Deep Learning Based Fusion Approach for Hate Speech Detection
In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community....
Saved in:
Published in | IEEE access Vol. 8; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community. Although plenty of literature focusing on this issue is available, it remains difficult to assess the performances of each proposed method, as each has its own advantages and disadvantages. A general way to improve the overall results of classification by fusing the various classifiers results is a meaningful attempt. We first focus on several famous machine learning methods for text classification such as Embeddings from Language Models (ELMo), Bidirectional Encoder Representation from Transformers (BERT) and Convolutional Neural Network (CNN), and apply these methods to the data sets of the SemEval 2019 Task 5. We then adopt some fusion strategies to combine the classifiers to improve the overall classification performance. The results show that the accuracy and F1-score of the classification are significantly improved. |
---|---|
AbstractList | In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and organizations have made significant investment in hate speech detection techniques, which have also attracted the attention of the scientific community. Although plenty of literature focusing on this issue is available, it remains difficult to assess the performances of each proposed method, as each has its own advantages and disadvantages. A general way to improve the overall results of classification by fusing the various classifiers results is a meaningful attempt. We first focus on several famous machine learning methods for text classification such as Embeddings from Language Models (ELMo), Bidirectional Encoder Representation from Transformers (BERT) and Convolutional Neural Network (CNN), and apply these methods to the data sets of the SemEval 2019 Task 5. We then adopt some fusion strategies to combine the classifiers to improve the overall classification performance. The results show that the accuracy and F1-score of the classification are significantly improved. |
Author | Savage, Nick Yang, Yanyan Liu, Han Zhou, Yanling Liu, Xiufeng |
Author_xml | – sequence: 1 givenname: Yanling surname: Zhou fullname: Zhou, Yanling organization: School of Computer Science and Information Engineering, Hubei University, Hubei 430062, China and School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK. (e-mail: sunnyzhou516@126.com) – sequence: 2 givenname: Yanyan surname: Yang fullname: Yang, Yanyan organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK – sequence: 3 givenname: Han surname: Liu fullname: Liu, Han organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 4 givenname: Xiufeng surname: Liu fullname: Liu, Xiufeng organization: Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark – sequence: 5 givenname: Nick surname: Savage fullname: Savage, Nick organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK |
BookMark | eNqFkD1PwzAQhi0EEl_9BV0iMafY8UfigaGEFpAqMRRm6-KcIVWJg5MO_HtcUiHEghfbp_d97-45J8etb5GQKaMzxqi-npflYr2eZTSjM06pzoQ4ImcZUzrlkqvjX-9TMun7DY2niCWZn5GbO8QuWSGEtmlfk1vosU6Wu77xbTLvuuDBviXOh-QBBkzWHWL83-GAdoiSS3LiYNvj5HBfkJfl4rl8SFdP94_lfJVaQYshZVDJvKqhrnQlVaUymjuBCjUDqzXlUDBLXaWEtQVKymTh6riJyBmrcuCUX5DHMbf2sDFdaN4hfBoPjfku-PBqIAyN3aIBXajaZcxZ5QTTRaGprOo8k0wJIZWIWVdjVlzuY4f9YDZ-F9o4vsmEFEowqVlU8VFlg-_7gO6nK6Nmj92M2M0euzlgjy79x2WbAfakhgDN9h_vdPQ2iPjTLY6iteT8C0DejyI |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3367281 crossref_primary_10_1007_s13278_022_00951_3 crossref_primary_10_1109_ACCESS_2023_3326254 crossref_primary_10_1016_j_entcom_2022_100544 crossref_primary_10_3233_JIFS_222431 crossref_primary_10_1007_s42979_023_02382_z crossref_primary_10_1177_21582440231181311 crossref_primary_10_1109_ACCESS_2024_3487433 crossref_primary_10_1016_j_eswa_2022_117032 crossref_primary_10_3390_app131911000 crossref_primary_10_1016_j_aej_2024_10_076 crossref_primary_10_1007_s11042_024_18452_0 crossref_primary_10_1016_j_jksuci_2022_06_010 crossref_primary_10_1016_j_neucom_2024_127951 crossref_primary_10_1007_s13278_024_01361_3 crossref_primary_10_1016_j_engappai_2023_107143 crossref_primary_10_1002_wics_1648 crossref_primary_10_1007_s13278_023_01156_y crossref_primary_10_35234_fumbd_986500 crossref_primary_10_2478_rem_2023_0017 crossref_primary_10_3390_bdcc8090113 crossref_primary_10_1007_s12559_022_10066_8 crossref_primary_10_1007_s11227_023_05361_6 crossref_primary_10_1109_ACCESS_2024_3442432 crossref_primary_10_1111_exsy_13562 crossref_primary_10_3390_app12178453 crossref_primary_10_1007_s00530_023_01051_8 crossref_primary_10_1016_j_infrared_2024_105343 crossref_primary_10_1145_3657635 crossref_primary_10_1016_j_neucom_2023_126232 crossref_primary_10_1016_j_osnem_2021_100194 crossref_primary_10_7717_peerj_cs_1142 crossref_primary_10_1007_s11042_023_16598_x crossref_primary_10_1016_j_heliyon_2023_e18647 |
Cites_doi | 10.1145/3041021.3054223 10.1109/MIS.2016.31 10.18653/v1/N16-2013 10.18653/v1/P18-1031 10.18653/v1/W17-3013 10.1109/ACCESS.2019.2955498 10.1109/ACCESS.2018.2806394 10.18653/v1/S19-2007 10.18653/v1/N18-1202 10.1007/978-3-030-36687-2_77 10.1023/A:1022859003006 10.3115/v1/D14-1181 10.18653/v1/W18-5102 10.18653/v1/W19-3504 10.1007/s11042-019-08328-z 10.2200/S00762ED1V01Y201703HLT037 10.1007/978-3-319-93417-4_48 10.1109/MCI.2019.2954667 10.18653/v1/S19-2082 10.1016/j.eswa.2019.04.051 10.1002/poi3.85 10.1609/icwsm.v11i1.14955 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3009244 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_a986df21fc6f41988905bd7251644564 10_1109_ACCESS_2020_3009244 9139953 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201808420357 funderid: 10.13039/501100004543 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-1ab57bdadb9b56b6207f4e6e91ac9903a81c0fb64cc8e50158fd3004711b7a303 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:24 EDT 2025 Mon Jun 30 04:44:36 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 02:55:37 EDT 2025 Wed Aug 27 02:29:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-1ab57bdadb9b56b6207f4e6e91ac9903a81c0fb64cc8e50158fd3004711b7a303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7731-8258 0000-0003-1047-2274 0000-0001-5133-6688 0000-0002-9105-8069 |
OpenAccessLink | https://doaj.org/article/a986df21fc6f41988905bd7251644564 |
PQID | 2454641591 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2454641591 crossref_primary_10_1109_ACCESS_2020_3009244 ieee_primary_9139953 doaj_primary_oai_doaj_org_article_a986df21fc6f41988905bd7251644564 crossref_citationtrail_10_1109_ACCESS_2020_3009244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 devlin (ref14) 2019; 1 ref11 ref10 ref2 ref1 ref17 ref16 ref18 mikolov (ref19) 2013 davidson (ref3) 2017 ref24 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref6 ref5 sammons (ref23) 2016 |
References_xml | – start-page: 4085 year: 2016 ident: ref23 article-title: Edison: Feature extraction for nlp, simplified publication-title: Proc 10th Int Conf Lang Resour Eval – ident: ref5 doi: 10.1145/3041021.3054223 – ident: ref4 doi: 10.1109/MIS.2016.31 – ident: ref11 doi: 10.18653/v1/N16-2013 – ident: ref21 doi: 10.18653/v1/P18-1031 – volume: 1 start-page: 4171 year: 2019 ident: ref14 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol – ident: ref17 doi: 10.18653/v1/W17-3013 – ident: ref20 doi: 10.1109/ACCESS.2019.2955498 – start-page: 1 year: 2013 ident: ref19 article-title: Efficient estimation of word representations in vector space publication-title: ICLR WorkShop Papers – ident: ref9 doi: 10.1109/ACCESS.2018.2806394 – ident: ref25 doi: 10.18653/v1/S19-2007 – ident: ref13 doi: 10.18653/v1/N18-1202 – ident: ref15 doi: 10.1007/978-3-030-36687-2_77 – ident: ref24 doi: 10.1023/A:1022859003006 – ident: ref16 doi: 10.3115/v1/D14-1181 – ident: ref1 doi: 10.18653/v1/W18-5102 – ident: ref2 doi: 10.18653/v1/W19-3504 – ident: ref10 doi: 10.1007/s11042-019-08328-z – ident: ref22 doi: 10.2200/S00762ED1V01Y201703HLT037 – ident: ref18 doi: 10.1007/978-3-319-93417-4_48 – ident: ref7 doi: 10.1109/MCI.2019.2954667 – ident: ref6 doi: 10.18653/v1/S19-2082 – ident: ref8 doi: 10.1016/j.eswa.2019.04.051 – ident: ref12 doi: 10.1002/poi3.85 – start-page: 512 year: 2017 ident: ref3 article-title: Automated hate speech detection and the problem of offensive language publication-title: Proc ICWSM doi: 10.1609/icwsm.v11i1.14955 |
SSID | ssj0000816957 |
Score | 2.4416513 |
Snippet | In recent years, the increasing prevalence of hate speech in social media has been considered as a serious problem worldwide. Many governments and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Bert Bit error rate Classification Classifiers classifiers fusion CNN Coders Context modeling Deep learning Digital media Feature extraction Hate speech Machine learning Social network services Task analysis Voice activity detection |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmdKhj6RF3aYFh46RI8okRQ4dHKeGUaBZ0gDZCD5OGRI4Risv_fU9UrTQF4JukkAKRx6p--50_A7gg2uR7EqiQiTjWAltZKVNxEqIMAtcaid8zvK9VKtr8flG3uzB6XgWBhFz8hlO02X-lx8fwjaFys4ShaWRs33YJ8dtOKs1xlNSAQkj20IsxGtzNl8saAzkAjbkmSZuISF-Mz6Zo78UVfnrS5zNy_IZfNkJNmSV3E23vZ-GH39wNv6v5M_hacGZbD4sjBewh-sjePIL--AxfLxA3LBCsHrLzsmeRbbcpvAZmxeqcUaYlq0Ij7KrDSLdX2Cfk7fWL-F6-enrYlWVagpVELXuK-68bH100RsvlVdN3XYCFRruApmkmdM81J1XIgSNklCC7mKi42o5960jS_cKDtYPa3wNzEklPCEdrcmZE67RvIs466JqFeGn2k-g2U2zDYVqPFW8uLfZ5aiNHXRjk25s0c0ETsdOm4Fp4_Hm50l_Y9NEk50f0LzbsuusM1rFruFdUJ3gJK-ppY8tYTqCgTSICRwnXY0vKWqawMluNdiypb_bRkihCO4Y_ubfvd7CYRJwiM-cwEH_bYvvCLH0_n1eqj8BSc3jyw priority: 102 providerName: IEEE |
Title | Deep Learning Based Fusion Approach for Hate Speech Detection |
URI | https://ieeexplore.ieee.org/document/9139953 https://www.proquest.com/docview/2454641591 https://doaj.org/article/a986df21fc6f41988905bd7251644564 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQUBCBUnlgJGqc2I49MPRBVTGwQKVull9hQaWC9v-5dtyqCAkWxkTOw-cmPuda9rkI3eraA68EK0Qgx5wKyXIhnc8ptZUlTGhq4irfJz6b08cFW-yV-gprwlp74Ba4gZaCu6YkjeUNhQxZyIIZVwMtA5MzHp1AgfP2kqk4BgvCJauTzRAp5GA4HkOPICEsIU8NTkOUfqOi6NifSqz8GJcj2UxP0HFSiXjYvt0pOvDLM3S05x3YRfcT71c42aO-4hGwkcPTTZj8wsNkFI5BkeIZqEn8vPIejid-HZdeLc_RfPrwMp7lqRZCbmkh1jnRhtXGaWekYdzwsqgb6rmXRFsglEoLYovGcGqt8Aw4XjQumGnVhJhaA09doM7yfekvEdaAmgGdIgSkYlSXgjTOV43jNQf1U5gMlVtYlE1G4aFexZuKCUMhVYulCliqhGWG7nYXrVqfjN-bjwLeu6bB5DqegNCrFHr1V-gz1A3R2t0kOJxKVmWot42eSj_kpyopoxzEiiRX__Hoa3QYutPOxfRQZ_2x8TegTtamHz_EftxI-AWX_9n8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseJWKgQJewI5MY4_t2IsupjOMprR0Qyt1Z_wKC9B0RDOqyrfwK_wb14kn4iV2ldglkW059sm95zr2uQAvbRXRryQpRHSOBVdaFEqHWHDuR54KZblrd_key_kpf3smzjbgW38WJsbYbj6Lw3TZ_ssP536Vlsp2k4SlFutU1Yfx6hIDtIu9gynO5ivGZm9OJvMi5xAoPC9VU1DrROWCDU47IZ1kZVXzKKOm1qMhHllFfVk7yb1XUaBvVHVIIlQVpa6yaN-x3RtwE3mGYN3psH4FJ6Ws0KLKUka01LvjyQRHDYNOhrFwUjPi_Bd312YFyGlc_rD9rUOb3YPv66Ho9rF8Gq4aN_Rff1OJ_F_H6j7czUyajDvoP4CNuHgId37SV9yCvWmMS5IlZD-SffTYgcxWaYGQjLOYOkHWTubIuMn7ZYx4P41Nuz1t8QhOr6X_27C5OF_Ex0CskNwhl1MKw1VumaJ1iKM6yEoiQyzdANh6Wo3PYuopp8dn0wZVpTYdFkzCgslYGMDrvtKy0xL5d_H9hJe-aBICbx_gPJtsV4zVSoaa0drLmlPsry6FCxWyViS6-BID2ErY6BvJsBjAzhp9JhutC8O44BIJnaZP_l7rBdyan7w7MkcHx4dP4XbqbLcatQObzZdVfIb8rHHP28-EwIfrxtoPppJBTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Fusion+Approach+for+Hate+Speech+Detection&rft.jtitle=IEEE+access&rft.au=Yanling+Zhou&rft.au=Yanyan+Yang&rft.au=Han+Liu&rft.au=Xiufeng+Liu&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=128923&rft.epage=128929&rft_id=info:doi/10.1109%2FACCESS.2020.3009244&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a986df21fc6f41988905bd7251644564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |