A Novel Nested Q-Learning Method to Tackle Time-Constrained Competitive Influence Maximization
Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these pro...
Saved in:
Published in | IEEE access Vol. 7; pp. 6337 - 6352 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these product promotions. Therefore, in this paper, we examine a time-constrained competitive influence maximization where the parties wish to maximize their profits before the respective deadlines. Besides, the parties need to determine how to select the seed nodes and when to initiate information propagation in the network, such that the decision results in the optimal reward given the time and the budget constraint. To this end, we propose a novel reinforcement learning-based framework named seed-combination and seed-selection that is built on a nested Q-learning (NSQ) algorithm. This way, we can derive the optimal in both budget allocation and node selection that results in the maximum profit. In evaluating the proposed model, we consider the scenarios when the competitors' strategy is known, unknown, and not available for training. The results show that the proposed NSQ algorithm could improve the rewards by up to 50% compared with the state-of-the-art algorithm, STORM-Q. |
---|---|
AbstractList | Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these product promotions. Therefore, in this paper, we examine a time-constrained competitive influence maximization where the parties wish to maximize their profits before the respective deadlines. Besides, the parties need to determine how to select the seed nodes and when to initiate information propagation in the network, such that the decision results in the optimal reward given the time and the budget constraint. To this end, we propose a novel reinforcement learning-based framework named seed-combination and seed-selection that is built on a nested Q-learning (NSQ) algorithm. This way, we can derive the optimal in both budget allocation and node selection that results in the maximum profit. In evaluating the proposed model, we consider the scenarios when the competitors’ strategy is known, unknown, and not available for training. The results show that the proposed NSQ algorithm could improve the rewards by up to 50% compared with the state-of-the-art algorithm, STORM-Q. |
Author | Ali, Khurshed Wang, Chih-Yu Chen, Yi-Shin |
Author_xml | – sequence: 1 givenname: Khurshed surname: Ali fullname: Ali, Khurshed organization: Taiwan International Graduate Program in Social Networks and Human-Centered Computing, Institute of Information Science, Academia Sinica, Taipei, Taiwan – sequence: 2 givenname: Chih-Yu orcidid: 0000-0002-7610-0791 surname: Wang fullname: Wang, Chih-Yu email: cywang@citi.sinica.edu.tw organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan – sequence: 3 givenname: Yi-Shin surname: Chen fullname: Chen, Yi-Shin organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan |
BookMark | eNp9UU1vEzEQXaFWain9Bb1Y4rzBH2tnfYxWBSKlRajptdbUni0OGzt4nQr66-t0C0IcmMuMRu89vZn3tjoKMWBVXTA6Y4zqD4uuu7y5mXHK2hlvS2n5pjrlTOlaSKGO_ppPqvNx3NBSbVnJ-Wl1tyDX8REHco1jRke-1iuEFHx4IFeYv0VHciRrsN8HJGu_xbqLYcwJfCjgLm53mH32j0iWoR_2GCySK_jpt_4Jso_hXXXcwzDi-Ws_q24_Xq67z_Xqy6dlt1jVtqFtrpm0msr-3nF3z7hWKFjTWw2KU816N5fgbDkCGDpoFGuBWsbnAq3VivbSibNqOem6CBuzS34L6ZeJ4M3LIqYHAyl7O6BphRaIrHHKyYYxBlRQcHwOQnFlWyha7yetXYo_9uUtZhP3KRT7hjdSKqqKhYLSE8qmOI4Je2N9frn58J3BMGoO6ZgpHXNIx7ymU7jiH-5vx_9nXUwsj4h_GK1sm4Yz8Qx2KZyY |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_2139_ssrn_4682715 crossref_primary_10_32604_cmc_2022_021941 crossref_primary_10_1007_s10115_022_01696_3 crossref_primary_10_1109_ACCESS_2019_2944350 crossref_primary_10_1109_TSMC_2021_3098630 crossref_primary_10_1007_s10489_021_02793_6 crossref_primary_10_1016_j_cnsns_2025_108670 crossref_primary_10_1109_ACCESS_2019_2963324 crossref_primary_10_1109_TCSS_2021_3059430 crossref_primary_10_1109_TCSS_2022_3192410 crossref_primary_10_1016_j_knosys_2021_107497 |
Cites_doi | 10.1103/PhysRevE.83.025102 10.1137/1.9781611972818.33 10.1287/mnsc.15.5.215 10.1016/S0169-7552(98)00110-X 10.1109/ICDM.2010.118 10.1145/2661829.2662077 10.1145/2783258.2783392 10.1007/978-3-540-77105-0_31 10.1145/1281192.1281239 10.1145/2723372.2723734 10.1007/978-3-642-17572-5_48 10.1145/2213977.2214046 10.1145/1557019.1557047 10.1145/502512.502525 10.1145/2588555.2593670 10.1109/MDM.2014.26 10.1145/1718487.1718518 10.1145/2505515.2505541 10.1145/2882903.2882929 10.1007/978-3-540-69355-0_16 10.1145/2740908.2742725 10.1145/956750.956769 10.1103/PhysRevLett.103.038702 10.1007/s10618-012-0262-1 10.1137/1.9781611972825.40 10.2307/1252170 10.1017/CBO9780511815478 10.1145/775047.775057 10.1109/ICDM.2012.159 10.1007/978-3-319-46128-1_9 10.1145/2808797.2809349 10.1109/TKDE.2013.106 10.1145/1963192.1963217 10.1109/ICDM.2012.158 10.1109/ICDM.2011.132 10.1016/j.physa.2016.10.011 10.1038/nature24270 10.1177/0165551515602808 10.1145/1963405.1963499 10.1109/ICDM.2012.79 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2888895 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 6352 |
ExternalDocumentID | oai_doaj_org_article_8393ee14d6d54111a030ad27a3626c8a 10_1109_ACCESS_2018_2888895 8584421 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 105-2221-E-001-003-MY3; MOST 106-2221-E-007-115-MY2; MOST 106-3114-E-007-013 funderid: 10.13039/100007225 – fundername: Academia Sinica funderid: 10.13039/501100001869 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-15c905fbd2db1296e314fc9a62091fd75adc216a1eda4618a0c1273ecc960f5d3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:21:54 EDT 2025 Mon Jun 30 03:55:38 EDT 2025 Tue Jul 01 02:18:02 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 02:54:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-15c905fbd2db1296e314fc9a62091fd75adc216a1eda4618a0c1273ecc960f5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7610-0791 |
OpenAccessLink | https://doaj.org/article/8393ee14d6d54111a030ad27a3626c8a |
PQID | 2455606461 |
PQPubID | 4845423 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2018_2888895 doaj_primary_oai_doaj_org_article_8393ee14d6d54111a030ad27a3626c8a proquest_journals_2455606461 ieee_primary_8584421 crossref_primary_10_1109_ACCESS_2018_2888895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref16 silver (ref41) 2017; 550 rodriguez (ref17) 2011 ref19 ref18 ohsaka (ref12) 2014 chen (ref21) 2012 ref46 ref24 ref45 ref23 ref48 ref26 even-dar (ref43) 2003; 5 ref47 ref25 du (ref33) 2013 ref20 ref22 ref44 sutton (ref38) 1998; 1 ref28 ref27 ref29 ref8 leskovec (ref42) 2014 ref7 ref9 ref4 ref3 ref6 ref5 lawless (ref37) 2011; 362 ref40 |
References_xml | – ident: ref19 doi: 10.1103/PhysRevE.83.025102 – ident: ref26 doi: 10.1137/1.9781611972818.33 – year: 2011 ident: ref17 publication-title: Uncovering the Temporal Dynamics of Diffusion Networks – ident: ref7 doi: 10.1287/mnsc.15.5.215 – ident: ref45 doi: 10.1016/S0169-7552(98)00110-X – volume: 362 year: 2011 ident: ref37 publication-title: Statistical Models and Methods for Lifetime Data – ident: ref5 doi: 10.1109/ICDM.2010.118 – ident: ref46 doi: 10.1145/2661829.2662077 – ident: ref27 doi: 10.1145/2783258.2783392 – ident: ref13 doi: 10.1007/978-3-540-77105-0_31 – start-page: 592 year: 2012 ident: ref21 article-title: Time-critical influence maximization in social networks with time-delayed diffusion process publication-title: Proc AAAI – volume: 1 year: 1998 ident: ref38 publication-title: Reinforcement Learning An Introduction – ident: ref9 doi: 10.1145/1281192.1281239 – ident: ref11 doi: 10.1145/2723372.2723734 – ident: ref14 doi: 10.1007/978-3-642-17572-5_48 – ident: ref36 doi: 10.1145/2213977.2214046 – volume: 5 start-page: 1 year: 2003 ident: ref43 article-title: Learning rates for Q-learning publication-title: J Mach Learn Res – ident: ref4 doi: 10.1145/1557019.1557047 – ident: ref1 doi: 10.1145/502512.502525 – ident: ref6 doi: 10.1145/2588555.2593670 – ident: ref24 doi: 10.1109/MDM.2014.26 – ident: ref20 doi: 10.1145/1718487.1718518 – ident: ref28 doi: 10.1145/2505515.2505541 – ident: ref48 doi: 10.1145/2882903.2882929 – year: 2014 ident: ref42 publication-title: SNAP Datasets Stanford large network dataset collection – ident: ref34 doi: 10.1007/978-3-540-69355-0_16 – start-page: 3147 year: 2013 ident: ref33 article-title: Scalable influence estimation in continuous-time diffusion networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref47 doi: 10.1145/2740908.2742725 – ident: ref3 doi: 10.1145/956750.956769 – ident: ref18 doi: 10.1103/PhysRevLett.103.038702 – ident: ref31 doi: 10.1007/s10618-012-0262-1 – ident: ref15 doi: 10.1137/1.9781611972825.40 – ident: ref8 doi: 10.2307/1252170 – ident: ref44 doi: 10.1017/CBO9780511815478 – ident: ref2 doi: 10.1145/775047.775057 – ident: ref35 doi: 10.1109/ICDM.2012.159 – ident: ref25 doi: 10.1007/978-3-319-46128-1_9 – ident: ref39 doi: 10.1145/2808797.2809349 – ident: ref32 doi: 10.1109/TKDE.2013.106 – ident: ref29 doi: 10.1145/1963192.1963217 – ident: ref22 doi: 10.1109/ICDM.2012.158 – ident: ref10 doi: 10.1109/ICDM.2011.132 – ident: ref40 doi: 10.1016/j.physa.2016.10.011 – volume: 550 start-page: 354 year: 2017 ident: ref41 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – start-page: 138 year: 2014 ident: ref12 article-title: Fast and accurate influence maximization on large networks with pruned monte-carlo simulations publication-title: Proc AAAI – ident: ref23 doi: 10.1177/0165551515602808 – ident: ref16 doi: 10.1145/1963405.1963499 – ident: ref30 doi: 10.1109/ICDM.2012.79 |
SSID | ssj0000816957 |
Score | 2.2202427 |
Snippet | Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6337 |
SubjectTerms | Algorithms Budgets Companies Competition competitive influence maximization Concerts Constraints Greedy algorithms influence maximization Integrated circuit modeling Machine learning Maximization Optimization reinforcement learning Scalability Social network analysis Social network services Time factors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnuDAV0EsFOQDx3obO7aTHJcVVUHalZBaqScsfwUhyi6CLEL8emYcb1QBQtyiyI4meY79Zux5A_Ay-sYFmSremd5x1VaaO1UbTntGje-ckZISnFdrc36p3l7pqwM4mXJhUkr58Fma02Xey4_bsKNQ2WmLq6WirPFb6LiNuVpTPIUKSHS6KcJCoupOF8slvgOd3mrnEh29lmpI3Fh8skZ_Karyx0ycl5eze7DaGzaeKvk03w1-Hn7-ptn4v5bfh7uFZ7LFODAewEHaPIQ7N9QHj-D9gq2339M1W-eYJ3vHi9jqB7bKdaXZsGUXjvZ-GWWKcCrumUtKYONl5tv54BF7sy90wlbux8fPJbPzEVyevb5YnvNSboEHVbUDFzp0le59lNEjCzCpFqoPBBdyij422sUghXEiRaeMaF0VBJIfHAPoBfU61o_hcLPdpCfAQpS98Mj9RHIqRuVN1yMVaGpfR-RYZgZyj4MNRYuc7L-22SepOjuCZwk8W8CbwcnU6csoxfHv5q8I4Kkp6WjnGwiMLb-lRXpYpyRUNFErnPYdznkuysaRSk9o3QyOCMzpIQXHGRzvh4st__w3K5VG-mjw0zz9e69ncBsN7MYAzjEcDl936TlSmsG_yGP5F38s8j0 priority: 102 providerName: IEEE |
Title | A Novel Nested Q-Learning Method to Tackle Time-Constrained Competitive Influence Maximization |
URI | https://ieeexplore.ieee.org/document/8584421 https://www.proquest.com/docview/2455606461 https://doaj.org/article/8393ee14d6d54111a030ad27a3626c8a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx5ErWK1lhw8GrvJJtndYy2WKrQgtNCTIZtkRaitaBV_vpNsWgqCXrwu2a-ZSeblY95D6NKWmTbMJaSQlSY8TwTRPJXE7xllZaElY77AeTSWwym_n4nZltSXPxNW0wPXhutCAk-do9xKKzh0TA1RqS3LtOdRMXmARpDztiZTYQzOqSxEFmmGaFJ0e_0-_JE_y5VfM5j25V5RYisVBcb-KLHyY1wOyWZwgPYjSsS9-usO0Y5bHKG9Le7AJnrs4fHy083xOKxY4gcSqVKf8CioQuPVEk-037nFvs6DeGnOIAgBjfsBLYdjQ_huLVOCR_rr-SXWZR6j6eB20h-SKJZADE_yFaHCFImoSstsCTlcupTyynhjg3UqmwltDaNSU2c1lzTXiaEAXcCDMIephE1PUGOxXLhThI1lFS0BuVGnubW8lEUFiTxLy9QCQpItxNZ2UyYyifvvn6swo0gKVRtbeWOraOwWutrc9FoTafze_MY7ZNPUs2CHCxAbKsaG-is2Wqjp3bl5SA5oizPaQu21e1Xsse-KcQHgT4Jpzv7j1edol3kAEBZr2qixevtwFwBfVmUnRGonVBp-A-6n6PE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgAOvAoiUMAHuOF07fV6dw8cQqBKaBMJKZV6wvi1CFESRDe8fgt_hf_G2OusKkDcKnFbrWzLj8-eGXtmPoBHzpTacp_RWjaaiiorqBa5pOHNqDS1lpyHAOfZXE6OxMvj4ngLfvSxMN776Hzmh-EzvuW7lV2Hq7K9CqWl4Cy5UB74b1_QQDt9On2Oq_mY8_0Xi_GEJg4BakVWtZQVts6KxjjuDIo26XMmGhv6gIKycWWhneVMauadFpJVOrMMJToODFX7pnA5tnsBLqKeUfAuOqy_wQmUFXVRplRGLKv3RuMxzlrwF6uGHE3LKrBWnBF3kRUg0bj8cfZHgbZ_DX5upqLzY3k_XLdmaL__liXyf52r63A1adJk1EH_Bmz55U24cia_4g68HpH56rM_IfN4q0te0ZRO9i2ZReZs0q7IQofXbRJiYWigL42kGVh4HC2K6FpFphsqFzLTX999SLGrt-DoXAZ4G7aXq6W_A8Q63jCD2i3zWjgnjKwbVHbK3OQOtUg5AL5Zd2VTtvXQ_xMVra6sVh1YVACLSmAZwJO-0scu2ci_iz8LgOqLhkzh8QcCQaWDR6ECnHvPhJOuECjYNJ7q2vFShzxEttID2Ang6RtJuBnA7gaeKp1qp4rjLkCDF6fm7t9rPYRLk8XsUB1O5wf34DJ2tu6uq3Zhu_209vdRgWvNg7iPCLw5bzD-AuTQUFU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Nested+Q-Learning+Method+to+Tackle+Time-Constrained+Competitive+Influence+Maximization&rft.jtitle=IEEE+access&rft.au=Ali%2C+Khurshed&rft.au=Wang%2C+Chih-Yu&rft.au=Chen%2C+Yi-Shin&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=6337&rft.epage=6352&rft_id=info:doi/10.1109%2FACCESS.2018.2888895&rft.externalDocID=8584421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |