A Novel Ensemble Framework for an Intelligent Intrusion Detection System

Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive meth...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 138451 - 138467
Main Authors Seth, Sugandh, Chahal, Kuljit Kaur, Singh, Gurvinder
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive methods and easily evade the detection tools deployed in a computing environment. Moreover, it is challenging to use a single classifier to efficiently detect all kinds of attacks. Aims: To propose a unique ensemble framework that can effectively detect different attack categories. Method: The proposed approach is based on building an ensemble by ranking the detection ability of different base classifiers to identify various types of attacks. The F1-score of an algorithm is used to compute the rank matrix for different attack categories. For final prediction algorithm's output for an attack is only considered if the algorithm has the highest F1-Score in the rank matrix for the particular attack category. This approach contrasts with the voting approach where the final classification is based on the voting of all classifiers in the ensemble irrespective of the fact if the algorithm is efficient enough to detect that attack or not. Results: With the proposed method, the final accuracy obtained is 96.97 %, a recall rate of 97.4%, and a better attack detection rate than the baseline classifiers and other existing approaches for different attack categories.
AbstractList Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern, sophisticated attacks. High-performance classification methods are needed for Intrusion Detection Systems as attackers can establish intrusive methods and easily evade the detection tools deployed in a computing environment. Moreover, it is challenging to use a single classifier to efficiently detect all kinds of attacks. Aims: To propose a unique ensemble framework that can effectively detect different attack categories. Method: The proposed approach is based on building an ensemble by ranking the detection ability of different base classifiers to identify various types of attacks. The F1-score of an algorithm is used to compute the rank matrix for different attack categories. For final prediction algorithm's output for an attack is only considered if the algorithm has the highest F1-Score in the rank matrix for the particular attack category. This approach contrasts with the voting approach where the final classification is based on the voting of all classifiers in the ensemble irrespective of the fact if the algorithm is efficient enough to detect that attack or not. Results: With the proposed method, the final accuracy obtained is 96.97 %, a recall rate of 97.4%, and a better attack detection rate than the baseline classifiers and other existing approaches for different attack categories.
Author Chahal, Kuljit Kaur
Seth, Sugandh
Singh, Gurvinder
Author_xml – sequence: 1
  givenname: Sugandh
  orcidid: 0000-0002-7474-2141
  surname: Seth
  fullname: Seth, Sugandh
  email: sugandhseth@gmail.com
  organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India
– sequence: 2
  givenname: Kuljit Kaur
  orcidid: 0000-0003-3785-116X
  surname: Chahal
  fullname: Chahal, Kuljit Kaur
  organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India
– sequence: 3
  givenname: Gurvinder
  surname: Singh
  fullname: Singh, Gurvinder
  organization: Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India
BookMark eNpNUU1PAjEQbQwmIvILuGziGezHdtseCYKQED2g56ZdZsnissV20fDv7bqEOJd58_HeTPLuUa92NSA0InhCCFZP09lsvtlMKKZkwgjJKFE3qE9JpsaMs6z3D9-hYQh7HEPGFhd9tJwmr-4bqmReBzjYCpKFNwf4cf4zKZxPTJ2s6gaqqtxB3bTYn0Lp6uQZGsibFm3OoYHDA7otTBVgeMkD9LGYv8-W4_Xby2o2XY_zFMtmTDKzTaXg3BphhbAcJIsDagpQmbIklUbJjDIBXJECc1xADrEqGBMiEtkArTrdrTN7ffTlwfizdqbUfw3nd9r4pswr0LTg0gqw2GBIrTVKEWMFSS2TKYVtGrUeO62jd18nCI3eu5Ov4_uacklpmmWcxS3WbeXeheChuF4lWLcO6M4B3TqgLw5E1qhjlQBwZSjOiRSK_QLpgIIr
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11277_022_09817_5
crossref_primary_10_3390_bdcc6040137
crossref_primary_10_47933_ijeir_1360141
crossref_primary_10_1016_j_eswa_2022_119030
crossref_primary_10_1109_ACCESS_2023_3328535
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_3389_fpubh_2021_824898
crossref_primary_10_1016_j_adhoc_2023_103330
crossref_primary_10_1186_s13677_023_00509_4
crossref_primary_10_1016_j_comnet_2024_110603
crossref_primary_10_1016_j_dajour_2022_100142
Cites_doi 10.1016/j.jisa.2019.102419
10.1016/j.knosys.2020.105648
10.1109/TETCI.2017.2772792
10.1186/s40537-020-00382-x
10.1109/TSMCB.2012.2187280
10.1186/s40537-020-00288-8
10.1016/j.cose.2020.101984
10.1016/j.cose.2016.11.004
10.1007/s10586-019-03008-x
10.1016/j.jfranklin.2017.06.006
10.1109/ACCESS.2016.2619719
10.1007/s10994-006-6226-1
10.1109/ACCESS.2020.3008433
10.3390/s16101701
10.1613/jair.953
10.1007/s11749-016-0481-7
10.1186/s42400-019-0038-7
10.1016/j.asoc.2015.10.011
10.1109/ACCESS.2019.2928048
10.1016/j.aca.2012.11.007
10.1016/j.adhoc.2018.09.014
10.1016/0169-7439(87)80084-9
10.1016/j.eswa.2011.06.013
10.1109/ACCESS.2019.2923640
10.1016/j.patrec.2020.03.004
10.3390/info9070149
10.1186/s40537-018-0151-6
10.1007/978-3-030-23502-4_12
10.1109/ACCESS.2020.2973219
10.1007/s11227-020-03410-y
10.1016/j.comnet.2020.107247
10.1007/s10462-017-9567-1
10.1016/j.jnca.2017.03.018
10.1023/A:1010933404324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3116219
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 138467
ExternalDocumentID oai_doaj_org_article_2f58b7eb0a0e4bba991ab714b3842ed4
10_1109_ACCESS_2021_3116219
9551879
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-16ad48755ba7b77b5e834082afe969b148a986237e591f050fece37ef33774873
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:16:07 EDT 2024
Thu Oct 10 19:16:57 EDT 2024
Fri Aug 23 00:57:32 EDT 2024
Wed Jun 26 19:29:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-16ad48755ba7b77b5e834082afe969b148a986237e591f050fece37ef33774873
ORCID 0000-0002-7474-2141
0000-0003-3785-116X
OpenAccessLink https://doaj.org/article/2f58b7eb0a0e4bba991ab714b3842ed4
PQID 2582246653
PQPubID 4845423
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_2f58b7eb0a0e4bba991ab714b3842ed4
crossref_primary_10_1109_ACCESS_2021_3116219
proquest_journals_2582246653
ieee_primary_9551879
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref10) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1016/j.jisa.2019.102419
– ident: ref1
  doi: 10.1016/j.knosys.2020.105648
– ident: ref32
  doi: 10.1109/TETCI.2017.2772792
– ident: ref16
  doi: 10.1186/s40537-020-00382-x
– ident: ref18
  doi: 10.1109/TSMCB.2012.2187280
– ident: ref22
  doi: 10.1186/s40537-020-00288-8
– ident: ref31
  doi: 10.1016/j.cose.2020.101984
– ident: ref33
  doi: 10.1016/j.cose.2016.11.004
– ident: ref13
  doi: 10.1007/s10586-019-03008-x
– ident: ref14
  doi: 10.1016/j.jfranklin.2017.06.006
– ident: ref19
  doi: 10.1109/ACCESS.2016.2619719
– ident: ref29
  doi: 10.1007/s10994-006-6226-1
– ident: ref6
  doi: 10.1109/ACCESS.2020.3008433
– ident: ref15
  doi: 10.3390/s16101701
– ident: ref21
  doi: 10.1613/jair.953
– ident: ref28
  doi: 10.1007/s11749-016-0481-7
– ident: ref5
  doi: 10.1186/s42400-019-0038-7
– year: 2018
  ident: ref10
  publication-title: UNB
– ident: ref26
  doi: 10.1016/j.asoc.2015.10.011
– ident: ref11
  doi: 10.1109/ACCESS.2019.2928048
– ident: ref34
  doi: 10.1016/j.aca.2012.11.007
– ident: ref8
  doi: 10.1016/j.adhoc.2018.09.014
– ident: ref25
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref27
  doi: 10.1016/j.eswa.2011.06.013
– ident: ref2
  doi: 10.1109/ACCESS.2019.2923640
– ident: ref20
  doi: 10.1016/j.patrec.2020.03.004
– ident: ref30
  doi: 10.3390/info9070149
– ident: ref17
  doi: 10.1186/s40537-018-0151-6
– ident: ref12
  doi: 10.1007/978-3-030-23502-4_12
– ident: ref4
  doi: 10.1109/ACCESS.2020.2973219
– ident: ref3
  doi: 10.1007/s11227-020-03410-y
– ident: ref9
  doi: 10.1016/j.comnet.2020.107247
– ident: ref23
  doi: 10.1007/s10462-017-9567-1
– ident: ref35
  doi: 10.1016/j.jnca.2017.03.018
– ident: ref24
  doi: 10.1023/A:1010933404324
SSID ssj0000816957
Score 2.3910594
Snippet Background: Building an effective Intrusion detection system in a multi-attack classification environment is challenging due to the diversity of modern,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 138451
SubjectTerms Algorithms
Categories
CIC IDS 2018
Classification
Classification algorithms
Classifiers
Computer crime
cybersecurity
Deep learning
ensemble learning
Feature extraction
Intrusion detection
intrusion detection framework
Intrusion detection system
Intrusion detection systems
machine learning
Machine learning algorithms
Random forests
Software
Voting
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED4kmZohafNAnKYFh4yWI4qkKI6uG8MJEE8NkI0gqdNSRw4auUN_fXmSLBhthmyUoMfpjhTvOx6_A7g2OWpZFjwxpZaJzHieOGFEEoSoQpCmTCVtcH5Y5otHef-knvZgPOyFQcQ2-Qwn1GzX8st12FCo7MYQfZg2-7Cvjen2ag3xFCogYZTuiYV4am6ms1n8hggBMx6RKc8zYtPZmXxajv6-qMp_f-J2epkfw8NWsC6r5Odk0_hJ-PMPZ-N7Jf8IR72fyaZdx_gEe1ifwOEO--ApLKZsuf6NK3Zbv-KzXyGbbzO1WHRlmavZ3UDY2VD714Zia-w7Nm0CV806vvMzeJzf_pgtkr6wQhJkWjQJz11JQEV5p73WXmEhqPC0q9DkxkeE5ExEOkKjMrxKVVphwHhUCRG9xUKLczio1zVeAFO65M6FUhLNjeO0iJtxX0VUV7jAhRzBeKtx-9LxZ9gWd6TGdgayZCDbG2gE38gqw6VEft2eiNq0_ViyWaUKr9GnLkXpvYsurvOaSy8KmWEZ33lKFhge0it_BFdbG9t-oL7aTFEabZ4rcfn2XZ_hAwnYRV2u4CCqGr9EP6TxX9sO-BeLqtkq
  priority: 102
  providerName: IEEE
Title A Novel Ensemble Framework for an Intelligent Intrusion Detection System
URI https://ieeexplore.ieee.org/document/9551879
https://www.proquest.com/docview/2582246653
https://doaj.org/article/2f58b7eb0a0e4bba991ab714b3842ed4
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFUnlgJKodf4-ltCpIdKJSN8tOnKmkiAZ-P_5Iq0gMLGxxEjnxO8e-55zfAXCvuBO0lDhTpaAZzTHPDFEkKwipioKqEtGwwfl1yRcr-rJm606qrxATluSBE3DjvGLSCmeRQY5aa7w_Y6zA1BJJc1cmJVCkOmQqjsESc8VEKzPkr48n06lvkSeEOfY8FfM8aOt0pqKo2N-mWPk1LsfJZn4GTlsvEU7S252DI1dfgJOOdmAfLCZwuf12Gzird-7dbhyc7-OsoHdEoanh80FuswnHn19hZQw-uSaGX9UwqZVfgtV89jZdZG1ahKygSDYZ5qYMNINZI6wQljlJQtpoUznFlfX8xijPU4hwTOEKMVS5wvlSRYj39aQgV6BXb2t3DSATJTamKGkQqTE4_ILNsa08J5OmwIQOwMMeIf2R1C90ZA1I6QSoDoDqFtABeAwoHm4N0tXxhDeobg2q_zLoAPSDDQ6VqKAZJ3zdw71NdPuZ7XTOQhAs54zc_Mejb8FxaE5aYRmCnjeMu_M-R2NHsXuN4vbAH2kc0UY
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07c9QwEN4JoQCK8AgZLgRQQRlfLOtllceRmwvkrkpm0mkked0QfBnio-DXo7V9ngxQ0MkeP9a7krXfavUtwEer0ciq5JmtjMxkwXXmhRVZFKKOUdoql7TBebXWy2v55Ubd7MHpuBcGEbvkM5xSs1vLrzZxS6GyM0v0YcY-gsfJry51v1trjKhQCQmrzEAtxHN7NpvP01ckEFjwhE25LohP58H007H0D2VV_voXdxPM4jmsdqL1eSXfpts2TOOvP1gb_1f2F3AweJps1neNl7CHzSt49oB_8BCWM7be_MRbdt7c4_dwi2yxy9ViyZllvmEXI2VnS-0fW4qusc_YdilcDesZz1_D9eL8ar7MhtIKWZR52WZc-4qgigreBGOCwlJQ6Wlfo9U2JIzkbcI6wqCyvM5VXmPEdFQLkfzF0ogj2G82Db4BpkzFvY-VJKIbz2kZt-ChTriu9JELOYHTncbdXc-g4TrkkVvXG8iRgdxgoAl8IquMlxL9dXciadMNo8kVtSqDwZD7HGUIPjm5PhgugyhlgVV65yFZYHzIoPwJnOxs7Iaheu8KRYm0Witx_O-7PsCT5dXq0l1erL--hackbB-DOYH9pHZ8l7ySNrzvOuNvDn7cdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Ensemble+Framework+for+an+Intelligent+Intrusion+Detection+System&rft.jtitle=IEEE+access&rft.au=Seth%2C+Sugandh&rft.au=Chahal%2C+Kuljit+Kaur&rft.au=Singh%2C+Gurvinder&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=138451&rft.epage=138467&rft_id=info:doi/10.1109%2FACCESS.2021.3116219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3116219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon