A Novel Nested Q-Learning Method to Tackle Time-Constrained Competitive Influence Maximization

Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 6337 - 6352
Main Authors Ali, Khurshed, Wang, Chih-Yu, Chen, Yi-Shin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these product promotions. Therefore, in this paper, we examine a time-constrained competitive influence maximization where the parties wish to maximize their profits before the respective deadlines. Besides, the parties need to determine how to select the seed nodes and when to initiate information propagation in the network, such that the decision results in the optimal reward given the time and the budget constraint. To this end, we propose a novel reinforcement learning-based framework named seed-combination and seed-selection that is built on a nested Q-learning (NSQ) algorithm. This way, we can derive the optimal in both budget allocation and node selection that results in the maximum profit. In evaluating the proposed model, we consider the scenarios when the competitors' strategy is known, unknown, and not available for training. The results show that the proposed NSQ algorithm could improve the rewards by up to 50% compared with the state-of-the-art algorithm, STORM-Q.
AbstractList Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music concerts, to gain more benefit under competitions from other companies. Besides, these companies have a limited budget to spend on these product promotions. Therefore, in this paper, we examine a time-constrained competitive influence maximization where the parties wish to maximize their profits before the respective deadlines. Besides, the parties need to determine how to select the seed nodes and when to initiate information propagation in the network, such that the decision results in the optimal reward given the time and the budget constraint. To this end, we propose a novel reinforcement learning-based framework named seed-combination and seed-selection that is built on a nested Q-learning (NSQ) algorithm. This way, we can derive the optimal in both budget allocation and node selection that results in the maximum profit. In evaluating the proposed model, we consider the scenarios when the competitors’ strategy is known, unknown, and not available for training. The results show that the proposed NSQ algorithm could improve the rewards by up to 50% compared with the state-of-the-art algorithm, STORM-Q.
Author Ali, Khurshed
Wang, Chih-Yu
Chen, Yi-Shin
Author_xml – sequence: 1
  givenname: Khurshed
  surname: Ali
  fullname: Ali, Khurshed
  organization: Taiwan International Graduate Program in Social Networks and Human-Centered Computing, Institute of Information Science, Academia Sinica, Taipei, Taiwan
– sequence: 2
  givenname: Chih-Yu
  orcidid: 0000-0002-7610-0791
  surname: Wang
  fullname: Wang, Chih-Yu
  email: cywang@citi.sinica.edu.tw
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
– sequence: 3
  givenname: Yi-Shin
  surname: Chen
  fullname: Chen, Yi-Shin
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
BookMark eNp9UU1vEzEQXaFWain9Bb1Y4rzBH2tnfYxWBSKlRajptdbUni0OGzt4nQr66-t0C0IcmMuMRu89vZn3tjoKMWBVXTA6Y4zqD4uuu7y5mXHK2hlvS2n5pjrlTOlaSKGO_ppPqvNx3NBSbVnJ-Wl1tyDX8REHco1jRke-1iuEFHx4IFeYv0VHciRrsN8HJGu_xbqLYcwJfCjgLm53mH32j0iWoR_2GCySK_jpt_4Jso_hXXXcwzDi-Ws_q24_Xq67z_Xqy6dlt1jVtqFtrpm0msr-3nF3z7hWKFjTWw2KU816N5fgbDkCGDpoFGuBWsbnAq3VivbSibNqOem6CBuzS34L6ZeJ4M3LIqYHAyl7O6BphRaIrHHKyYYxBlRQcHwOQnFlWyha7yetXYo_9uUtZhP3KRT7hjdSKqqKhYLSE8qmOI4Je2N9frn58J3BMGoO6ZgpHXNIx7ymU7jiH-5vx_9nXUwsj4h_GK1sm4Yz8Qx2KZyY
CODEN IAECCG
CitedBy_id crossref_primary_10_2139_ssrn_4682715
crossref_primary_10_32604_cmc_2022_021941
crossref_primary_10_1007_s10115_022_01696_3
crossref_primary_10_1109_ACCESS_2019_2944350
crossref_primary_10_1109_TSMC_2021_3098630
crossref_primary_10_1007_s10489_021_02793_6
crossref_primary_10_1016_j_cnsns_2025_108670
crossref_primary_10_1109_ACCESS_2019_2963324
crossref_primary_10_1109_TCSS_2021_3059430
crossref_primary_10_1109_TCSS_2022_3192410
crossref_primary_10_1016_j_knosys_2021_107497
Cites_doi 10.1103/PhysRevE.83.025102
10.1137/1.9781611972818.33
10.1287/mnsc.15.5.215
10.1016/S0169-7552(98)00110-X
10.1109/ICDM.2010.118
10.1145/2661829.2662077
10.1145/2783258.2783392
10.1007/978-3-540-77105-0_31
10.1145/1281192.1281239
10.1145/2723372.2723734
10.1007/978-3-642-17572-5_48
10.1145/2213977.2214046
10.1145/1557019.1557047
10.1145/502512.502525
10.1145/2588555.2593670
10.1109/MDM.2014.26
10.1145/1718487.1718518
10.1145/2505515.2505541
10.1145/2882903.2882929
10.1007/978-3-540-69355-0_16
10.1145/2740908.2742725
10.1145/956750.956769
10.1103/PhysRevLett.103.038702
10.1007/s10618-012-0262-1
10.1137/1.9781611972825.40
10.2307/1252170
10.1017/CBO9780511815478
10.1145/775047.775057
10.1109/ICDM.2012.159
10.1007/978-3-319-46128-1_9
10.1145/2808797.2809349
10.1109/TKDE.2013.106
10.1145/1963192.1963217
10.1109/ICDM.2012.158
10.1109/ICDM.2011.132
10.1016/j.physa.2016.10.011
10.1038/nature24270
10.1177/0165551515602808
10.1145/1963405.1963499
10.1109/ICDM.2012.79
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2888895
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 6352
ExternalDocumentID oai_doaj_org_article_8393ee14d6d54111a030ad27a3626c8a
10_1109_ACCESS_2018_2888895
8584421
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 105-2221-E-001-003-MY3; MOST 106-2221-E-007-115-MY2; MOST 106-3114-E-007-013
  funderid: 10.13039/100007225
– fundername: Academia Sinica
  funderid: 10.13039/501100001869
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-15c905fbd2db1296e314fc9a62091fd75adc216a1eda4618a0c1273ecc960f5d3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:21:54 EDT 2025
Mon Jun 30 03:55:38 EDT 2025
Tue Jul 01 02:18:02 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Wed Aug 27 02:54:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-15c905fbd2db1296e314fc9a62091fd75adc216a1eda4618a0c1273ecc960f5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7610-0791
OpenAccessLink https://doaj.org/article/8393ee14d6d54111a030ad27a3626c8a
PQID 2455606461
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2018_2888895
doaj_primary_oai_doaj_org_article_8393ee14d6d54111a030ad27a3626c8a
proquest_journals_2455606461
ieee_primary_8584421
crossref_primary_10_1109_ACCESS_2018_2888895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref16
silver (ref41) 2017; 550
rodriguez (ref17) 2011
ref19
ref18
ohsaka (ref12) 2014
chen (ref21) 2012
ref46
ref24
ref45
ref23
ref48
ref26
even-dar (ref43) 2003; 5
ref47
ref25
du (ref33) 2013
ref20
ref22
ref44
sutton (ref38) 1998; 1
ref28
ref27
ref29
ref8
leskovec (ref42) 2014
ref7
ref9
ref4
ref3
ref6
ref5
lawless (ref37) 2011; 362
ref40
References_xml – ident: ref19
  doi: 10.1103/PhysRevE.83.025102
– ident: ref26
  doi: 10.1137/1.9781611972818.33
– year: 2011
  ident: ref17
  publication-title: Uncovering the Temporal Dynamics of Diffusion Networks
– ident: ref7
  doi: 10.1287/mnsc.15.5.215
– ident: ref45
  doi: 10.1016/S0169-7552(98)00110-X
– volume: 362
  year: 2011
  ident: ref37
  publication-title: Statistical Models and Methods for Lifetime Data
– ident: ref5
  doi: 10.1109/ICDM.2010.118
– ident: ref46
  doi: 10.1145/2661829.2662077
– ident: ref27
  doi: 10.1145/2783258.2783392
– ident: ref13
  doi: 10.1007/978-3-540-77105-0_31
– start-page: 592
  year: 2012
  ident: ref21
  article-title: Time-critical influence maximization in social networks with time-delayed diffusion process
  publication-title: Proc AAAI
– volume: 1
  year: 1998
  ident: ref38
  publication-title: Reinforcement Learning An Introduction
– ident: ref9
  doi: 10.1145/1281192.1281239
– ident: ref11
  doi: 10.1145/2723372.2723734
– ident: ref14
  doi: 10.1007/978-3-642-17572-5_48
– ident: ref36
  doi: 10.1145/2213977.2214046
– volume: 5
  start-page: 1
  year: 2003
  ident: ref43
  article-title: Learning rates for Q-learning
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1145/1557019.1557047
– ident: ref1
  doi: 10.1145/502512.502525
– ident: ref6
  doi: 10.1145/2588555.2593670
– ident: ref24
  doi: 10.1109/MDM.2014.26
– ident: ref20
  doi: 10.1145/1718487.1718518
– ident: ref28
  doi: 10.1145/2505515.2505541
– ident: ref48
  doi: 10.1145/2882903.2882929
– year: 2014
  ident: ref42
  publication-title: SNAP Datasets Stanford large network dataset collection
– ident: ref34
  doi: 10.1007/978-3-540-69355-0_16
– start-page: 3147
  year: 2013
  ident: ref33
  article-title: Scalable influence estimation in continuous-time diffusion networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref47
  doi: 10.1145/2740908.2742725
– ident: ref3
  doi: 10.1145/956750.956769
– ident: ref18
  doi: 10.1103/PhysRevLett.103.038702
– ident: ref31
  doi: 10.1007/s10618-012-0262-1
– ident: ref15
  doi: 10.1137/1.9781611972825.40
– ident: ref8
  doi: 10.2307/1252170
– ident: ref44
  doi: 10.1017/CBO9780511815478
– ident: ref2
  doi: 10.1145/775047.775057
– ident: ref35
  doi: 10.1109/ICDM.2012.159
– ident: ref25
  doi: 10.1007/978-3-319-46128-1_9
– ident: ref39
  doi: 10.1145/2808797.2809349
– ident: ref32
  doi: 10.1109/TKDE.2013.106
– ident: ref29
  doi: 10.1145/1963192.1963217
– ident: ref22
  doi: 10.1109/ICDM.2012.158
– ident: ref10
  doi: 10.1109/ICDM.2011.132
– ident: ref40
  doi: 10.1016/j.physa.2016.10.011
– volume: 550
  start-page: 354
  year: 2017
  ident: ref41
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– start-page: 138
  year: 2014
  ident: ref12
  article-title: Fast and accurate influence maximization on large networks with pruned monte-carlo simulations
  publication-title: Proc AAAI
– ident: ref23
  doi: 10.1177/0165551515602808
– ident: ref16
  doi: 10.1145/1963405.1963499
– ident: ref30
  doi: 10.1109/ICDM.2012.79
SSID ssj0000816957
Score 2.2202427
Snippet Time plays a critical role in competitive influence maximization. Companies aim to promote their products before certain events, such as Christmas Eve or music...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6337
SubjectTerms Algorithms
Budgets
Companies
Competition
competitive influence maximization
Concerts
Constraints
Greedy algorithms
influence maximization
Integrated circuit modeling
Machine learning
Maximization
Optimization
reinforcement learning
Scalability
Social network analysis
Social network services
Time factors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnuDAV0EsFOQDx3obO7aTHJcVVUHalZBaqScsfwUhyi6CLEL8emYcb1QBQtyiyI4meY79Zux5A_Ay-sYFmSremd5x1VaaO1UbTntGje-ckZISnFdrc36p3l7pqwM4mXJhUkr58Fma02Xey4_bsKNQ2WmLq6WirPFb6LiNuVpTPIUKSHS6KcJCoupOF8slvgOd3mrnEh29lmpI3Fh8skZ_Karyx0ycl5eze7DaGzaeKvk03w1-Hn7-ptn4v5bfh7uFZ7LFODAewEHaPIQ7N9QHj-D9gq2339M1W-eYJ3vHi9jqB7bKdaXZsGUXjvZ-GWWKcCrumUtKYONl5tv54BF7sy90wlbux8fPJbPzEVyevb5YnvNSboEHVbUDFzp0le59lNEjCzCpFqoPBBdyij422sUghXEiRaeMaF0VBJIfHAPoBfU61o_hcLPdpCfAQpS98Mj9RHIqRuVN1yMVaGpfR-RYZgZyj4MNRYuc7L-22SepOjuCZwk8W8CbwcnU6csoxfHv5q8I4Kkp6WjnGwiMLb-lRXpYpyRUNFErnPYdznkuysaRSk9o3QyOCMzpIQXHGRzvh4st__w3K5VG-mjw0zz9e69ncBsN7MYAzjEcDl936TlSmsG_yGP5F38s8j0
  priority: 102
  providerName: IEEE
Title A Novel Nested Q-Learning Method to Tackle Time-Constrained Competitive Influence Maximization
URI https://ieeexplore.ieee.org/document/8584421
https://www.proquest.com/docview/2455606461
https://doaj.org/article/8393ee14d6d54111a030ad27a3626c8a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx5ErWK1lhw8GrvJJtndYy2WKrQgtNCTIZtkRaitaBV_vpNsWgqCXrwu2a-ZSeblY95D6NKWmTbMJaSQlSY8TwTRPJXE7xllZaElY77AeTSWwym_n4nZltSXPxNW0wPXhutCAk-do9xKKzh0TA1RqS3LtOdRMXmARpDztiZTYQzOqSxEFmmGaFJ0e_0-_JE_y5VfM5j25V5RYisVBcb-KLHyY1wOyWZwgPYjSsS9-usO0Y5bHKG9Le7AJnrs4fHy083xOKxY4gcSqVKf8CioQuPVEk-037nFvs6DeGnOIAgBjfsBLYdjQ_huLVOCR_rr-SXWZR6j6eB20h-SKJZADE_yFaHCFImoSstsCTlcupTyynhjg3UqmwltDaNSU2c1lzTXiaEAXcCDMIephE1PUGOxXLhThI1lFS0BuVGnubW8lEUFiTxLy9QCQpItxNZ2UyYyifvvn6swo0gKVRtbeWOraOwWutrc9FoTafze_MY7ZNPUs2CHCxAbKsaG-is2Wqjp3bl5SA5oizPaQu21e1Xsse-KcQHgT4Jpzv7j1edol3kAEBZr2qixevtwFwBfVmUnRGonVBp-A-6n6PE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgAOvAoiUMAHuOF07fV6dw8cQqBKaBMJKZV6wvi1CFESRDe8fgt_hf_G2OusKkDcKnFbrWzLj8-eGXtmPoBHzpTacp_RWjaaiiorqBa5pOHNqDS1lpyHAOfZXE6OxMvj4ngLfvSxMN776Hzmh-EzvuW7lV2Hq7K9CqWl4Cy5UB74b1_QQDt9On2Oq_mY8_0Xi_GEJg4BakVWtZQVts6KxjjuDIo26XMmGhv6gIKycWWhneVMauadFpJVOrMMJToODFX7pnA5tnsBLqKeUfAuOqy_wQmUFXVRplRGLKv3RuMxzlrwF6uGHE3LKrBWnBF3kRUg0bj8cfZHgbZ_DX5upqLzY3k_XLdmaL__liXyf52r63A1adJk1EH_Bmz55U24cia_4g68HpH56rM_IfN4q0te0ZRO9i2ZReZs0q7IQofXbRJiYWigL42kGVh4HC2K6FpFphsqFzLTX999SLGrt-DoXAZ4G7aXq6W_A8Q63jCD2i3zWjgnjKwbVHbK3OQOtUg5AL5Zd2VTtvXQ_xMVra6sVh1YVACLSmAZwJO-0scu2ci_iz8LgOqLhkzh8QcCQaWDR6ECnHvPhJOuECjYNJ7q2vFShzxEttID2Ang6RtJuBnA7gaeKp1qp4rjLkCDF6fm7t9rPYRLk8XsUB1O5wf34DJ2tu6uq3Zhu_209vdRgWvNg7iPCLw5bzD-AuTQUFU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Nested+Q-Learning+Method+to+Tackle+Time-Constrained+Competitive+Influence+Maximization&rft.jtitle=IEEE+access&rft.au=Ali%2C+Khurshed&rft.au=Wang%2C+Chih-Yu&rft.au=Chen%2C+Yi-Shin&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=6337&rft.epage=6352&rft_id=info:doi/10.1109%2FACCESS.2018.2888895&rft.externalDocID=8584421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon