The Physical Basis of Transparency in Biological Tissue: Ultrastructure and the Minimization of Light Scattering

In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 199; no. 2; pp. 181 - 198
Main Authors Johnsen, Sönke, Widder, Edith A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.07.1999
Online AccessGet full text

Cover

Loading…
Abstract In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed.
AbstractList In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed. Copyright 1999 Academic Press.
In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed.
Author Widder, Edith A.
Johnsen, Sönke
Author_xml – sequence: 1
  givenname: Sönke
  surname: Johnsen
  fullname: Johnsen, Sönke
– sequence: 2
  givenname: Edith A.
  surname: Widder
  fullname: Widder, Edith A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10395813$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9P2zAUxy3EBOXHlePk4y7p7Dhu7N0GYgOp05AoZ8txXtqHUrvYDlL315NQDlx2epfP-0jfzxk59sEDIVeczTlji-_PucE511rPma7UEZlxpmWhZMWPyYyxsiwk1-KUnKX0zNjIiMUJOeVMaKm4mJHdagP0YbNP6GxPr23CRENHV9H6tLMRvNtT9PQaQx_W78wKUxrgB33qc7Qpx8HlIQK1vqV5dP1Bj1v8ZzMGP5mWuN5k-uhszhDRry_Il872CS4_7jl5-nW7urkrln9_39_8XBauYioXXCimWqg0KN44qJzTNRdcKulqkNBVTMiylrJztVhYJqumqTvd6E6plrOSi3Py7eDdxfAyQMpmi8lB31sPYUiGK6kFq0s5ofMD6mJIKUJndhG3Nu4NZ2aqbKbKZqpspsrjw9cP99Bsof2EH7KOgDoAMC58RYgmORxbQosRXDZtwP-53wATiY5O
CitedBy_id crossref_primary_10_1109_JOE_2003_819315
crossref_primary_10_1242_jeb_003251
crossref_primary_10_1016_j_celrep_2017_06_010
crossref_primary_10_1016_j_jpap_2020_100007
crossref_primary_10_1007_s11051_010_0030_3
crossref_primary_10_1117_1_3290821
crossref_primary_10_1242_jeb_067991
crossref_primary_10_1016_j_neuroimage_2021_118832
crossref_primary_10_1038_srep10740
crossref_primary_10_2139_ssrn_4170535
crossref_primary_10_1093_icesjms_fsaa254
crossref_primary_10_1126_science_abl6620
crossref_primary_10_1016_j_jcis_2015_03_005
crossref_primary_10_1063_1_1336564
crossref_primary_10_1111_pala_12574
crossref_primary_10_1242_jeb_162362
crossref_primary_10_1146_annurev_cellbio_111315_125001
crossref_primary_10_1074_jbc_M005625200
crossref_primary_10_14348_molcells_2021_0190
crossref_primary_10_1063_5_0022693
crossref_primary_10_1117_1_JBO_23_12_121619
crossref_primary_10_1016_j_jre_2020_01_021
crossref_primary_10_1117_1_2779350
crossref_primary_10_1016_j_apmt_2022_101721
crossref_primary_10_1016_j_pocean_2018_09_002
crossref_primary_10_1117_1_JBO_29_4_046501
crossref_primary_10_1088_0957_4484_18_37_375702
crossref_primary_10_1117_1_JBO_21_12_121508
crossref_primary_10_1093_icb_icz066
crossref_primary_10_1364_AO_49_000180
crossref_primary_10_1098_rspb_2004_2781
crossref_primary_10_1117_1_2937212
crossref_primary_10_3390_cells11010035
crossref_primary_10_1002_anie_202210288
crossref_primary_10_1016_j_jtbi_2004_05_021
crossref_primary_10_1016_S0006_3495_02_75359_9
crossref_primary_10_1097_MNH_0000000000000220
crossref_primary_10_1007_s00249_008_0272_5
crossref_primary_10_1117_1_2837450
crossref_primary_10_1016_j_heliyon_2022_e12116
crossref_primary_10_1021_bm500388m
crossref_primary_10_1080_01478885_2021_1938808
crossref_primary_10_1111_j_1365_2818_2006_01570_x
crossref_primary_10_1016_j_isci_2022_104876
crossref_primary_10_1016_j_jid_2020_04_014
crossref_primary_10_1088_1742_6596_45_1_031
crossref_primary_10_1098_rspb_2001_1855
crossref_primary_10_1002_0471143030_cb0418s39
crossref_primary_10_1080_09500340903023725
crossref_primary_10_1529_biophysj_104_050153
crossref_primary_10_1017_S1464793103006420
crossref_primary_10_1016_j_jcis_2007_02_074
crossref_primary_10_1364_BOE_494585
crossref_primary_10_1093_iob_obad023
crossref_primary_10_1364_BOE_524521
crossref_primary_10_2307_1543609
crossref_primary_10_1021_jp801019z
crossref_primary_10_1242_jeb_049296
crossref_primary_10_1080_10236240290025617
crossref_primary_10_1093_jmicro_dfx037
crossref_primary_10_1111_j_1443_1661_2012_01314_x
crossref_primary_10_2139_ssrn_2181327
crossref_primary_10_1360_SSC_2022_0122
crossref_primary_10_1038_s41598_023_43327_z
crossref_primary_10_35885_ruthenica_2021_31_2__5
crossref_primary_10_1016_j_chembiol_2015_11_009
crossref_primary_10_1039_b412924p
crossref_primary_10_1038_s41377_019_0173_7
crossref_primary_10_1063_1_5144613
crossref_primary_10_2184_lsj_40_12_947
crossref_primary_10_1002_cyto_a_20304
crossref_primary_10_1063_1_3195071
crossref_primary_10_1002_ange_202210288
crossref_primary_10_1038_s41377_020_0249_4
crossref_primary_10_1117_1_3503404
crossref_primary_10_1016_j_marchem_2017_05_002
crossref_primary_10_1103_PhysRevB_81_045432
crossref_primary_10_1098_rsfs_2011_0120
crossref_primary_10_1126_sciadv_abn2070
crossref_primary_10_1016_S0014_4835_03_00065_4
crossref_primary_10_1038_s42005_023_01264_3
crossref_primary_10_1111_jeb_13560
crossref_primary_10_1063_1_1331344
crossref_primary_10_1021_nn201451c
crossref_primary_10_1016_S0040_8166_00_80004_X
crossref_primary_10_1016_j_ynirp_2021_100023
crossref_primary_10_1086_BBLv220n3p209
crossref_primary_10_1038_srep12267
crossref_primary_10_1016_j_exer_2008_08_017
crossref_primary_10_1021_acs_jpcb_9b05176
crossref_primary_10_1093_biolre_ioad182
crossref_primary_10_1007_s00359_012_0755_9
crossref_primary_10_1073_pnas_1919417117
crossref_primary_10_1111_joa_13309
crossref_primary_10_1126_sciadv_aan8917
crossref_primary_10_1146_annurev_marine_120308_081028
crossref_primary_10_1371_journal_pone_0070929
crossref_primary_10_1016_j_impact_2020_100208
crossref_primary_10_1146_annurev_marine_010213_135018
crossref_primary_10_1002_jbio_202000457
crossref_primary_10_1016_j_cub_2020_06_044
crossref_primary_10_2307_1543651
ContentType Journal Article
Copyright 1999 Academic Press
Copyright_xml – notice: 1999 Academic Press
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1006/jtbi.1999.0948
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 198
ExternalDocumentID 10_1006_jtbi_1999_0948
10395813
S0022519399909487
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.GJ
.~1
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HLV
HVGLF
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
VH1
XPP
YQT
ZMT
ZU3
~02
~G-
~KM
AAXKI
AKRWK
NPM
0R~
AAYXX
ABFNM
ABGRD
ABTAH
ABXDB
AEBSH
AFJKZ
CITATION
FA8
G-2
GBLVA
HZ~
H~9
MVM
O9-
OHT
P-8
RIG
RNS
SEW
UQL
WUQ
ZGI
ZXP
ZY4
7X8
ID FETCH-LOGICAL-c408t-13808de49e81bce4cc97131585c7e5ef40352755fc736a054bb7f9b9f88d10213
IEDL.DBID .~1
ISSN 0022-5193
IngestDate Fri Oct 25 05:07:22 EDT 2024
Thu Sep 26 16:24:44 EDT 2024
Sat Sep 28 07:33:50 EDT 2024
Fri Feb 23 02:33:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-13808de49e81bce4cc97131585c7e5ef40352755fc736a054bb7f9b9f88d10213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10395813
PQID 1859307251
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_1859307251
crossref_primary_10_1006_jtbi_1999_0948
pubmed_primary_10395813
elsevier_sciencedirect_doi_10_1006_jtbi_1999_0948
PublicationCentury 1900
PublicationDate 1999-07-21
PublicationDateYYYYMMDD 1999-07-21
PublicationDate_xml – month: 07
  year: 1999
  text: 1999-07-21
  day: 21
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 1999
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
SSID ssj0009436
Score 1.9767427
Snippet In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 181
Title The Physical Basis of Transparency in Biological Tissue: Ultrastructure and the Minimization of Light Scattering
URI https://dx.doi.org/10.1006/jtbi.1999.0948
https://www.ncbi.nlm.nih.gov/pubmed/10395813
https://search.proquest.com/docview/1859307251
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-tjiSB4qttH2ibeVJT1sYvgLngLaTaBinaX3fXgxd_uTNKiHvbitaRN-SbNfEPzfUPIaSyApavUBrHmKmAx04GCAi4ArjyyoYptqlGc3Otn3SG7f0lflsh1o4XBY5X13u_3dLdb11c6NZqdSVmixjdG2SVkWAE1CkdFOYP0B2v6_OvnmIdgrk2gO7WOoxvjxjDrvM6LEtV64hzvX5SYFhFPl4BuN8h6zRzppX-5TbJkqi2y6ntJfm6TCQScPtWo0ys1K2d0bKk3L0fFl_6kZUX9eDdm4DC_oMO3-VR5H9mPqaGqGlFghbRXVuV7rdLEJz1iGU-ftTPkhIS3Q4a3N4PrblC3Uwg0Czk2nechHxkmDFBVbZjWAirUCOoFnZvUWIbWqHmaWp0nmQIqVxS5FYWwnI-wAXiyS5arcWX2CYVomsgkmRU6Z2h2LISOcsMVsAejY9MiZw2WcuJdM6T3R84koi4RdYmot0jUQC3_xF3Clr7wnpMmJhI-BvzDoSoz_pjJCN3bwhyWRYvs-WD9mj8RKY-Sg3_MeEjWvF1DHsTREVmGkJhjICPzou1WW5usXN49dPvf29ne3Q
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6FIkQvVYE-0gcYCYnTNvvwrm1utGoVIKmQSKTeLK9jS4voJkrSQy797Z1Z7wo45NLrymuvvrFnvtF6vgH4lCpk6Sb3UWqliXjKbWQwgYuQK898bFKfWypOHt8Wwyn_fpff9eCqq4Wha5Wt7w8-vfHW7ZNBi-ZgUVVU45tS2SVGWIU5ihQv4CUnfoyb-uLx7z0PxZs-gc21dRreKTfGxeD3uqyoXE9d0ATbItM25tlEoJt92GupI_savu4N9Fz9Fl6FZpKbd7BAi7OfLezs0qyqFZt7FtTLqeTLblhVszC-GTNpQP_Cpn_WSxOEZB-Wjpl6xpAWsnFVV_dtmSbNNKI8nv2yjSInRrwDmN5cT66GUdtPIbI8ltR1XsZy5rhyyFWt49YqTFETTBiscLnznLRRRZ57K7LCIJcrS-FVqbyUM-oAnh3CTj2v3TEwNKdLXFZ4ZQUntWOlbCKcNEgfnE1dHz53WOpFkM3QQSC50IS6JtQ1od6HpINa_2d4jT596zsfO5toPA30i8PUbv6w0gnJt8UC90UfjoKx_lk_U7lMspNnrPgBXg8n45Eefbv9cQq7QbtBRGlyBjtoHneOzGRdvm923hMpEuB2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Physical+Basis+of+Transparency+in+Biological+Tissue%3A+Ultrastructure+and+the+Minimization+of+Light+Scattering&rft.jtitle=Journal+of+theoretical+biology&rft.au=Johnsen%2C+S%C3%B6nke&rft.au=Widder%2C+Edith+A.&rft.date=1999-07-21&rft.pub=Elsevier+Ltd&rft.issn=0022-5193&rft.eissn=1095-8541&rft.volume=199&rft.issue=2&rft.spage=181&rft.epage=198&rft_id=info:doi/10.1006%2Fjtbi.1999.0948&rft.externalDocID=S0022519399909487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon