Deep Learning Based Fusion Approach for Hate Speech Detection

In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community....

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; p. 1
Main Authors Zhou, Yanling, Yang, Yanyan, Liu, Han, Liu, Xiufeng, Savage, Nick
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community. Although plenty of literature focusing on this issue is available, it remains difficult to assess the performances of each proposed method, as each has its own advantages and disadvantages. A general way to improve the overall results of classification by fusing the various classifiers results is a meaningful attempt. We first focus on several famous machine learning methods for text classification such as Embeddings from Language Models (ELMo), Bidirectional Encoder Representation from Transformers (BERT) and Convolutional Neural Network (CNN), and apply these methods to the data sets of the SemEval 2019 Task 5. We then adopt some fusion strategies to combine the classifiers to improve the overall classification performance. The results show that the accuracy and F1-score of the classification are significantly improved.
AbstractList In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community. Although plenty of literature focusing on this issue is available, it remains difficult to assess the performances of each proposed method, as each has its own advantages and disadvantages. A general way to improve the overall results of classification by fusing the various classifiers results is a meaningful attempt. We first focus on several famous machine learning methods for text classification such as Embeddings from Language Models (ELMo), Bidirectional Encoder Representation from Transformers (BERT) and Convolutional Neural Network (CNN), and apply these methods to the data sets of the SemEval 2019 Task 5. We then adopt some fusion strategies to combine the classifiers to improve the overall classification performance. The results show that the accuracy and F1-score of the classification are significantly improved.
Author Savage, Nick
Yang, Yanyan
Liu, Han
Zhou, Yanling
Liu, Xiufeng
Author_xml – sequence: 1
  givenname: Yanling
  surname: Zhou
  fullname: Zhou, Yanling
  organization: School of Computer Science and Information Engineering, Hubei University, Hubei 430062, China and School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK. (e-mail: sunnyzhou516@126.com)
– sequence: 2
  givenname: Yanyan
  surname: Yang
  fullname: Yang, Yanyan
  organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
– sequence: 3
  givenname: Han
  surname: Liu
  fullname: Liu, Han
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 4
  givenname: Xiufeng
  surname: Liu
  fullname: Liu, Xiufeng
  organization: Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
– sequence: 5
  givenname: Nick
  surname: Savage
  fullname: Savage, Nick
  organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
BookMark eNqFkD1PwzAQhi0EEl_9BV0iMafY8UfigaGEFpAqMRRm6-KcIVWJg5MO_HtcUiHEghfbp_d97-45J8etb5GQKaMzxqi-npflYr2eZTSjM06pzoQ4ImcZUzrlkqvjX-9TMun7DY2niCWZn5GbO8QuWSGEtmlfk1vosU6Wu77xbTLvuuDBviXOh-QBBkzWHWL83-GAdoiSS3LiYNvj5HBfkJfl4rl8SFdP94_lfJVaQYshZVDJvKqhrnQlVaUymjuBCjUDqzXlUDBLXaWEtQVKymTh6riJyBmrcuCUX5DHMbf2sDFdaN4hfBoPjfku-PBqIAyN3aIBXajaZcxZ5QTTRaGprOo8k0wJIZWIWVdjVlzuY4f9YDZ-F9o4vsmEFEowqVlU8VFlg-_7gO6nK6Nmj92M2M0euzlgjy79x2WbAfakhgDN9h_vdPQ2iPjTLY6iteT8C0DejyI
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3367281
crossref_primary_10_1007_s13278_022_00951_3
crossref_primary_10_1109_ACCESS_2023_3326254
crossref_primary_10_1016_j_entcom_2022_100544
crossref_primary_10_3233_JIFS_222431
crossref_primary_10_1007_s42979_023_02382_z
crossref_primary_10_1177_21582440231181311
crossref_primary_10_1109_ACCESS_2024_3487433
crossref_primary_10_1016_j_eswa_2022_117032
crossref_primary_10_3390_app131911000
crossref_primary_10_1016_j_aej_2024_10_076
crossref_primary_10_1007_s11042_024_18452_0
crossref_primary_10_1016_j_jksuci_2022_06_010
crossref_primary_10_1016_j_neucom_2024_127951
crossref_primary_10_1007_s13278_024_01361_3
crossref_primary_10_1016_j_engappai_2023_107143
crossref_primary_10_1002_wics_1648
crossref_primary_10_1007_s13278_023_01156_y
crossref_primary_10_35234_fumbd_986500
crossref_primary_10_2478_rem_2023_0017
crossref_primary_10_3390_bdcc8090113
crossref_primary_10_1007_s12559_022_10066_8
crossref_primary_10_1007_s11227_023_05361_6
crossref_primary_10_1109_ACCESS_2024_3442432
crossref_primary_10_1111_exsy_13562
crossref_primary_10_3390_app12178453
crossref_primary_10_1007_s00530_023_01051_8
crossref_primary_10_1016_j_infrared_2024_105343
crossref_primary_10_1145_3657635
crossref_primary_10_1016_j_neucom_2023_126232
crossref_primary_10_1016_j_osnem_2021_100194
crossref_primary_10_7717_peerj_cs_1142
crossref_primary_10_1007_s11042_023_16598_x
crossref_primary_10_1016_j_heliyon_2023_e18647
Cites_doi 10.1145/3041021.3054223
10.1109/MIS.2016.31
10.18653/v1/N16-2013
10.18653/v1/P18-1031
10.18653/v1/W17-3013
10.1109/ACCESS.2019.2955498
10.1109/ACCESS.2018.2806394
10.18653/v1/S19-2007
10.18653/v1/N18-1202
10.1007/978-3-030-36687-2_77
10.1023/A:1022859003006
10.3115/v1/D14-1181
10.18653/v1/W18-5102
10.18653/v1/W19-3504
10.1007/s11042-019-08328-z
10.2200/S00762ED1V01Y201703HLT037
10.1007/978-3-319-93417-4_48
10.1109/MCI.2019.2954667
10.18653/v1/S19-2082
10.1016/j.eswa.2019.04.051
10.1002/poi3.85
10.1609/icwsm.v11i1.14955
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3009244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a986df21fc6f41988905bd7251644564
10_1109_ACCESS_2020_3009244
9139953
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201808420357
  funderid: 10.13039/501100004543
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1ab57bdadb9b56b6207f4e6e91ac9903a81c0fb64cc8e50158fd3004711b7a303
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:26:24 EDT 2025
Mon Jun 30 04:44:36 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 02:55:37 EDT 2025
Wed Aug 27 02:29:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1ab57bdadb9b56b6207f4e6e91ac9903a81c0fb64cc8e50158fd3004711b7a303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7731-8258
0000-0003-1047-2274
0000-0001-5133-6688
0000-0002-9105-8069
OpenAccessLink https://doaj.org/article/a986df21fc6f41988905bd7251644564
PQID 2454641591
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2454641591
crossref_primary_10_1109_ACCESS_2020_3009244
ieee_primary_9139953
doaj_primary_oai_doaj_org_article_a986df21fc6f41988905bd7251644564
crossref_citationtrail_10_1109_ACCESS_2020_3009244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
devlin (ref14) 2019; 1
ref11
ref10
ref2
ref1
ref17
ref16
ref18
mikolov (ref19) 2013
davidson (ref3) 2017
ref24
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref6
ref5
sammons (ref23) 2016
References_xml – start-page: 4085
  year: 2016
  ident: ref23
  article-title: Edison: Feature extraction for nlp, simplified
  publication-title: Proc 10th Int Conf Lang Resour Eval
– ident: ref5
  doi: 10.1145/3041021.3054223
– ident: ref4
  doi: 10.1109/MIS.2016.31
– ident: ref11
  doi: 10.18653/v1/N16-2013
– ident: ref21
  doi: 10.18653/v1/P18-1031
– volume: 1
  start-page: 4171
  year: 2019
  ident: ref14
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol
– ident: ref17
  doi: 10.18653/v1/W17-3013
– ident: ref20
  doi: 10.1109/ACCESS.2019.2955498
– start-page: 1
  year: 2013
  ident: ref19
  article-title: Efficient estimation of word representations in vector space
  publication-title: ICLR WorkShop Papers
– ident: ref9
  doi: 10.1109/ACCESS.2018.2806394
– ident: ref25
  doi: 10.18653/v1/S19-2007
– ident: ref13
  doi: 10.18653/v1/N18-1202
– ident: ref15
  doi: 10.1007/978-3-030-36687-2_77
– ident: ref24
  doi: 10.1023/A:1022859003006
– ident: ref16
  doi: 10.3115/v1/D14-1181
– ident: ref1
  doi: 10.18653/v1/W18-5102
– ident: ref2
  doi: 10.18653/v1/W19-3504
– ident: ref10
  doi: 10.1007/s11042-019-08328-z
– ident: ref22
  doi: 10.2200/S00762ED1V01Y201703HLT037
– ident: ref18
  doi: 10.1007/978-3-319-93417-4_48
– ident: ref7
  doi: 10.1109/MCI.2019.2954667
– ident: ref6
  doi: 10.18653/v1/S19-2082
– ident: ref8
  doi: 10.1016/j.eswa.2019.04.051
– ident: ref12
  doi: 10.1002/poi3.85
– start-page: 512
  year: 2017
  ident: ref3
  article-title: Automated hate speech detection and the problem of offensive language
  publication-title: Proc ICWSM
  doi: 10.1609/icwsm.v11i1.14955
SSID ssj0000816957
Score 2.4416513
Snippet In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Bert
Bit error rate
Classification
Classifiers
classifiers fusion
CNN
Coders
Context modeling
Deep learning
Digital media
Feature extraction
Hate speech
Machine learning
Social network services
Task analysis
Voice activity detection
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmdKhj6RF3aYFh46RI8okRQ4dHKeGUaBZ0gDZCD5OGRI4Risv_fU9UrTQF4JukkAKRx6p--50_A7gg2uR7EqiQiTjWAltZKVNxEqIMAtcaid8zvK9VKtr8flG3uzB6XgWBhFz8hlO02X-lx8fwjaFys4ShaWRs33YJ8dtOKs1xlNSAQkj20IsxGtzNl8saAzkAjbkmSZuISF-Mz6Zo78UVfnrS5zNy_IZfNkJNmSV3E23vZ-GH39wNv6v5M_hacGZbD4sjBewh-sjePIL--AxfLxA3LBCsHrLzsmeRbbcpvAZmxeqcUaYlq0Ij7KrDSLdX2Cfk7fWL-F6-enrYlWVagpVELXuK-68bH100RsvlVdN3XYCFRruApmkmdM81J1XIgSNklCC7mKi42o5960jS_cKDtYPa3wNzEklPCEdrcmZE67RvIs466JqFeGn2k-g2U2zDYVqPFW8uLfZ5aiNHXRjk25s0c0ETsdOm4Fp4_Hm50l_Y9NEk50f0LzbsuusM1rFruFdUJ3gJK-ppY8tYTqCgTSICRwnXY0vKWqawMluNdiypb_bRkihCO4Y_ubfvd7CYRJwiM-cwEH_bYvvCLH0_n1eqj8BSc3jyw
  priority: 102
  providerName: IEEE
Title Deep Learning Based Fusion Approach for Hate Speech Detection
URI https://ieeexplore.ieee.org/document/9139953
https://www.proquest.com/docview/2454641591
https://doaj.org/article/a986df21fc6f41988905bd7251644564
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQUBCBUnlgJGqc2I49MPRBVTGwQKVull9hQaWC9v-5dtyqCAkWxkTOw-cmPuda9rkI3eraA68EK0Qgx5wKyXIhnc8ptZUlTGhq4irfJz6b08cFW-yV-gprwlp74Ba4gZaCu6YkjeUNhQxZyIIZVwMtA5MzHp1AgfP2kqk4BgvCJauTzRAp5GA4HkOPICEsIU8NTkOUfqOi6NifSqz8GJcj2UxP0HFSiXjYvt0pOvDLM3S05x3YRfcT71c42aO-4hGwkcPTTZj8wsNkFI5BkeIZqEn8vPIejid-HZdeLc_RfPrwMp7lqRZCbmkh1jnRhtXGaWekYdzwsqgb6rmXRFsglEoLYovGcGqt8Aw4XjQumGnVhJhaA09doM7yfekvEdaAmgGdIgSkYlSXgjTOV43jNQf1U5gMlVtYlE1G4aFexZuKCUMhVYulCliqhGWG7nYXrVqfjN-bjwLeu6bB5DqegNCrFHr1V-gz1A3R2t0kOJxKVmWot42eSj_kpyopoxzEiiRX__Hoa3QYutPOxfRQZ_2x8TegTtamHz_EftxI-AWX_9n8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseJWKgQJewI5MY4_t2IsupjOMprR0Qyt1Z_wKC9B0RDOqyrfwK_wb14kn4iV2ldglkW059sm95zr2uQAvbRXRryQpRHSOBVdaFEqHWHDuR54KZblrd_key_kpf3smzjbgW38WJsbYbj6Lw3TZ_ssP536Vlsp2k4SlFutU1Yfx6hIDtIu9gynO5ivGZm9OJvMi5xAoPC9VU1DrROWCDU47IZ1kZVXzKKOm1qMhHllFfVk7yb1XUaBvVHVIIlQVpa6yaN-x3RtwE3mGYN3psH4FJ6Ws0KLKUka01LvjyQRHDYNOhrFwUjPi_Bd312YFyGlc_rD9rUOb3YPv66Ho9rF8Gq4aN_Rff1OJ_F_H6j7czUyajDvoP4CNuHgId37SV9yCvWmMS5IlZD-SffTYgcxWaYGQjLOYOkHWTubIuMn7ZYx4P41Nuz1t8QhOr6X_27C5OF_Ex0CskNwhl1MKw1VumaJ1iKM6yEoiQyzdANh6Wo3PYuopp8dn0wZVpTYdFkzCgslYGMDrvtKy0xL5d_H9hJe-aBICbx_gPJtsV4zVSoaa0drLmlPsry6FCxWyViS6-BID2ErY6BvJsBjAzhp9JhutC8O44BIJnaZP_l7rBdyan7w7MkcHx4dP4XbqbLcatQObzZdVfIb8rHHP28-EwIfrxtoPppJBTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Fusion+Approach+for+Hate+Speech+Detection&rft.jtitle=IEEE+access&rft.au=Yanling+Zhou&rft.au=Yanyan+Yang&rft.au=Han+Liu&rft.au=Xiufeng+Liu&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=128923&rft.epage=128929&rft_id=info:doi/10.1109%2FACCESS.2020.3009244&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a986df21fc6f41988905bd7251644564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon