A Novel Ensemble Framework for an Intelligent Intrusion Detection System
Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive meth...
Saved in:
Published in | IEEE access Vol. 9; pp. 138451 - 138467 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive methods and easily evade the detection tools deployed in a computing environment. Moreover, it is challenging to use a single classifier to efficiently detect all kinds of attacks. Aims: To propose a unique ensemble framework that can effectively detect different attack categories. Method: The proposed approach is based on building an ensemble by ranking the detection ability of different base classifiers to identify various types of attacks. The F1-score of an algorithm is used to compute the rank matrix for different attack categories. For final prediction algorithm's output for an attack is only considered if the algorithm has the highest F1-Score in the rank matrix for the particular attack category. This approach contrasts with the voting approach where the final classification is based on the voting of all classifiers in the ensemble irrespective of the fact if the algorithm is efficient enough to detect that attack or not. Results: With the proposed method, the final accuracy obtained is 96.97 %, a recall rate of 97.4%, and a better attack detection rate than the baseline classifiers and other existing approaches for different attack categories. |
---|---|
AbstractList | Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive methods and easily evade the detection tools deployed in a computing environment. Moreover, it is challenging to use a single classifier to efficiently detect all kinds of attacks. Aims: To propose a unique ensemble framework that can effectively detect different attack categories. Method: The proposed approach is based on building an ensemble by ranking the detection ability of different base classifiers to identify various types of attacks. The F1-score of an algorithm is used to compute the rank matrix for different attack categories. For final prediction algorithm's output for an attack is only considered if the algorithm has the highest F1-Score in the rank matrix for the particular attack category. This approach contrasts with the voting approach where the final classification is based on the voting of all classifiers in the ensemble irrespective of the fact if the algorithm is efficient enough to detect that attack or not. Results: With the proposed method, the final accuracy obtained is 96.97 %, a recall rate of 97.4%, and a better attack detection rate than the baseline classifiers and other existing approaches for different attack categories. |
Author | Chahal, Kuljit Kaur Seth, Sugandh Singh, Gurvinder |
Author_xml | – sequence: 1 givenname: Sugandh orcidid: 0000-0002-7474-2141 surname: Seth fullname: Seth, Sugandh email: sugandhseth@gmail.com organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India – sequence: 2 givenname: Kuljit Kaur orcidid: 0000-0003-3785-116X surname: Chahal fullname: Chahal, Kuljit Kaur organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India – sequence: 3 givenname: Gurvinder surname: Singh fullname: Singh, Gurvinder organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India |
BookMark | eNpNUU1PAjEQbQwmIvILuGziGezHdtseCYKQED2g56ZdZsnissV20fDv7bqEOJd58_HeTPLuUa92NSA0InhCCFZP09lsvtlMKKZkwgjJKFE3qE9JpsaMs6z3D9-hYQh7HEPGFhd9tJwmr-4bqmReBzjYCpKFNwf4cf4zKZxPTJ2s6gaqqtxB3bTYn0Lp6uQZGsibFm3OoYHDA7otTBVgeMkD9LGYv8-W4_Xby2o2XY_zFMtmTDKzTaXg3BphhbAcJIsDagpQmbIklUbJjDIBXJECc1xADrEqGBMiEtkArTrdrTN7ffTlwfizdqbUfw3nd9r4pswr0LTg0gqw2GBIrTVKEWMFSS2TKYVtGrUeO62jd18nCI3eu5Ov4_uacklpmmWcxS3WbeXeheChuF4lWLcO6M4B3TqgLw5E1qhjlQBwZSjOiRSK_QLpgIIr |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11277_022_09817_5 crossref_primary_10_3390_bdcc6040137 crossref_primary_10_47933_ijeir_1360141 crossref_primary_10_1016_j_eswa_2022_119030 crossref_primary_10_1109_ACCESS_2023_3328535 crossref_primary_10_1007_s12083_024_01650_w crossref_primary_10_3389_fpubh_2021_824898 crossref_primary_10_1016_j_adhoc_2023_103330 crossref_primary_10_1186_s13677_023_00509_4 crossref_primary_10_1016_j_comnet_2024_110603 crossref_primary_10_1016_j_dajour_2022_100142 |
Cites_doi | 10.1016/j.jisa.2019.102419 10.1016/j.knosys.2020.105648 10.1109/TETCI.2017.2772792 10.1186/s40537-020-00382-x 10.1109/TSMCB.2012.2187280 10.1186/s40537-020-00288-8 10.1016/j.cose.2020.101984 10.1016/j.cose.2016.11.004 10.1007/s10586-019-03008-x 10.1016/j.jfranklin.2017.06.006 10.1109/ACCESS.2016.2619719 10.1007/s10994-006-6226-1 10.1109/ACCESS.2020.3008433 10.3390/s16101701 10.1613/jair.953 10.1007/s11749-016-0481-7 10.1186/s42400-019-0038-7 10.1016/j.asoc.2015.10.011 10.1109/ACCESS.2019.2928048 10.1016/j.aca.2012.11.007 10.1016/j.adhoc.2018.09.014 10.1016/0169-7439(87)80084-9 10.1016/j.eswa.2011.06.013 10.1109/ACCESS.2019.2923640 10.1016/j.patrec.2020.03.004 10.3390/info9070149 10.1186/s40537-018-0151-6 10.1007/978-3-030-23502-4_12 10.1109/ACCESS.2020.2973219 10.1007/s11227-020-03410-y 10.1016/j.comnet.2020.107247 10.1007/s10462-017-9567-1 10.1016/j.jnca.2017.03.018 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3116219 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 138467 |
ExternalDocumentID | oai_doaj_org_article_2f58b7eb0a0e4bba991ab714b3842ed4 10_1109_ACCESS_2021_3116219 9551879 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-16ad48755ba7b77b5e834082afe969b148a986237e591f050fece37ef33774873 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:16:07 EDT 2024 Thu Oct 10 19:16:57 EDT 2024 Fri Aug 23 00:57:32 EDT 2024 Wed Jun 26 19:29:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-16ad48755ba7b77b5e834082afe969b148a986237e591f050fece37ef33774873 |
ORCID | 0000-0002-7474-2141 0000-0003-3785-116X |
OpenAccessLink | https://doaj.org/article/2f58b7eb0a0e4bba991ab714b3842ed4 |
PQID | 2582246653 |
PQPubID | 4845423 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f58b7eb0a0e4bba991ab714b3842ed4 crossref_primary_10_1109_ACCESS_2021_3116219 proquest_journals_2582246653 ieee_primary_9551879 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref10) 2018 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1016/j.jisa.2019.102419 – ident: ref1 doi: 10.1016/j.knosys.2020.105648 – ident: ref32 doi: 10.1109/TETCI.2017.2772792 – ident: ref16 doi: 10.1186/s40537-020-00382-x – ident: ref18 doi: 10.1109/TSMCB.2012.2187280 – ident: ref22 doi: 10.1186/s40537-020-00288-8 – ident: ref31 doi: 10.1016/j.cose.2020.101984 – ident: ref33 doi: 10.1016/j.cose.2016.11.004 – ident: ref13 doi: 10.1007/s10586-019-03008-x – ident: ref14 doi: 10.1016/j.jfranklin.2017.06.006 – ident: ref19 doi: 10.1109/ACCESS.2016.2619719 – ident: ref29 doi: 10.1007/s10994-006-6226-1 – ident: ref6 doi: 10.1109/ACCESS.2020.3008433 – ident: ref15 doi: 10.3390/s16101701 – ident: ref21 doi: 10.1613/jair.953 – ident: ref28 doi: 10.1007/s11749-016-0481-7 – ident: ref5 doi: 10.1186/s42400-019-0038-7 – year: 2018 ident: ref10 publication-title: UNB – ident: ref26 doi: 10.1016/j.asoc.2015.10.011 – ident: ref11 doi: 10.1109/ACCESS.2019.2928048 – ident: ref34 doi: 10.1016/j.aca.2012.11.007 – ident: ref8 doi: 10.1016/j.adhoc.2018.09.014 – ident: ref25 doi: 10.1016/0169-7439(87)80084-9 – ident: ref27 doi: 10.1016/j.eswa.2011.06.013 – ident: ref2 doi: 10.1109/ACCESS.2019.2923640 – ident: ref20 doi: 10.1016/j.patrec.2020.03.004 – ident: ref30 doi: 10.3390/info9070149 – ident: ref17 doi: 10.1186/s40537-018-0151-6 – ident: ref12 doi: 10.1007/978-3-030-23502-4_12 – ident: ref4 doi: 10.1109/ACCESS.2020.2973219 – ident: ref3 doi: 10.1007/s11227-020-03410-y – ident: ref9 doi: 10.1016/j.comnet.2020.107247 – ident: ref23 doi: 10.1007/s10462-017-9567-1 – ident: ref35 doi: 10.1016/j.jnca.2017.03.018 – ident: ref24 doi: 10.1023/A:1010933404324 |
SSID | ssj0000816957 |
Score | 2.3910594 |
Snippet | Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 138451 |
SubjectTerms | Algorithms Categories CIC IDS 2018 Classification Classification algorithms Classifiers Computer crime cybersecurity Deep learning ensemble learning Feature extraction Intrusion detection intrusion detection framework Intrusion detection system Intrusion detection systems machine learning Machine learning algorithms Random forests Software Voting |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library Online dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmZohafNAnKYFh4yWI4qkKI6uG8MJEE8NkI0gqdNSRw4auUN_fXmSLBhthmyUoMfpjhTvOx6_A7g2OWpZFjwxpZaJzHieOGFEEoSoQpCmTCVtcH5Y5otHef-knvZgPOyFQcQ2-Qwn1GzX8st12FCo7MYQfZg2-7Cvjen2ag3xFCogYZTuiYV4am6ms1n8hggBMx6RKc8zYtPZmXxajv6-qMp_f-J2epkfw8NWsC6r5Odk0_hJ-PMPZ-N7Jf8IR72fyaZdx_gEe1ifwOEO--ApLKZsuf6NK3Zbv-KzXyGbbzO1WHRlmavZ3UDY2VD714Zia-w7Nm0CV806vvMzeJzf_pgtkr6wQhJkWjQJz11JQEV5p73WXmEhqPC0q9DkxkeE5ExEOkKjMrxKVVphwHhUCRG9xUKLczio1zVeAFO65M6FUhLNjeO0iJtxX0VUV7jAhRzBeKtx-9LxZ9gWd6TGdgayZCDbG2gE38gqw6VEft2eiNq0_ViyWaUKr9GnLkXpvYsurvOaSy8KmWEZ33lKFhge0it_BFdbG9t-oL7aTFEabZ4rcfn2XZ_hAwnYRV2u4CCqGr9EP6TxX9sO-BeLqtkq priority: 102 providerName: IEEE |
Title | A Novel Ensemble Framework for an Intelligent Intrusion Detection System |
URI | https://ieeexplore.ieee.org/document/9551879 https://www.proquest.com/docview/2582246653 https://doaj.org/article/2f58b7eb0a0e4bba991ab714b3842ed4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFUnlgJKodf4-ltCpIdKJSN8tOnKmkiAZ-P_5Iq0gMLGxxEjnxO8e-55zfAXCvuBO0lDhTpaAZzTHPDFEkKwipioKqEtGwwfl1yRcr-rJm606qrxATluSBE3DjvGLSCmeRQY5aa7w_Y6zA1BJJc1cmJVCkOmQqjsESc8VEKzPkr48n06lvkSeEOfY8FfM8aOt0pqKo2N-mWPk1LsfJZn4GTlsvEU7S252DI1dfgJOOdmAfLCZwuf12Gzird-7dbhyc7-OsoHdEoanh80FuswnHn19hZQw-uSaGX9UwqZVfgtV89jZdZG1ahKygSDYZ5qYMNINZI6wQljlJQtpoUznFlfX8xijPU4hwTOEKMVS5wvlSRYj39aQgV6BXb2t3DSATJTamKGkQqTE4_ILNsa08J5OmwIQOwMMeIf2R1C90ZA1I6QSoDoDqFtABeAwoHm4N0tXxhDeobg2q_zLoAPSDDQ6VqKAZJ3zdw71NdPuZ7XTOQhAs54zc_Mejb8FxaE5aYRmCnjeMu_M-R2NHsXuN4vbAH2kc0UY |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07c9QwEN4JoQCK8AgZLgRQQRlfLOtllceRmwvkrkpm0mkked0QfBnio-DXo7V9ngxQ0MkeP9a7krXfavUtwEer0ciq5JmtjMxkwXXmhRVZFKKOUdoql7TBebXWy2v55Ubd7MHpuBcGEbvkM5xSs1vLrzZxS6GyM0v0YcY-gsfJry51v1trjKhQCQmrzEAtxHN7NpvP01ckEFjwhE25LohP58H007H0D2VV_voXdxPM4jmsdqL1eSXfpts2TOOvP1gb_1f2F3AweJps1neNl7CHzSt49oB_8BCWM7be_MRbdt7c4_dwi2yxy9ViyZllvmEXI2VnS-0fW4qusc_YdilcDesZz1_D9eL8ar7MhtIKWZR52WZc-4qgigreBGOCwlJQ6Wlfo9U2JIzkbcI6wqCyvM5VXmPEdFQLkfzF0ogj2G82Db4BpkzFvY-VJKIbz2kZt-ChTriu9JELOYHTncbdXc-g4TrkkVvXG8iRgdxgoAl8IquMlxL9dXciadMNo8kVtSqDwZD7HGUIPjm5PhgugyhlgVV65yFZYHzIoPwJnOxs7Iaheu8KRYm0Witx_O-7PsCT5dXq0l1erL--hackbB-DOYH9pHZ8l7ySNrzvOuNvDn7cdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Ensemble+Framework+for+an+Intelligent+Intrusion+Detection+System&rft.jtitle=IEEE+access&rft.au=Seth%2C+Sugandh&rft.au=Chahal%2C+Kuljit+Kaur&rft.au=Singh%2C+Gurvinder&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=138451&rft.epage=138467&rft_id=info:doi/10.1109%2FACCESS.2021.3116219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3116219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |