17040833
– start-page: 1
  year: 2016
  ident: ref16
  article-title: Gesture recognition with a convolutional long short-term memory recurrent neural network
  publication-title: Proc ESANN
– ident: ref28
  doi: 10.1109/JSEN.2018.2808688
– ident: ref56
  doi: 10.1007/978-3-030-00692-1_38
– ident: ref47
  doi: 10.1007/978-3-319-46466-4_50
– start-page: 1
  year: 2016
  ident: ref43
  article-title: Efficient convolutional auto-encoding via random convexification and frequency-domain minimization
  publication-title: Proc NIPS Workshop Efficient Methods Deep Neural Netw
– start-page: 283
  year: 2017
  ident: ref11
  article-title: O soli mio: Exploring millimeter wave radar for musical interaction
  publication-title: Proc Intl Conf on New Interfaces for Musical Expression (NIME07)
– ident: ref14
  doi: 10.1109/ICCVW.2013.69
– start-page: 265
  year: 2016
  ident: ref69
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc 12th USENIX Conf Oper Syst Design Implement (OSDI)
– year: 2016
  ident: ref46
  article-title: YouTube-8M: A large-scale video classification benchmark
  publication-title: arXiv 1609 08675
– ident: ref32
  doi: 10.1109/CVPR.2016.572
– ident: ref6
  doi: 10.1109/ICMIM.2018.8443507
– ident: ref13
  doi: 10.1109/CVPR.1993.341109
– start-page: 647
  year: 2014
  ident: ref62
  article-title: DeCAF: A deep convolutional activation feature for generic visual recognition
  publication-title: Proc Int Conf Mach Learn
– ident: ref48
  doi: 10.1109/CVPR.2017.502
– ident: ref36
  doi: 10.1049/iet-rsn.2017.0570
– ident: ref35
  doi: 10.1109/TAES.2017.2761229
SSID ssj0000816957
Score 2.278137
Snippet In this paper we propose a novel framework to process Doppler-radar signals for hand gesture recognition. Doppler-radar sensors provide many advantages over...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137122
SubjectTerms Agglomeration
Cameras
Convolution
Convolutional neural networks
Doppler-radar
Experimentation
feature aggregation
Feature extraction
Gesture recognition
hand gesture recognition
Radar
Radar data
Representations
Sensors
Signal processing
Task analysis
unsupervised representation learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BA0IJYKJUPHGtqx7Fjc1u2lKoCDksX9WaNx04vKFvtxw_gn2M73tVKSHDhmthx7BnPvEnGbwh5p2SAZPUlaxADa1FK5o23jMcgjY_QaZsPCn_9pq8X7c2dujso9ZVzwkZ64HHhLoJWQcWgg4hdi4Ib33WiNwZtm5yrLNAo-byDYKrYYCO0VV2lGRLcXkxnszSjnMtl3zc2gYhcsO7AFRXG_lpi5Q-7XJzN1TPytKJEOh3f7jl5FIdj8uSAO_CE_Pqc-m1X8ceX6eUHmra1L6Ue6GJYbx-yAVjHQDPAS23WdF4SXus5o4HCEOj3kkvNbkduqjTYfQq978f7CcnSy2UCqHHF5hBgRetodL5LOFoOL8ji6tPt7JrVegoMW242TKDujdcIktuutwhNL0HJHhUqjgpMj9wrCSJwDSpq6W0ECX0PKv89VPIlORqWQ3xFKAT0KLRHiLaVqa_qLISE7QJGBaGdkGa3tA4r2XiuefHTlaCDWzfKw2V5uCqPCTnfd3oYuTb-3vxjltm-aSbKLheS-riqPu5f6jMhJ1ni-4cYk-Ljzk7I6U4DXN3Ua9e0KnPvaCFe_4-h35DHeTrj95xTcrRZbePbhHA2_qwo829nDvkK
  priority: 102
  providerName: Directory of Open Access Journals
Title GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition
URI https://ieeexplore.ieee.org/document/8844679
https://www.proquest.com/docview/2455645611
https://doaj.org/article/d65d5ed6d1e74c108b771f88c946393a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWSuUDx3qbxLFjc1u2lApRDksX9WaNx04PRdlqd3Phxj_HdrxRBQhxixI7nmgm45nxzDeEvBXcQdD6nFWIjtXIObPKalZ4x5X10EgdC4Uvv8iLZf3pWlzvkZOxFsZ7n5LP_DReprN8t8I-hspOlQrOS6P3yX5w3IZarTGeEhtIaNFkYKGy0Kez-Tx8Q8ze0tNKB7Mhtqi7t_kkjP7cVOUPTZy2l_PH5HJH2JBVcjvtt3aKP37DbPxfyp-QR9nOpLNBMJ6SPd89Iw_voQ8ekp8fAx392n_7PDt7R4NisKlZBF12m_4uqpCNdzSaiGHMhi5SymyuVOoodI5-TdnY7GpAtwqL3QTn_WZ4HmxherYKJq5fswU4WNO8Gl3sUpZW3XOyPP9wNb9guSMDw7pQW1aibJWVCLzQTasRqpaD4C0KFAUKUC0WVnAoXSFBeMmt9sChbUHE80fBX5CDbtX5l4SCQ4ultAhe1zzMFY0GF6xDh16Aqyek2rHKYIYrj10zvpvkthTaDPw1kb8m83dCTsZJdwNax7-Hv48yMA6NUNvpRuCdyX-ucVI44Z10pW9qLAtlm6ZslUJdB-uOw4QcRn6PL8msnpCjnUSZrBY2pqpFRO-RZfnq77NekweRwCHGc0QOtuvevwlWz9Yep2jBcRL6X2MOA9k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENWUcgAOfBWGQAEdONapbVmyxC2klABJDyFhetOsVnIPME4niS_c-OdIspLpAMNw89iStZ5dr56k3beEvOHMgvf6LCsRbVYhY5mRRmW5s0waB7VQIVF4diEmy-rTJb88ICf7XBjnXAw-c8NwGc_y7Qq7sFV2KqVfvNTqFrnt531e9Nla-x2VUEJC8TpRCxW5Oh2Nx_4rQvyWGpbKA4dQpO7G9BNZ-lNZlT98cZxgzh-Q2U60Pq7k27DbmiH--I218X9lf0juJ6RJR71pPCIHrn1M7t3gHzwiPz94Obq1-zodnb2l3jWYWC6CLttNdx2cyMZZGkCib7Oh8xg0m3KVWgqtpV9iPHa26Pmt_GBXfvl-1T_3aJierTzIdetsDhbWNI1G57ugpVX7hCzP3y_GkyzVZMiwyuU2K1A00ggElqu6UQhlw4CzBjnyHDnIBnPDGRQ2F8CdYEY5YNA0wMMJJGdPyWG7at0zQsGiwUIYBKcq5vvyWoH1-NCi42CrASl3qtKYCMtD3YzvOi5ccqV7_eqgX530OyAn-07XPV_Hv5u_CzawbxrItuMNrzud_l1tBbfcWWELV1dY5NLUddFIiary-I7BgBwFfe9fklQ9IMc7i9LJMWx06Q1XBNBaPP97r9fkzmQxm-rpx4vPL8jdIGy_43NMDrfrzr30GGhrXkXT_wXrNwYt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GestureVLAD%3A+Combining+Unsupervised+Features+Representation+and+Spatio-Temporal+Aggregation+for+Doppler-Radar+Gesture+Recognition&rft.jtitle=IEEE+access&rft.au=Berenguer%2C+Abel+Diaz&rft.au=Oveneke%2C+Meshia+Cedric&rft.au=Khalid%2C+Habib-Ur-Rehman&rft.au=Alioscha-Perez%2C+Mitchel&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=137122&rft.epage=137135&rft_id=info:doi/10.1109%2FACCESS.2019.2942305&rft.externalDocID=8844679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon