The Physical Basis of Transparency in Biological Tissue: Ultrastructure and the Minimization of Light Scattering
In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a...
Saved in:
Published in | Journal of theoretical biology Vol. 199; no. 2; pp. 181 - 198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
21.07.1999
|
Online Access | Get full text |
Cover
Loading…
Abstract | In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed. |
---|---|
AbstractList | In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed. Copyright 1999 Academic Press. In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The effects of cellular ultrastructure on tissue transparency were mathematically modeled. Given a specific constant volume or surface area of a higher refractive index material (e.g. protein, lipid, etc.), within a lower refractive index cytoplasm or other matrix, the model calculates the total amount of light scattered as a function of how the volume or surface area is subdivided. Given a constant volume, the scattering peaks strongly when the volume is divided into spheres of critical radii. The critical radii depend upon the refractive index of the material relative to its surroundings. Similarly, given a constant surface area, the scattering increases rapidly with sphere size until critical radii (approximating the critical radii for constant volume) are reached, after which the scattering is relatively constant. Under both constraints, refractive index is critical when the particles are small, but becomes progressively less important as particle size increases. When only forward scattering is considered, the results are essentially similar to those found for total scattering. When scattering at only larger angles is considered, the critical radii are independent of refractive index, and the scattered radiance depends critically on refractive index at all particle sizes. The effects of particle shape on scattering depend on the geometric constraint and particle size. Under constant volume constraints, small particles of any shape scatter light equally, but large spheres scatter less light than other larger shapes. Under constant surface area constraints, small spheres scatter more light than any small shape, but large particles of any shape scatter equally. The effects of crowding and the refractive index of the surrounding medium on these predictions are discussed. |
Author | Widder, Edith A. Johnsen, Sönke |
Author_xml | – sequence: 1 givenname: Sönke surname: Johnsen fullname: Johnsen, Sönke – sequence: 2 givenname: Edith A. surname: Widder fullname: Widder, Edith A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10395813$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9P2zAUxy3EBOXHlePk4y7p7Dhu7N0GYgOp05AoZ8txXtqHUrvYDlL315NQDlx2epfP-0jfzxk59sEDIVeczTlji-_PucE511rPma7UEZlxpmWhZMWPyYyxsiwk1-KUnKX0zNjIiMUJOeVMaKm4mJHdagP0YbNP6GxPr23CRENHV9H6tLMRvNtT9PQaQx_W78wKUxrgB33qc7Qpx8HlIQK1vqV5dP1Bj1v8ZzMGP5mWuN5k-uhszhDRry_Il872CS4_7jl5-nW7urkrln9_39_8XBauYioXXCimWqg0KN44qJzTNRdcKulqkNBVTMiylrJztVhYJqumqTvd6E6plrOSi3Py7eDdxfAyQMpmi8lB31sPYUiGK6kFq0s5ofMD6mJIKUJndhG3Nu4NZ2aqbKbKZqpspsrjw9cP99Bsof2EH7KOgDoAMC58RYgmORxbQosRXDZtwP-53wATiY5O |
CitedBy_id | crossref_primary_10_1109_JOE_2003_819315 crossref_primary_10_1242_jeb_003251 crossref_primary_10_1016_j_celrep_2017_06_010 crossref_primary_10_1016_j_jpap_2020_100007 crossref_primary_10_1007_s11051_010_0030_3 crossref_primary_10_1117_1_3290821 crossref_primary_10_1242_jeb_067991 crossref_primary_10_1016_j_neuroimage_2021_118832 crossref_primary_10_1038_srep10740 crossref_primary_10_2139_ssrn_4170535 crossref_primary_10_1093_icesjms_fsaa254 crossref_primary_10_1126_science_abl6620 crossref_primary_10_1016_j_jcis_2015_03_005 crossref_primary_10_1063_1_1336564 crossref_primary_10_1111_pala_12574 crossref_primary_10_1242_jeb_162362 crossref_primary_10_1146_annurev_cellbio_111315_125001 crossref_primary_10_1074_jbc_M005625200 crossref_primary_10_14348_molcells_2021_0190 crossref_primary_10_1063_5_0022693 crossref_primary_10_1117_1_JBO_23_12_121619 crossref_primary_10_1016_j_jre_2020_01_021 crossref_primary_10_1117_1_2779350 crossref_primary_10_1016_j_apmt_2022_101721 crossref_primary_10_1016_j_pocean_2018_09_002 crossref_primary_10_1117_1_JBO_29_4_046501 crossref_primary_10_1088_0957_4484_18_37_375702 crossref_primary_10_1117_1_JBO_21_12_121508 crossref_primary_10_1093_icb_icz066 crossref_primary_10_1364_AO_49_000180 crossref_primary_10_1098_rspb_2004_2781 crossref_primary_10_1117_1_2937212 crossref_primary_10_3390_cells11010035 crossref_primary_10_1002_anie_202210288 crossref_primary_10_1016_j_jtbi_2004_05_021 crossref_primary_10_1016_S0006_3495_02_75359_9 crossref_primary_10_1097_MNH_0000000000000220 crossref_primary_10_1007_s00249_008_0272_5 crossref_primary_10_1117_1_2837450 crossref_primary_10_1016_j_heliyon_2022_e12116 crossref_primary_10_1021_bm500388m crossref_primary_10_1080_01478885_2021_1938808 crossref_primary_10_1111_j_1365_2818_2006_01570_x crossref_primary_10_1016_j_isci_2022_104876 crossref_primary_10_1016_j_jid_2020_04_014 crossref_primary_10_1088_1742_6596_45_1_031 crossref_primary_10_1098_rspb_2001_1855 crossref_primary_10_1002_0471143030_cb0418s39 crossref_primary_10_1080_09500340903023725 crossref_primary_10_1529_biophysj_104_050153 crossref_primary_10_1017_S1464793103006420 crossref_primary_10_1016_j_jcis_2007_02_074 crossref_primary_10_1364_BOE_494585 crossref_primary_10_1093_iob_obad023 crossref_primary_10_1364_BOE_524521 crossref_primary_10_2307_1543609 crossref_primary_10_1021_jp801019z crossref_primary_10_1242_jeb_049296 crossref_primary_10_1080_10236240290025617 crossref_primary_10_1093_jmicro_dfx037 crossref_primary_10_1111_j_1443_1661_2012_01314_x crossref_primary_10_2139_ssrn_2181327 crossref_primary_10_1360_SSC_2022_0122 crossref_primary_10_1038_s41598_023_43327_z crossref_primary_10_35885_ruthenica_2021_31_2__5 crossref_primary_10_1016_j_chembiol_2015_11_009 crossref_primary_10_1039_b412924p crossref_primary_10_1038_s41377_019_0173_7 crossref_primary_10_1063_1_5144613 crossref_primary_10_2184_lsj_40_12_947 crossref_primary_10_1002_cyto_a_20304 crossref_primary_10_1063_1_3195071 crossref_primary_10_1002_ange_202210288 crossref_primary_10_1038_s41377_020_0249_4 crossref_primary_10_1117_1_3503404 crossref_primary_10_1016_j_marchem_2017_05_002 crossref_primary_10_1103_PhysRevB_81_045432 crossref_primary_10_1098_rsfs_2011_0120 crossref_primary_10_1126_sciadv_abn2070 crossref_primary_10_1016_S0014_4835_03_00065_4 crossref_primary_10_1038_s42005_023_01264_3 crossref_primary_10_1111_jeb_13560 crossref_primary_10_1063_1_1331344 crossref_primary_10_1021_nn201451c crossref_primary_10_1016_S0040_8166_00_80004_X crossref_primary_10_1016_j_ynirp_2021_100023 crossref_primary_10_1086_BBLv220n3p209 crossref_primary_10_1038_srep12267 crossref_primary_10_1016_j_exer_2008_08_017 crossref_primary_10_1021_acs_jpcb_9b05176 crossref_primary_10_1093_biolre_ioad182 crossref_primary_10_1007_s00359_012_0755_9 crossref_primary_10_1073_pnas_1919417117 crossref_primary_10_1111_joa_13309 crossref_primary_10_1126_sciadv_aan8917 crossref_primary_10_1146_annurev_marine_120308_081028 crossref_primary_10_1371_journal_pone_0070929 crossref_primary_10_1016_j_impact_2020_100208 crossref_primary_10_1146_annurev_marine_010213_135018 crossref_primary_10_1002_jbio_202000457 crossref_primary_10_1016_j_cub_2020_06_044 crossref_primary_10_2307_1543651 |
ContentType | Journal Article |
Copyright | 1999 Academic Press |
Copyright_xml | – notice: 1999 Academic Press |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1006/jtbi.1999.0948 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 198 |
ExternalDocumentID | 10_1006_jtbi_1999_0948 10395813 S0022519399909487 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .GJ .~1 1B1 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q HLV HVGLF IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L OAUVE OZT P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 VH1 XPP YQT ZMT ZU3 ~02 ~G- ~KM AAXKI AKRWK NPM 0R~ AAYXX ABFNM ABGRD ABTAH ABXDB AEBSH AFJKZ CITATION FA8 G-2 GBLVA HZ~ H~9 MVM O9- OHT P-8 RIG RNS SEW UQL WUQ ZGI ZXP ZY4 7X8 |
ID | FETCH-LOGICAL-c408t-13808de49e81bce4cc97131585c7e5ef40352755fc736a054bb7f9b9f88d10213 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 |
IngestDate | Fri Oct 25 05:07:22 EDT 2024 Thu Sep 26 16:24:44 EDT 2024 Sat Sep 28 07:33:50 EDT 2024 Fri Feb 23 02:33:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-13808de49e81bce4cc97131585c7e5ef40352755fc736a054bb7f9b9f88d10213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 10395813 |
PQID | 1859307251 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1859307251 crossref_primary_10_1006_jtbi_1999_0948 pubmed_primary_10395813 elsevier_sciencedirect_doi_10_1006_jtbi_1999_0948 |
PublicationCentury | 1900 |
PublicationDate | 1999-07-21 |
PublicationDateYYYYMMDD | 1999-07-21 |
PublicationDate_xml | – month: 07 year: 1999 text: 1999-07-21 day: 21 |
PublicationDecade | 1990 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 1999 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
SSID | ssj0009436 |
Score | 1.9767427 |
Snippet | In the open ocean, many animals are highly transparent, some achieving near invisibility. However, little is known about how this transparency is attained. The... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 181 |
Title | The Physical Basis of Transparency in Biological Tissue: Ultrastructure and the Minimization of Light Scattering |
URI | https://dx.doi.org/10.1006/jtbi.1999.0948 https://www.ncbi.nlm.nih.gov/pubmed/10395813 https://search.proquest.com/docview/1859307251 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-tjiSB4qttH2ibeVJT1sYvgLngLaTaBinaX3fXgxd_uTNKiHvbitaRN-SbNfEPzfUPIaSyApavUBrHmKmAx04GCAi4ArjyyoYptqlGc3Otn3SG7f0lflsh1o4XBY5X13u_3dLdb11c6NZqdSVmixjdG2SVkWAE1CkdFOYP0B2v6_OvnmIdgrk2gO7WOoxvjxjDrvM6LEtV64hzvX5SYFhFPl4BuN8h6zRzppX-5TbJkqi2y6ntJfm6TCQScPtWo0ys1K2d0bKk3L0fFl_6kZUX9eDdm4DC_oMO3-VR5H9mPqaGqGlFghbRXVuV7rdLEJz1iGU-ftTPkhIS3Q4a3N4PrblC3Uwg0Czk2nechHxkmDFBVbZjWAirUCOoFnZvUWIbWqHmaWp0nmQIqVxS5FYWwnI-wAXiyS5arcWX2CYVomsgkmRU6Z2h2LISOcsMVsAejY9MiZw2WcuJdM6T3R84koi4RdYmot0jUQC3_xF3Clr7wnpMmJhI-BvzDoSoz_pjJCN3bwhyWRYvs-WD9mj8RKY-Sg3_MeEjWvF1DHsTREVmGkJhjICPzou1WW5usXN49dPvf29ne3Q |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6FIkQvVYE-0gcYCYnTNvvwrm1utGoVIKmQSKTeLK9jS4voJkrSQy797Z1Z7wo45NLrymuvvrFnvtF6vgH4lCpk6Sb3UWqliXjKbWQwgYuQK898bFKfWypOHt8Wwyn_fpff9eCqq4Wha5Wt7w8-vfHW7ZNBi-ZgUVVU45tS2SVGWIU5ihQv4CUnfoyb-uLx7z0PxZs-gc21dRreKTfGxeD3uqyoXE9d0ATbItM25tlEoJt92GupI_savu4N9Fz9Fl6FZpKbd7BAi7OfLezs0qyqFZt7FtTLqeTLblhVszC-GTNpQP_Cpn_WSxOEZB-Wjpl6xpAWsnFVV_dtmSbNNKI8nv2yjSInRrwDmN5cT66GUdtPIbI8ltR1XsZy5rhyyFWt49YqTFETTBiscLnznLRRRZ57K7LCIJcrS-FVqbyUM-oAnh3CTj2v3TEwNKdLXFZ4ZQUntWOlbCKcNEgfnE1dHz53WOpFkM3QQSC50IS6JtQ1od6HpINa_2d4jT596zsfO5toPA30i8PUbv6w0gnJt8UC90UfjoKx_lk_U7lMspNnrPgBXg8n45Eefbv9cQq7QbtBRGlyBjtoHneOzGRdvm923hMpEuB2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Physical+Basis+of+Transparency+in+Biological+Tissue%3A+Ultrastructure+and+the+Minimization+of+Light+Scattering&rft.jtitle=Journal+of+theoretical+biology&rft.au=Johnsen%2C+S%C3%B6nke&rft.au=Widder%2C+Edith+A.&rft.date=1999-07-21&rft.pub=Elsevier+Ltd&rft.issn=0022-5193&rft.eissn=1095-8541&rft.volume=199&rft.issue=2&rft.spage=181&rft.epage=198&rft_id=info:doi/10.1006%2Fjtbi.1999.0948&rft.externalDocID=S0022519399909487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |