Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration

The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sa...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 89989 - 90003
Main Authors Li, Yiming, Wang, Gencheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sand cat swarm optimization based on stochastic variation and elite collaboration (SE-SCSO) is proposed. SE-SCSO first introduces a nonlinear periodic adjustment mechanism to balance the exploration and local exploitation ability of the algorithm and accelerate the convergence of the algorithm.Secondly, the pseudo-opposition and pseudo-reflection learning mechanisms are used to speed up the optimization-seeking efficiency of the SCSO algorithm and improve the global convergence capability. Designing elite collaborative strategies with random variation to enable the algorithm to jump away from the local extrema, further improving the algorithm's optimization-seeking accuracy and convergence speed. In the simulation experiments, SE-SCSO is compared with Sand Cat Swarm Optimization (SCSO), Sine Cosine Algorithm (CSA), Circle Search Algorithm (SCA), Salp Swarm Algorithm (SSA), Harris Hawks Optimization (HHO), Whale Optimization Algorithm (WOA), and Golden Jackal Optimization (GJO) are tested for comparison. The experimental results validate the effectiveness of the proposed improvement strategies. Finally, SE-SCSO is applied to three engineering optimization problems. The results show that the improved strategy can effectively improve the performance performance of the algorithm, which gives SE-SCSO the advantages of high convergence accuracy, fast convergence, and the ability to jump out of local optimal solutions.
AbstractList The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sand cat swarm optimization based on stochastic variation and elite collaboration (SE-SCSO) is proposed. SE-SCSO first introduces a nonlinear periodic adjustment mechanism to balance the exploration and local exploitation ability of the algorithm and accelerate the convergence of the algorithm.Secondly, the pseudo-opposition and pseudo-reflection learning mechanisms are used to speed up the optimization-seeking efficiency of the SCSO algorithm and improve the global convergence capability. Designing elite collaborative strategies with random variation to enable the algorithm to jump away from the local extrema, further improving the algorithm’s optimization-seeking accuracy and convergence speed. In the simulation experiments, SE-SCSO is compared with Sand Cat Swarm Optimization (SCSO), Sine Cosine Algorithm (CSA), Circle Search Algorithm (SCA), Salp Swarm Algorithm (SSA), Harris Hawks Optimization (HHO), Whale Optimization Algorithm (WOA), and Golden Jackal Optimization (GJO) are tested for comparison. The experimental results validate the effectiveness of the proposed improvement strategies. Finally, SE-SCSO is applied to three engineering optimization problems. The results show that the improved strategy can effectively improve the performance performance of the algorithm, which gives SE-SCSO the advantages of high convergence accuracy, fast convergence, and the ability to jump out of local optimal solutions.
Author Wang, Gencheng
Li, Yiming
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0001-6660-0656
  surname: Li
  fullname: Li, Yiming
  organization: College of Information Engineering, Xizang Minzu University, Xianyang, China
– sequence: 2
  givenname: Gencheng
  orcidid: 0000-0001-6842-9039
  surname: Wang
  fullname: Wang, Gencheng
  email: xzmzwgc@163.com
  organization: College of Information Engineering, Xizang Minzu University, Xianyang, China
BookMark eNp9UctqHDEQFMGBOI6_wJeBnHet9-PoDJvYYDBkEvsoWhop1jI72mhkTPL1Ge_YweSQvnTTXVVUU-_R0ZjHgNAZwWtCsDm_aNtN160ppnTNKCaEqzfomBJpVkwwefRqfodOp2mL59LzSqhj9LWDsW9aqE33CGXX3Oxr2qXfUFMem08whb6Zh65mfw9TTb65hZKW612q981mSDU0bR4GcLkcDh_Q2wjDFE6f-wn6_nnzrb1cXd98uWovrleeY11XRHoQxDiluCZGRR0lgx4iB4A-cq-NgBgZJURT55VzLgTniAx4RktO2Am6WnT7DFu7L2kH5ZfNkOxhkcsPC2W2PARLATPlo-DOR94bAjiSoJ3oe6MxV2LW-rho7Uv--RCmarf5oYyzfUsVNkRISdiMMgvKlzxNJUTrUz38XAukwRJsnxKxSyL2KRH7nMjMZf9wXxz_n3W2sFII4S_DaMmF5uwPCVuZCw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3483457
crossref_primary_10_1016_j_energy_2025_134512
crossref_primary_10_1038_s41598_025_89904_2
crossref_primary_10_1016_j_est_2025_116026
crossref_primary_10_1109_ACCESS_2023_3292338
crossref_primary_10_3390_math10224350
crossref_primary_10_1007_s00484_023_02608_y
crossref_primary_10_1016_j_suscom_2024_101014
crossref_primary_10_3390_diagnostics14212417
crossref_primary_10_1016_j_measurement_2024_114649
crossref_primary_10_1016_j_rineng_2025_104553
crossref_primary_10_1002_cjce_25417
crossref_primary_10_1142_S0218126624502049
crossref_primary_10_1016_j_heliyon_2023_e13885
crossref_primary_10_1016_j_advengsoft_2023_103423
crossref_primary_10_1016_j_advengsoft_2023_103411
crossref_primary_10_3390_biomimetics9050280
crossref_primary_10_1007_s10489_024_06189_0
crossref_primary_10_1109_ACCESS_2023_3327732
crossref_primary_10_3233_JHS_230212
crossref_primary_10_3390_electronics12214462
crossref_primary_10_1007_s12065_024_00996_7
crossref_primary_10_1186_s44147_024_00416_8
crossref_primary_10_1016_j_cosrev_2025_100733
crossref_primary_10_1016_j_asoc_2024_112567
crossref_primary_10_1007_s10489_024_06124_3
crossref_primary_10_1007_s11831_024_10217_0
crossref_primary_10_1016_j_engappai_2024_108188
crossref_primary_10_1142_S1756973724500021
crossref_primary_10_1093_cercor_bhae329
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_3390_math11102340
crossref_primary_10_1016_j_est_2023_109733
crossref_primary_10_1049_rpg2_13113
crossref_primary_10_1049_cth2_12644
crossref_primary_10_3390_electronics12092042
Cites_doi 10.1016/j.future.2019.02.028
10.1109/ACCESS.2020.2989445
10.1023/A:1008202821328
10.1109/ICNN.1995.488968
10.3390/pr9050859
10.1016/j.enconman.2020.113385
10.1016/j.cma.2020.113609
10.1016/j.cma.2022.114570
10.1016/j.asoc.2015.03.035
10.1155/2021/8548639
10.1016/j.ins.2018.09.034
10.1007/s10489-020-01727-y
10.4249/scholarpedia.1482
10.1016/j.knosys.2021.107483
10.1007/s12597-009-0003-4
10.1007/s00366-022-01604-x
10.1109/ACCESS.2022.3172710
10.1016/j.asoc.2017.01.008
10.1109/ACCESS.2019.2940012
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2020.06.037
10.3390/su14138097
10.1109/ACCESS.2022.3158666
10.1016/j.future.2019.07.015
10.1016/j.asoc.2020.106833
10.1109/TAP.2013.2238654
10.1007/s10462-020-09890-x
10.1007/s10462-020-09867-w
10.1109/TASE.2020.3027532
10.1016/j.advengsoft.2013.12.007
10.3390/s22030855
10.1016/j.asoc.2015.10.034
10.1002/int.22535
10.1016/j.knosys.2022.108320
10.1016/j.eswa.2018.07.008
10.1007/978-3-540-36668-3_94
10.1109/TCYB.2016.2641986
10.1016/j.engappai.2020.103666
10.1016/j.eswa.2022.116924
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3201147
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 90003
ExternalDocumentID oai_doaj_org_article_2a037cf54bcf4d91a0f1e8b5dd980475
10_1109_ACCESS_2022_3201147
9864584
Genre orig-research
GrantInformation_xml – fundername: Xizang Autonomous Region Higher Education Teaching Reform and Research Program of China
  grantid: JG2021-82
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-16ca519b7748197f8f63adaf4aaadf4c895aff321182bc7bbbeebb16e01976413
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:46 EDT 2025
Mon Jun 30 04:26:37 EDT 2025
Tue Jul 01 04:21:23 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Aug 27 02:14:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-16ca519b7748197f8f63adaf4aaadf4c895aff321182bc7bbbeebb16e01976413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6660-0656
0000-0001-6842-9039
OpenAccessLink https://doaj.org/article/2a037cf54bcf4d91a0f1e8b5dd980475
PQID 2709156613
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3201147
doaj_primary_oai_doaj_org_article_2a037cf54bcf4d91a0f1e8b5dd980475
crossref_primary_10_1109_ACCESS_2022_3201147
ieee_primary_9864584
proquest_journals_2709156613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Shah-Osseini (ref18) 2011; 6
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Storn (ref3) 1997; 11
ref9
ref4
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1016/j.future.2019.02.028
– ident: ref30
  doi: 10.1109/ACCESS.2020.2989445
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: ref3
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: ref2
  doi: 10.1109/ICNN.1995.488968
– ident: ref35
  doi: 10.3390/pr9050859
– ident: ref14
  doi: 10.1016/j.enconman.2020.113385
– ident: ref33
  doi: 10.1016/j.cma.2020.113609
– ident: ref34
  doi: 10.1016/j.cma.2022.114570
– ident: ref21
  doi: 10.1016/j.asoc.2015.03.035
– ident: ref36
  doi: 10.1155/2021/8548639
– ident: ref5
  doi: 10.1016/j.ins.2018.09.034
– ident: ref26
  doi: 10.1007/s10489-020-01727-y
– ident: ref1
  doi: 10.4249/scholarpedia.1482
– ident: ref12
  doi: 10.1016/j.knosys.2021.107483
– ident: ref23
  doi: 10.1007/s12597-009-0003-4
– ident: ref27
  doi: 10.1007/s00366-022-01604-x
– ident: ref32
  doi: 10.1109/ACCESS.2022.3172710
– ident: ref39
  doi: 10.1016/j.asoc.2017.01.008
– ident: ref13
  doi: 10.1109/ACCESS.2019.2940012
– ident: ref11
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref24
  doi: 10.1016/j.ins.2020.06.037
– ident: ref29
  doi: 10.3390/su14138097
– ident: ref31
  doi: 10.1109/ACCESS.2022.3158666
– ident: ref19
  doi: 10.1016/j.future.2019.07.015
– ident: ref15
  doi: 10.1016/j.asoc.2020.106833
– ident: ref17
  doi: 10.1109/TAP.2013.2238654
– volume: 6
  start-page: 132
  issue: 1
  year: 2011
  ident: ref18
  article-title: Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimisation
  publication-title: Int. J. Comput. Sci. Eng.
– ident: ref20
  doi: 10.1007/s10462-020-09890-x
– ident: ref25
  doi: 10.1007/s10462-020-09867-w
– ident: ref40
  doi: 10.1109/TASE.2020.3027532
– ident: ref4
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref8
  doi: 10.3390/s22030855
– ident: ref22
  doi: 10.1016/j.asoc.2015.10.034
– ident: ref6
  doi: 10.1002/int.22535
– ident: ref9
  doi: 10.1016/j.knosys.2022.108320
– ident: ref38
  doi: 10.1016/j.eswa.2018.07.008
– ident: ref28
  doi: 10.1007/978-3-540-36668-3_94
– ident: ref37
  doi: 10.1109/TCYB.2016.2641986
– ident: ref16
  doi: 10.1016/j.engappai.2020.103666
– ident: ref7
  doi: 10.1016/j.eswa.2022.116924
SSID ssj0000816957
Score 2.4910302
Snippet The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89989
SubjectTerms Accuracy
Behavioral sciences
Collaboration
Convergence
elite collaboration
Heuristic algorithms
Machine learning
Metaheuristics
nonlinear periodic adjustment
Nonlinear systems
Optimization
Optimization algorithms
Particle swarm optimization
Performance enhancement
Sand
Sand cat swarm optimization
Search algorithms
Statistics
Stochastic processes
stochastic variation
Trigonometric functions
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooFKi6fFQ-9EgWx7Gd5AgRCFWilbql5Wb5UyDKbgVZIfHrGSfeaAUV6s1KbMvRG3veOPYbgC-UGotMlWUs5AIDFIxZjbY0c6WXTlJPiy6LwsU3eX7Jv16JqxU4HO7CeO-7w2d-HIvdv3w3s_O4VXYUpcTRYa7CKgZu_V2tYT8lJpCoRZmEhXJaHx03DX4DhoCMjYvo52IKlSXn02n0p6Qqr1bizr2cbcDFYmD9qZLb8bw1Y_v0QrPxf0e-Ce8TzyTHvWF8gBU_3YJ3S-qDW7AeiWav07wNPyZ66kijWzJ51Pd35DsuJXfpjiY5QVfnCBYm7cxe69iE_MIgu3_7-6a9JqfxLjNplq1qBy7PTn8251nKt5BZTqs2y6XVSOgMMkLkCWWogiy004FrrV3gtqqFDqFgMSYxtjTGeG9MLj3SxFKiN_wIa9PZ1H8CgjzTmdpIroXn1FttK10LZiXLrcXeR8AWQCibxMhjTow_qgtKaK169FRETyX0RnA4NPrba3G8Xf0kIjxUjULa3QNERqV5qZimRWmD4MYG7upc05D7ygjn6oryUoxgO6I5dJKAHMH-wl5UmvQPipVIvpAe58Xuv1vtwXocYL-Dsw9r7f3cHyCnac3nzpifAcDI8u0
  priority: 102
  providerName: IEEE
Title Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration
URI https://ieeexplore.ieee.org/document/9864584
https://www.proquest.com/docview/2709156613
https://doaj.org/article/2a037cf54bcf4d91a0f1e8b5dd980475
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA7iSQ-iq-JzXcnBo9UkTdP2qEWRhVXw-esWJr9Q0Ke4Xfbfd5LGR0HQi7fSpmkzmWS-r3S-IWSPMWMRqYpCBF4hQUHOasCywtVeOcU8K1MVhT_n6uxa_r6r7kalvuI_YYM88GC4QwGsrG2opLFBupYDC9w3pnKubZisk3opxrwRmUp7cMNVW9VZZoiz9vCo63BESAiFOChj1IsFVUahKCn25xIrH_blFGxOV8lKRon0aHi7NbLgZz_I8kg7cJ1cTmHmaAc9nf6H1yd6gWv_KSdV0mOMTY7iwbR_tvcQtZjpDbLi4ertQ39PT2LyMe3GbrBBrk9PrrqzIhdIKKxkTV9wZQERmEEIh4G9Dk1QJTgIEgBckLZpKwihFJFEGFsbY7w3hiuPuK5WGL42yeLseea3CEVg6ExrlITKS-Yt2AbaSlgluLXY-4SId1tpm9XDYxGLR51YBGv1YGAdDayzgSdkf37TyyCe8Xnz4zgJ86ZR-TqdQH_Q2R_0V_4wIetxCuedRPl5BFkTsvM-pTqv0r9a1Og5iGd5uf0dj_5JluJwhg80O2Sxf_3nfyFk6c1u8s7dlF34BpPW5nk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcqA98NFSsVDAB47N1nZiJzm2UasFukViW-jN8qeKoLtVyQqJX8848UYrQIibldiWozf2vHHsNwBvKDUWmSrPeGACAxSMWY22NHOll05ST_Mui8L0XE4ui3dX4moDDoa7MN777vCZH8di9y_fLewybpUdRilxdJj34D76fcH621rDjkpMIVGLMkkLMVofHjUNfgUGgZyP8-jpYhKVNffTqfSntCp_rMWdgzl9BNPV0PpzJV_Hy9aM7c_fVBv_d-yP4WFimuSoN40nsOHnO7C9pj-4A1uRavZKzbvwcabnjjS6JbMf-u6GfMDF5Cbd0iTH6OwcwcKsXdhrHZuQTxhm928_f2mvyUm8zUyadbt6CpenJxfNJEsZFzJb0KrNmLQaKZ1BTohMoQxVkLl2OhRaaxcKW9VCh5DzGJUYWxpjvDeGSY9EsZToD_dgc76Y-2dAkGk6UxtZaOEL6q22la4Ft5Iza7H3EfAVEMomOfKYFeOb6sISWqsePRXRUwm9ERwMjW57NY5_Vz-OCA9Vo5R29wCRUWlmKq5pXtogCmND4WqmaWC-MsK5uqJFKUawG9EcOklAjmB_ZS8qTfvvipdIv5Ags_z531u9hgeTi-mZOnt7_v4FbMXB9vs5-7DZ3i39S2Q4rXnVGfYvj3b2Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sand+Cat+Swarm+Optimization+Based+on+Stochastic+Variation+With+Elite+Collaboration&rft.jtitle=IEEE+access&rft.au=Li%2C+Yiming&rft.au=Wang%2C+Gencheng&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=89989&rft.epage=90003&rft_id=info:doi/10.1109%2FACCESS.2022.3201147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3201147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon