Deep Learning Based Fusion Approach for Hate Speech Detection

In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community....

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; p. 1
Main Authors Zhou, Yanling, Yang, Yanyan, Liu, Han, Liu, Xiufeng, Savage, Nick
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community. Although plenty of literature focusing on this issue is available, it remains difficult to assess the performances of each proposed method, as each has its own advantages and disadvantages. A general way to improve the overall results of classification by fusing the various classifiers results is a meaningful attempt. We first focus on several famous machine learning methods for text classification such as Embeddings from Language Models (ELMo), Bidirectional Encoder Representation from Transformers (BERT) and Convolutional Neural Network (CNN), and apply these methods to the data sets of the SemEval 2019 Task 5. We then adopt some fusion strategies to combine the classifiers to improve the overall classification performance. The results show that the accuracy and F1-score of the classification are significantly improved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3009244