Hyper-Spectral Characteristics in Support of Object Classification and Verification
It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification...
Saved in:
Published in | IEEE access Vol. 7; pp. 119420 - 119429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification based on the image illustrated by single hyper-spectral wavelength bands, respectively, which generate a sequence of registered object images. Since hyper-spectral images (HSIs) obtained by air-borne or satellite-borne remote sensors has limited size, which may affect the classification accuracy, especially for small objects due to lack of pixels. The second approach investigates the hyper-spectral characteristics for a specific object in terms of uniformed hyper-spectrum energy function in wavelength domain. The hyper-spectral characteristics are applied to object verification, especially for objects which are difficult to distinguish from each other using classic classification methods, so that the accuracy is improved. The classification accuracy for the proposed object-oriented characterization method is evaluated in terms of producer accuracy (PA) and Kappa coefficient based on hyper-spectral images obtained from air-borne or satellite-borne remote sensors, respectively. The numerical results demonstrate that the proposed method can effectively identify and verify objects in hyper-spectral image, especially for those objects that are difficult to be distinguished from each other by classic methods. Furthermore, the proposed object classification method based on hyper-spectral characteristics is compared to conventional methods, including spectral information divergence (SID) method and multiple spectral angle mapper-Markov random fields (MSAM-MRF) method. It can be seen that the accuracy of object classification achieved by the proposed method can be up to 20% higher than that of classic methods. |
---|---|
AbstractList | It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification based on the image illustrated by single hyper-spectral wavelength bands, respectively, which generate a sequence of registered object images. Since hyper-spectral images (HSIs) obtained by air-borne or satellite-borne remote sensors has limited size, which may affect the classification accuracy, especially for small objects due to lack of pixels. The second approach investigates the hyper-spectral characteristics for a specific object in terms of uniformed hyper-spectrum energy function in wavelength domain. The hyper-spectral characteristics are applied to object verification, especially for objects which are difficult to distinguish from each other using classic classification methods, so that the accuracy is improved. The classification accuracy for the proposed object-oriented characterization method is evaluated in terms of producer accuracy (PA) and Kappa coefficient based on hyper-spectral images obtained from air-borne or satellite-borne remote sensors, respectively. The numerical results demonstrate that the proposed method can effectively identify and verify objects in hyper-spectral image, especially for those objects that are difficult to be distinguished from each other by classic methods. Furthermore, the proposed object classification method based on hyper-spectral characteristics is compared to conventional methods, including spectral information divergence (SID) method and multiple spectral angle mapper-Markov random fields (MSAM-MRF) method. It can be seen that the accuracy of object classification achieved by the proposed method can be up to 20% higher than that of classic methods. |
Author | Zhang, Liren Zhang, Hang Lu, Hao Zhao, Yuefeng Wang, Jingjing Xu, Huaqiang |
Author_xml | – sequence: 1 givenname: Liren surname: Zhang fullname: Zhang, Liren organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China – sequence: 2 givenname: Hao orcidid: 0000-0002-0400-5752 surname: Lu fullname: Lu, Hao organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China – sequence: 3 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China – sequence: 4 givenname: Yuefeng surname: Zhao fullname: Zhao, Yuefeng organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China – sequence: 5 givenname: Huaqiang surname: Xu fullname: Xu, Huaqiang organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China – sequence: 6 givenname: Jingjing orcidid: 0000-0003-1597-1793 surname: Wang fullname: Wang, Jingjing email: wjj@sdnu.edu.cn organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China |
BookMark | eNp9kU1L5TAYhYM44OcvcFNw3Ws-mq-lFPUKgovOuA1vk3Qml05Tk96F_95odRhcmE3C4TyH9805QYdTnDxCFwRvCMH66rptb7puQzHRG6qZIAwfoGNKhK4ZZ-Lwv_cROs95h8tRReLyGHXbl9mnupu9XRKMVfsHEtjFp5CXYHMVpqrbz3NMSxWH6rHfFV_VjpBzGIKFJcSpgslVT4X4FM7QjwHG7M8_7lP06_bmZ7utHx7v7tvrh9o2WC01odCrfqAa455rJTBvhAJwuhG9k1Yz7LT0TCrrnZNKKWk5Jw0VBBRlYNkpul9zXYSdmVP4C-nFRAjmXYjpt4FUthi9GTSWWmlMONUNKAGy77kTtgEmee9oybpcs-YUn_c-L2YX92kq4xvacC6YbLguLr26bIo5Jz8YG5b3ncvnhdEQbN4qMWsl5q0S81FJYdkX9nPi76mLlQre-3-EUphjKdkrMH6Yfw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_rs16101779 |
Cites_doi | 10.1007/s10043-015-0139-9 10.1109/JSTARS.2013.2290296 10.1117/1.JRS.11.026009 10.1109/TGRS.2013.2263282 10.1109/TGRS.2009.2037898 10.1109/CVPR.2005.160 10.1109/JPROC.2012.2197589 10.5194/isprs-archives-XLII-3-W3-185-2017 10.1007/s12524-018-0845-4 10.1109/TGRS.2013.2255297 10.3390/rs5105006 10.1080/22797254.2018.1503565 10.1109/TGRS.2010.2081677 10.1109/TGRS.2017.2751568 10.1109/TGRS.2015.2445767 10.1109/TGRS.2013.2296031 10.1080/01431161003645816 10.1109/LGRS.2012.2227934 10.1109/TGRS.2013.2246837 10.1109/TIP.2017.2725580 10.1109/TIP.2018.2809606 10.1109/LGRS.2012.2205216 10.1109/LGRS.2013.2279395 10.1016/0034-4257(94)90141-4 10.1109/TGRS.2010.2097268 10.1109/TGRS.2016.2603190 10.1109/TGRS.2015.2436335 10.1016/j.isprsjprs.2016.04.008 10.3390/rs8040296 10.1109/TGRS.2006.877950 10.1109/TGRS.2014.2333539 10.1109/TGRS.2014.2306692 10.1109/LGRS.2016.2645708 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2936130 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 119429 |
ExternalDocumentID | oai_doaj_org_article_f907989015294a86a7bb5d6c4a375bd2 10_1109_ACCESS_2019_2936130 8805077 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-12ab8bf2900b598605468aad946bd7c930d97e378cedd78887c5514261a823ac3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:59:42 EDT 2025 Sun Jun 29 16:18:29 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 02:41:50 EDT 2025 Wed Aug 27 02:46:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-12ab8bf2900b598605468aad946bd7c930d97e378cedd78887c5514261a823ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1597-1793 0000-0002-0400-5752 |
OpenAccessLink | https://doaj.org/article/f907989015294a86a7bb5d6c4a375bd2 |
PQID | 2455637459 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8805077 doaj_primary_oai_doaj_org_article_f907989015294a86a7bb5d6c4a375bd2 proquest_journals_2455637459 crossref_primary_10_1109_ACCESS_2019_2936130 crossref_citationtrail_10_1109_ACCESS_2019_2936130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref15 ref14 ref31 ref11 ref32 ref10 ji (ref13) 2014; 52 ref2 ref1 ref17 ref16 ref19 (ref33) 0 ref18 li (ref8) 2013; 10 (ref26) 0 ref24 ref23 ref25 ref20 ref21 ref28 ref27 ref29 xu (ref22) 2014; 11 ref7 bo (ref30) 2015; 22 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 22 start-page: 911 year: 2015 ident: ref30 article-title: Spectral-spatial hyperspectral classification based on multi-center SAM and MRF publication-title: Opt Rev doi: 10.1007/s10043-015-0139-9 – ident: ref10 doi: 10.1109/JSTARS.2013.2290296 – ident: ref15 doi: 10.1117/1.JRS.11.026009 – ident: ref16 doi: 10.1109/TGRS.2013.2263282 – ident: ref6 doi: 10.1109/TGRS.2009.2037898 – year: 0 ident: ref26 publication-title: Hyperspectral Remote Sensing Scenes – ident: ref32 doi: 10.1109/CVPR.2005.160 – ident: ref2 doi: 10.1109/JPROC.2012.2197589 – ident: ref24 doi: 10.5194/isprs-archives-XLII-3-W3-185-2017 – ident: ref29 doi: 10.1007/s12524-018-0845-4 – volume: 52 start-page: 1811 year: 2014 ident: ref13 article-title: Spectral-spatial constraint hyperspectral image classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2255297 – ident: ref25 doi: 10.3390/rs5105006 – year: 0 ident: ref33 publication-title: Hyper-Spectral Image 'Forest' Obtained by UAV-Borne Hyper-Spectral Sensor in Shijiazhuang China – ident: ref23 doi: 10.1080/22797254.2018.1503565 – ident: ref4 doi: 10.1109/TGRS.2010.2081677 – ident: ref31 doi: 10.1109/TGRS.2017.2751568 – ident: ref14 doi: 10.1109/TGRS.2015.2445767 – ident: ref18 doi: 10.1109/TGRS.2013.2296031 – ident: ref34 doi: 10.1080/01431161003645816 – ident: ref9 doi: 10.1109/LGRS.2012.2227934 – ident: ref1 doi: 10.1109/TGRS.2013.2246837 – ident: ref28 doi: 10.1109/TIP.2017.2725580 – ident: ref27 doi: 10.1109/TIP.2018.2809606 – volume: 10 start-page: 318 year: 2013 ident: ref8 article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2205216 – volume: 11 start-page: 823 year: 2014 ident: ref22 article-title: Bayesian classification of hyperspectral imagery based on probabilistic sparse representation and Markov random field publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2013.2279395 – ident: ref35 doi: 10.1016/0034-4257(94)90141-4 – ident: ref19 doi: 10.1109/TGRS.2010.2097268 – ident: ref20 doi: 10.1109/TGRS.2016.2603190 – ident: ref12 doi: 10.1109/TGRS.2015.2436335 – ident: ref3 doi: 10.1016/j.isprsjprs.2016.04.008 – ident: ref11 doi: 10.3390/rs8040296 – ident: ref5 doi: 10.1109/TGRS.2006.877950 – ident: ref7 doi: 10.1109/TGRS.2014.2333539 – ident: ref17 doi: 10.1109/TGRS.2014.2306692 – ident: ref21 doi: 10.1109/LGRS.2016.2645708 |
SSID | ssj0000816957 |
Score | 2.1311612 |
Snippet | It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119420 |
SubjectTerms | Accuracy Algorithms Classification classification accuracy Divergence Fields (mathematics) hyper-spectral characteristics Hyper-spectral image hyper-spectral image classification Image classification Methods object verification Remote sensors Satellite imagery Sensors Spectra Verification |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61e4JDHxTULaXyocdm6ziOH8d2RbVCWnqAot4svyIhULZqdy_8ejyON6KAELfIsiMn3zj-ZjL-BuCc1Y7XMmBWI5MVDz6tOcG6ikdhaeuFiBLPDi8_isUd_3Df3u_AxXgWJsaYk8_iDC_zv_yw8hsMlV0mW0v0Re7CbnLchrNaYzwFC0joVhZhoZrqy6v5PD0DZm_pWdrUkCg_23yyRn8pqvLHlzhvLzf7sNxObMgq-TbbrN3M__hNs_F_Z34Ae4VnkqvBMA5hJ_av4OUv6oNH8GmRfNDHCivQY7iDzJ9rN5OvPcGan4mfk1VHbh1GbEguoonpRRlRYvtAvqQR24bXcHfz_vN8UZUaC5XnVK2rmlmnXMc0pQ6l2hODE8raoLlwQXrd0KBlbKTyMQR0l6VHjpX8LqtYY33zBib9qo_HQGwT68B8IgXBc6WtCx21UkonvFLasymw7cs3vgiQYx2M7yY7IlSbATGDiJmC2BQuxkEPg_7Gv7tfI6pjVxTPzg0JDVPWouk0lVohEWKaWyWsdK4NwnPbyNaFNNEjRHC8SQFvCqdbGzFloT8ZxlFhTfJWn_x91Ft4gRMcojanMFk_buK7xGPW7iwb8E_NU-5X priority: 102 providerName: IEEE |
Title | Hyper-Spectral Characteristics in Support of Object Classification and Verification |
URI | https://ieeexplore.ieee.org/document/8805077 https://www.proquest.com/docview/2455637459 https://doaj.org/article/f907989015294a86a7bb5d6c4a375bd2 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx5EnWJ1Sg4erWvTNB_HWRxDUA862S3kqyBIJ3P-_-al3dgQ9OK1JG3z3st7vxdefg-hK5IbmnMHVY2Ep9TZsOcYqVPqmc5Ky5jncHf44ZFNpvR-Vs42Wn1BTVhLD9wKbliH7E0KiFpEUi2Y5saUjlmqC14aF71viHkbyVT0wSJnsuQdzVCeyeGoqsKKoJZL3oQQB7B5KxRFxv6uxcoPvxyDzfgA7XcoEY_avztEO745Qnsb3IF99DwJGeQihf7xcFiBq23mZfzWYOjYGdA1ntf4ycB5C44tMKE4KOoD68bh1zBj9eAYTcd3L9Uk7TokpJZmYpnmRBthaiKzzADResBfTGjtJGXGcSuLzEnuCy6sdw6SXW4BIYWsSQtSaFucoF4zb_wpwrrwuSM2hHRnqZDauDrTnHPDrBDSkgSRlbCU7ejDoYvFu4ppRCZVK2EFEladhBN0vZ700bJn_D78FrSwHgrU1_FBMAjVGYT6yyAS1Acdrl8SHFTAvDxBg5VOVbdNPxWhwI_GaSnP_uPT52gXltOe0AxQb7n48hcBsyzNZTTPy3i98BvjF-VA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeyqMgthTwgWOzdRzHj2NZtVqgWw60qDfLr0gIlEXt7oVfj8fxRhQQ6i2y7GiSGWe-mYy_AXjLasdrGbCqkcmKB5_2nGBdxaOwtPVCRIlnhxfnYn7JP1y1V1twOJ6FiTHm4rM4xcv8Lz8s_RpTZUfJ1hJ8kffgfvL7LRtOa40ZFWwhoVtZqIVqqo-OZ7P0FFi_pafJrSFUvuV-Mkt_aavy17c4O5jTR7DYiDbUlXybrldu6n_-wdp4V9kfw25BmuR4MI0nsBX7p7DzG__gHnyepyj0usIe9JjwILPb7M3ka0-w62dC6GTZkU8OczYkt9HEAqOsU2L7QL6kFZuBZ3B5enIxm1ely0LlOVWrqmbWKdcxTalDsvaE4YSyNmguXJBeNzRoGRupfAwBA2bpEWWlyMsq1ljfPIftftnHF0BsE-vAfIIFwXOlrQsdtVJKJ7xS2rMJsM3LN75QkGMnjO8mhyJUm0FjBjVmisYmcDgu-jEwcPx_-jvU6jgV6bPzQNKGKbvRdJpKrRAKMc2tElY61wbhuW1k60ISdA81ON6kKG8CBxsbMWWr3xjGkWNN8lbv_3vVG3gwv1icmbP35x9fwkMUdsjhHMD26nodXyVUs3KvszH_AmMx8aE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-Spectral+Characteristics+in+Support+of+Object+Classification+and+Verification&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Liren&rft.au=Lu%2C+Hao&rft.au=Zhang%2C+Hang&rft.au=Zhao%2C+Yuefeng&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=119420&rft.epage=119429&rft_id=info:doi/10.1109%2FACCESS.2019.2936130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2936130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |