Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration
The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sa...
Saved in:
Published in | IEEE access Vol. 10; pp. 89989 - 90003 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sand cat swarm optimization based on stochastic variation and elite collaboration (SE-SCSO) is proposed. SE-SCSO first introduces a nonlinear periodic adjustment mechanism to balance the exploration and local exploitation ability of the algorithm and accelerate the convergence of the algorithm.Secondly, the pseudo-opposition and pseudo-reflection learning mechanisms are used to speed up the optimization-seeking efficiency of the SCSO algorithm and improve the global convergence capability. Designing elite collaborative strategies with random variation to enable the algorithm to jump away from the local extrema, further improving the algorithm's optimization-seeking accuracy and convergence speed. In the simulation experiments, SE-SCSO is compared with Sand Cat Swarm Optimization (SCSO), Sine Cosine Algorithm (CSA), Circle Search Algorithm (SCA), Salp Swarm Algorithm (SSA), Harris Hawks Optimization (HHO), Whale Optimization Algorithm (WOA), and Golden Jackal Optimization (GJO) are tested for comparison. The experimental results validate the effectiveness of the proposed improvement strategies. Finally, SE-SCSO is applied to three engineering optimization problems. The results show that the improved strategy can effectively improve the performance performance of the algorithm, which gives SE-SCSO the advantages of high convergence accuracy, fast convergence, and the ability to jump out of local optimal solutions. |
---|---|
AbstractList | The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to hunt. To address the shortcomings of low accuracy of SCSO solution, slow convergence in late iterations and easy convergence stagnation, a sand cat swarm optimization based on stochastic variation and elite collaboration (SE-SCSO) is proposed. SE-SCSO first introduces a nonlinear periodic adjustment mechanism to balance the exploration and local exploitation ability of the algorithm and accelerate the convergence of the algorithm.Secondly, the pseudo-opposition and pseudo-reflection learning mechanisms are used to speed up the optimization-seeking efficiency of the SCSO algorithm and improve the global convergence capability. Designing elite collaborative strategies with random variation to enable the algorithm to jump away from the local extrema, further improving the algorithm’s optimization-seeking accuracy and convergence speed. In the simulation experiments, SE-SCSO is compared with Sand Cat Swarm Optimization (SCSO), Sine Cosine Algorithm (CSA), Circle Search Algorithm (SCA), Salp Swarm Algorithm (SSA), Harris Hawks Optimization (HHO), Whale Optimization Algorithm (WOA), and Golden Jackal Optimization (GJO) are tested for comparison. The experimental results validate the effectiveness of the proposed improvement strategies. Finally, SE-SCSO is applied to three engineering optimization problems. The results show that the improved strategy can effectively improve the performance performance of the algorithm, which gives SE-SCSO the advantages of high convergence accuracy, fast convergence, and the ability to jump out of local optimal solutions. |
Author | Wang, Gencheng Li, Yiming |
Author_xml | – sequence: 1 givenname: Yiming orcidid: 0000-0001-6660-0656 surname: Li fullname: Li, Yiming organization: College of Information Engineering, Xizang Minzu University, Xianyang, China – sequence: 2 givenname: Gencheng orcidid: 0000-0001-6842-9039 surname: Wang fullname: Wang, Gencheng email: xzmzwgc@163.com organization: College of Information Engineering, Xizang Minzu University, Xianyang, China |
BookMark | eNp9UctqHDEQFMGBOI6_wJeBnHet9-PoDJvYYDBkEvsoWhop1jI72mhkTPL1Ge_YweSQvnTTXVVUU-_R0ZjHgNAZwWtCsDm_aNtN160ppnTNKCaEqzfomBJpVkwwefRqfodOp2mL59LzSqhj9LWDsW9aqE33CGXX3Oxr2qXfUFMem08whb6Zh65mfw9TTb65hZKW612q981mSDU0bR4GcLkcDh_Q2wjDFE6f-wn6_nnzrb1cXd98uWovrleeY11XRHoQxDiluCZGRR0lgx4iB4A-cq-NgBgZJURT55VzLgTniAx4RktO2Am6WnT7DFu7L2kH5ZfNkOxhkcsPC2W2PARLATPlo-DOR94bAjiSoJ3oe6MxV2LW-rho7Uv--RCmarf5oYyzfUsVNkRISdiMMgvKlzxNJUTrUz38XAukwRJsnxKxSyL2KRH7nMjMZf9wXxz_n3W2sFII4S_DaMmF5uwPCVuZCw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3483457 crossref_primary_10_1016_j_energy_2025_134512 crossref_primary_10_1038_s41598_025_89904_2 crossref_primary_10_1016_j_est_2025_116026 crossref_primary_10_1109_ACCESS_2023_3292338 crossref_primary_10_3390_math10224350 crossref_primary_10_1007_s00484_023_02608_y crossref_primary_10_1016_j_suscom_2024_101014 crossref_primary_10_3390_diagnostics14212417 crossref_primary_10_1016_j_measurement_2024_114649 crossref_primary_10_1016_j_rineng_2025_104553 crossref_primary_10_1002_cjce_25417 crossref_primary_10_1142_S0218126624502049 crossref_primary_10_1016_j_heliyon_2023_e13885 crossref_primary_10_1016_j_advengsoft_2023_103423 crossref_primary_10_1016_j_advengsoft_2023_103411 crossref_primary_10_3390_biomimetics9050280 crossref_primary_10_1007_s10489_024_06189_0 crossref_primary_10_1109_ACCESS_2023_3327732 crossref_primary_10_3233_JHS_230212 crossref_primary_10_3390_electronics12214462 crossref_primary_10_1007_s12065_024_00996_7 crossref_primary_10_1186_s44147_024_00416_8 crossref_primary_10_1016_j_cosrev_2025_100733 crossref_primary_10_1016_j_asoc_2024_112567 crossref_primary_10_1007_s10489_024_06124_3 crossref_primary_10_1007_s11831_024_10217_0 crossref_primary_10_1016_j_engappai_2024_108188 crossref_primary_10_1142_S1756973724500021 crossref_primary_10_1093_cercor_bhae329 crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_3390_math11102340 crossref_primary_10_1016_j_est_2023_109733 crossref_primary_10_1049_rpg2_13113 crossref_primary_10_1049_cth2_12644 crossref_primary_10_3390_electronics12092042 |
Cites_doi | 10.1016/j.future.2019.02.028 10.1109/ACCESS.2020.2989445 10.1023/A:1008202821328 10.1109/ICNN.1995.488968 10.3390/pr9050859 10.1016/j.enconman.2020.113385 10.1016/j.cma.2020.113609 10.1016/j.cma.2022.114570 10.1016/j.asoc.2015.03.035 10.1155/2021/8548639 10.1016/j.ins.2018.09.034 10.1007/s10489-020-01727-y 10.4249/scholarpedia.1482 10.1016/j.knosys.2021.107483 10.1007/s12597-009-0003-4 10.1007/s00366-022-01604-x 10.1109/ACCESS.2022.3172710 10.1016/j.asoc.2017.01.008 10.1109/ACCESS.2019.2940012 10.1016/j.advengsoft.2016.01.008 10.1016/j.ins.2020.06.037 10.3390/su14138097 10.1109/ACCESS.2022.3158666 10.1016/j.future.2019.07.015 10.1016/j.asoc.2020.106833 10.1109/TAP.2013.2238654 10.1007/s10462-020-09890-x 10.1007/s10462-020-09867-w 10.1109/TASE.2020.3027532 10.1016/j.advengsoft.2013.12.007 10.3390/s22030855 10.1016/j.asoc.2015.10.034 10.1002/int.22535 10.1016/j.knosys.2022.108320 10.1016/j.eswa.2018.07.008 10.1007/978-3-540-36668-3_94 10.1109/TCYB.2016.2641986 10.1016/j.engappai.2020.103666 10.1016/j.eswa.2022.116924 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3201147 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 2169-3536 |
EndPage | 90003 |
ExternalDocumentID | oai_doaj_org_article_2a037cf54bcf4d91a0f1e8b5dd980475 10_1109_ACCESS_2022_3201147 9864584 |
Genre | orig-research |
GrantInformation_xml | – fundername: Xizang Autonomous Region Higher Education Teaching Reform and Research Program of China grantid: JG2021-82 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-16ca519b7748197f8f63adaf4aaadf4c895aff321182bc7bbbeebb16e01976413 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Mon Jun 30 04:26:37 EDT 2025 Tue Jul 01 04:21:23 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Aug 27 02:14:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-16ca519b7748197f8f63adaf4aaadf4c895aff321182bc7bbbeebb16e01976413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6660-0656 0000-0001-6842-9039 |
OpenAccessLink | https://doaj.org/article/2a037cf54bcf4d91a0f1e8b5dd980475 |
PQID | 2709156613 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3201147 doaj_primary_oai_doaj_org_article_2a037cf54bcf4d91a0f1e8b5dd980475 crossref_primary_10_1109_ACCESS_2022_3201147 ieee_primary_9864584 proquest_journals_2709156613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Shah-Osseini (ref18) 2011; 6 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Storn (ref3) 1997; 11 ref9 ref4 ref6 ref5 ref40 |
References_xml | – ident: ref10 doi: 10.1016/j.future.2019.02.028 – ident: ref30 doi: 10.1109/ACCESS.2020.2989445 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: ref3 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: ref2 doi: 10.1109/ICNN.1995.488968 – ident: ref35 doi: 10.3390/pr9050859 – ident: ref14 doi: 10.1016/j.enconman.2020.113385 – ident: ref33 doi: 10.1016/j.cma.2020.113609 – ident: ref34 doi: 10.1016/j.cma.2022.114570 – ident: ref21 doi: 10.1016/j.asoc.2015.03.035 – ident: ref36 doi: 10.1155/2021/8548639 – ident: ref5 doi: 10.1016/j.ins.2018.09.034 – ident: ref26 doi: 10.1007/s10489-020-01727-y – ident: ref1 doi: 10.4249/scholarpedia.1482 – ident: ref12 doi: 10.1016/j.knosys.2021.107483 – ident: ref23 doi: 10.1007/s12597-009-0003-4 – ident: ref27 doi: 10.1007/s00366-022-01604-x – ident: ref32 doi: 10.1109/ACCESS.2022.3172710 – ident: ref39 doi: 10.1016/j.asoc.2017.01.008 – ident: ref13 doi: 10.1109/ACCESS.2019.2940012 – ident: ref11 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref24 doi: 10.1016/j.ins.2020.06.037 – ident: ref29 doi: 10.3390/su14138097 – ident: ref31 doi: 10.1109/ACCESS.2022.3158666 – ident: ref19 doi: 10.1016/j.future.2019.07.015 – ident: ref15 doi: 10.1016/j.asoc.2020.106833 – ident: ref17 doi: 10.1109/TAP.2013.2238654 – volume: 6 start-page: 132 issue: 1 year: 2011 ident: ref18 article-title: Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimisation publication-title: Int. J. Comput. Sci. Eng. – ident: ref20 doi: 10.1007/s10462-020-09890-x – ident: ref25 doi: 10.1007/s10462-020-09867-w – ident: ref40 doi: 10.1109/TASE.2020.3027532 – ident: ref4 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref8 doi: 10.3390/s22030855 – ident: ref22 doi: 10.1016/j.asoc.2015.10.034 – ident: ref6 doi: 10.1002/int.22535 – ident: ref9 doi: 10.1016/j.knosys.2022.108320 – ident: ref38 doi: 10.1016/j.eswa.2018.07.008 – ident: ref28 doi: 10.1007/978-3-540-36668-3_94 – ident: ref37 doi: 10.1109/TCYB.2016.2641986 – ident: ref16 doi: 10.1016/j.engappai.2020.103666 – ident: ref7 doi: 10.1016/j.eswa.2022.116924 |
SSID | ssj0000816957 |
Score | 2.4910302 |
Snippet | The sand cat swarm optimization (SCSO) is a new heuristic optimization algorithm that simulates the behavior of sand cat groups in the desert using hearing to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 89989 |
SubjectTerms | Accuracy Behavioral sciences Collaboration Convergence elite collaboration Heuristic algorithms Machine learning Metaheuristics nonlinear periodic adjustment Nonlinear systems Optimization Optimization algorithms Particle swarm optimization Performance enhancement Sand Sand cat swarm optimization Search algorithms Statistics Stochastic processes stochastic variation Trigonometric functions |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooFKi6fFQ-9EgWx7Gd5AgRCFWilbql5Wb5UyDKbgVZIfHrGSfeaAUV6s1KbMvRG3veOPYbgC-UGotMlWUs5AIDFIxZjbY0c6WXTlJPiy6LwsU3eX7Jv16JqxU4HO7CeO-7w2d-HIvdv3w3s_O4VXYUpcTRYa7CKgZu_V2tYT8lJpCoRZmEhXJaHx03DX4DhoCMjYvo52IKlSXn02n0p6Qqr1bizr2cbcDFYmD9qZLb8bw1Y_v0QrPxf0e-Ce8TzyTHvWF8gBU_3YJ3S-qDW7AeiWav07wNPyZ66kijWzJ51Pd35DsuJXfpjiY5QVfnCBYm7cxe69iE_MIgu3_7-6a9JqfxLjNplq1qBy7PTn8251nKt5BZTqs2y6XVSOgMMkLkCWWogiy004FrrV3gtqqFDqFgMSYxtjTGeG9MLj3SxFKiN_wIa9PZ1H8CgjzTmdpIroXn1FttK10LZiXLrcXeR8AWQCibxMhjTow_qgtKaK169FRETyX0RnA4NPrba3G8Xf0kIjxUjULa3QNERqV5qZimRWmD4MYG7upc05D7ygjn6oryUoxgO6I5dJKAHMH-wl5UmvQPipVIvpAe58Xuv1vtwXocYL-Dsw9r7f3cHyCnac3nzpifAcDI8u0 priority: 102 providerName: IEEE |
Title | Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration |
URI | https://ieeexplore.ieee.org/document/9864584 https://www.proquest.com/docview/2709156613 https://doaj.org/article/2a037cf54bcf4d91a0f1e8b5dd980475 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA7iSQ-iq-JzXcnBo9UkTdP2qEWRhVXw-esWJr9Q0Ke4Xfbfd5LGR0HQi7fSpmkzmWS-r3S-IWSPMWMRqYpCBF4hQUHOasCywtVeOcU8K1MVhT_n6uxa_r6r7kalvuI_YYM88GC4QwGsrG2opLFBupYDC9w3pnKubZisk3opxrwRmUp7cMNVW9VZZoiz9vCo63BESAiFOChj1IsFVUahKCn25xIrH_blFGxOV8lKRon0aHi7NbLgZz_I8kg7cJ1cTmHmaAc9nf6H1yd6gWv_KSdV0mOMTY7iwbR_tvcQtZjpDbLi4ertQ39PT2LyMe3GbrBBrk9PrrqzIhdIKKxkTV9wZQERmEEIh4G9Dk1QJTgIEgBckLZpKwihFJFEGFsbY7w3hiuPuK5WGL42yeLseea3CEVg6ExrlITKS-Yt2AbaSlgluLXY-4SId1tpm9XDYxGLR51YBGv1YGAdDayzgSdkf37TyyCe8Xnz4zgJ86ZR-TqdQH_Q2R_0V_4wIetxCuedRPl5BFkTsvM-pTqv0r9a1Og5iGd5uf0dj_5JluJwhg80O2Sxf_3nfyFk6c1u8s7dlF34BpPW5nk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcqA98NFSsVDAB47N1nZiJzm2UasFukViW-jN8qeKoLtVyQqJX8848UYrQIibldiWozf2vHHsNwBvKDUWmSrPeGACAxSMWY22NHOll05ST_Mui8L0XE4ui3dX4moDDoa7MN777vCZH8di9y_fLewybpUdRilxdJj34D76fcH621rDjkpMIVGLMkkLMVofHjUNfgUGgZyP8-jpYhKVNffTqfSntCp_rMWdgzl9BNPV0PpzJV_Hy9aM7c_fVBv_d-yP4WFimuSoN40nsOHnO7C9pj-4A1uRavZKzbvwcabnjjS6JbMf-u6GfMDF5Cbd0iTH6OwcwcKsXdhrHZuQTxhm928_f2mvyUm8zUyadbt6CpenJxfNJEsZFzJb0KrNmLQaKZ1BTohMoQxVkLl2OhRaaxcKW9VCh5DzGJUYWxpjvDeGSY9EsZToD_dgc76Y-2dAkGk6UxtZaOEL6q22la4Ft5Iza7H3EfAVEMomOfKYFeOb6sISWqsePRXRUwm9ERwMjW57NY5_Vz-OCA9Vo5R29wCRUWlmKq5pXtogCmND4WqmaWC-MsK5uqJFKUawG9EcOklAjmB_ZS8qTfvvipdIv5Ags_z531u9hgeTi-mZOnt7_v4FbMXB9vs5-7DZ3i39S2Q4rXnVGfYvj3b2Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sand+Cat+Swarm+Optimization+Based+on+Stochastic+Variation+With+Elite+Collaboration&rft.jtitle=IEEE+access&rft.au=Li%2C+Yiming&rft.au=Wang%2C+Gencheng&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=89989&rft.epage=90003&rft_id=info:doi/10.1109%2FACCESS.2022.3201147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3201147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |