Hyper-Spectral Characteristics in Support of Object Classification and Verification

It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 119420 - 119429
Main Authors Zhang, Liren, Lu, Hao, Zhang, Hang, Zhao, Yuefeng, Xu, Huaqiang, Wang, Jingjing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification based on the image illustrated by single hyper-spectral wavelength bands, respectively, which generate a sequence of registered object images. Since hyper-spectral images (HSIs) obtained by air-borne or satellite-borne remote sensors has limited size, which may affect the classification accuracy, especially for small objects due to lack of pixels. The second approach investigates the hyper-spectral characteristics for a specific object in terms of uniformed hyper-spectrum energy function in wavelength domain. The hyper-spectral characteristics are applied to object verification, especially for objects which are difficult to distinguish from each other using classic classification methods, so that the accuracy is improved. The classification accuracy for the proposed object-oriented characterization method is evaluated in terms of producer accuracy (PA) and Kappa coefficient based on hyper-spectral images obtained from air-borne or satellite-borne remote sensors, respectively. The numerical results demonstrate that the proposed method can effectively identify and verify objects in hyper-spectral image, especially for those objects that are difficult to be distinguished from each other by classic methods. Furthermore, the proposed object classification method based on hyper-spectral characteristics is compared to conventional methods, including spectral information divergence (SID) method and multiple spectral angle mapper-Markov random fields (MSAM-MRF) method. It can be seen that the accuracy of object classification achieved by the proposed method can be up to 20% higher than that of classic methods.
AbstractList It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This paper presents a HSI classification method including two approaches. The first approach is a probabilistic algorithm for object classification based on the image illustrated by single hyper-spectral wavelength bands, respectively, which generate a sequence of registered object images. Since hyper-spectral images (HSIs) obtained by air-borne or satellite-borne remote sensors has limited size, which may affect the classification accuracy, especially for small objects due to lack of pixels. The second approach investigates the hyper-spectral characteristics for a specific object in terms of uniformed hyper-spectrum energy function in wavelength domain. The hyper-spectral characteristics are applied to object verification, especially for objects which are difficult to distinguish from each other using classic classification methods, so that the accuracy is improved. The classification accuracy for the proposed object-oriented characterization method is evaluated in terms of producer accuracy (PA) and Kappa coefficient based on hyper-spectral images obtained from air-borne or satellite-borne remote sensors, respectively. The numerical results demonstrate that the proposed method can effectively identify and verify objects in hyper-spectral image, especially for those objects that are difficult to be distinguished from each other by classic methods. Furthermore, the proposed object classification method based on hyper-spectral characteristics is compared to conventional methods, including spectral information divergence (SID) method and multiple spectral angle mapper-Markov random fields (MSAM-MRF) method. It can be seen that the accuracy of object classification achieved by the proposed method can be up to 20% higher than that of classic methods.
Author Zhang, Liren
Zhang, Hang
Lu, Hao
Zhao, Yuefeng
Wang, Jingjing
Xu, Huaqiang
Author_xml – sequence: 1
  givenname: Liren
  surname: Zhang
  fullname: Zhang, Liren
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-0400-5752
  surname: Lu
  fullname: Lu, Hao
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
– sequence: 3
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
– sequence: 4
  givenname: Yuefeng
  surname: Zhao
  fullname: Zhao, Yuefeng
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
– sequence: 5
  givenname: Huaqiang
  surname: Xu
  fullname: Xu, Huaqiang
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
– sequence: 6
  givenname: Jingjing
  orcidid: 0000-0003-1597-1793
  surname: Wang
  fullname: Wang, Jingjing
  email: wjj@sdnu.edu.cn
  organization: College of Physics and Electronics Science, Shandong Normal University, Jinan, China
BookMark eNp9kU1L5TAYhYM44OcvcFNw3Ws-mq-lFPUKgovOuA1vk3Qml05Tk96F_95odRhcmE3C4TyH9805QYdTnDxCFwRvCMH66rptb7puQzHRG6qZIAwfoGNKhK4ZZ-Lwv_cROs95h8tRReLyGHXbl9mnupu9XRKMVfsHEtjFp5CXYHMVpqrbz3NMSxWH6rHfFV_VjpBzGIKFJcSpgslVT4X4FM7QjwHG7M8_7lP06_bmZ7utHx7v7tvrh9o2WC01odCrfqAa455rJTBvhAJwuhG9k1Yz7LT0TCrrnZNKKWk5Jw0VBBRlYNkpul9zXYSdmVP4C-nFRAjmXYjpt4FUthi9GTSWWmlMONUNKAGy77kTtgEmee9oybpcs-YUn_c-L2YX92kq4xvacC6YbLguLr26bIo5Jz8YG5b3ncvnhdEQbN4qMWsl5q0S81FJYdkX9nPi76mLlQre-3-EUphjKdkrMH6Yfw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_rs16101779
Cites_doi 10.1007/s10043-015-0139-9
10.1109/JSTARS.2013.2290296
10.1117/1.JRS.11.026009
10.1109/TGRS.2013.2263282
10.1109/TGRS.2009.2037898
10.1109/CVPR.2005.160
10.1109/JPROC.2012.2197589
10.5194/isprs-archives-XLII-3-W3-185-2017
10.1007/s12524-018-0845-4
10.1109/TGRS.2013.2255297
10.3390/rs5105006
10.1080/22797254.2018.1503565
10.1109/TGRS.2010.2081677
10.1109/TGRS.2017.2751568
10.1109/TGRS.2015.2445767
10.1109/TGRS.2013.2296031
10.1080/01431161003645816
10.1109/LGRS.2012.2227934
10.1109/TGRS.2013.2246837
10.1109/TIP.2017.2725580
10.1109/TIP.2018.2809606
10.1109/LGRS.2012.2205216
10.1109/LGRS.2013.2279395
10.1016/0034-4257(94)90141-4
10.1109/TGRS.2010.2097268
10.1109/TGRS.2016.2603190
10.1109/TGRS.2015.2436335
10.1016/j.isprsjprs.2016.04.008
10.3390/rs8040296
10.1109/TGRS.2006.877950
10.1109/TGRS.2014.2333539
10.1109/TGRS.2014.2306692
10.1109/LGRS.2016.2645708
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2936130
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 119429
ExternalDocumentID oai_doaj_org_article_f907989015294a86a7bb5d6c4a375bd2
10_1109_ACCESS_2019_2936130
8805077
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-12ab8bf2900b598605468aad946bd7c930d97e378cedd78887c5514261a823ac3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 00:59:42 EDT 2025
Sun Jun 29 16:18:29 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 02:41:50 EDT 2025
Wed Aug 27 02:46:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-12ab8bf2900b598605468aad946bd7c930d97e378cedd78887c5514261a823ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1597-1793
0000-0002-0400-5752
OpenAccessLink https://doaj.org/article/f907989015294a86a7bb5d6c4a375bd2
PQID 2455637459
PQPubID 4845423
PageCount 10
ParticipantIDs ieee_primary_8805077
doaj_primary_oai_doaj_org_article_f907989015294a86a7bb5d6c4a375bd2
proquest_journals_2455637459
crossref_primary_10_1109_ACCESS_2019_2936130
crossref_citationtrail_10_1109_ACCESS_2019_2936130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref14
ref31
ref11
ref32
ref10
ji (ref13) 2014; 52
ref2
ref1
ref17
ref16
ref19
(ref33) 0
ref18
li (ref8) 2013; 10
(ref26) 0
ref24
ref23
ref25
ref20
ref21
ref28
ref27
ref29
xu (ref22) 2014; 11
ref7
bo (ref30) 2015; 22
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 22
  start-page: 911
  year: 2015
  ident: ref30
  article-title: Spectral-spatial hyperspectral classification based on multi-center SAM and MRF
  publication-title: Opt Rev
  doi: 10.1007/s10043-015-0139-9
– ident: ref10
  doi: 10.1109/JSTARS.2013.2290296
– ident: ref15
  doi: 10.1117/1.JRS.11.026009
– ident: ref16
  doi: 10.1109/TGRS.2013.2263282
– ident: ref6
  doi: 10.1109/TGRS.2009.2037898
– year: 0
  ident: ref26
  publication-title: Hyperspectral Remote Sensing Scenes
– ident: ref32
  doi: 10.1109/CVPR.2005.160
– ident: ref2
  doi: 10.1109/JPROC.2012.2197589
– ident: ref24
  doi: 10.5194/isprs-archives-XLII-3-W3-185-2017
– ident: ref29
  doi: 10.1007/s12524-018-0845-4
– volume: 52
  start-page: 1811
  year: 2014
  ident: ref13
  article-title: Spectral-spatial constraint hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2013.2255297
– ident: ref25
  doi: 10.3390/rs5105006
– year: 0
  ident: ref33
  publication-title: Hyper-Spectral Image 'Forest' Obtained by UAV-Borne Hyper-Spectral Sensor in Shijiazhuang China
– ident: ref23
  doi: 10.1080/22797254.2018.1503565
– ident: ref4
  doi: 10.1109/TGRS.2010.2081677
– ident: ref31
  doi: 10.1109/TGRS.2017.2751568
– ident: ref14
  doi: 10.1109/TGRS.2015.2445767
– ident: ref18
  doi: 10.1109/TGRS.2013.2296031
– ident: ref34
  doi: 10.1080/01431161003645816
– ident: ref9
  doi: 10.1109/LGRS.2012.2227934
– ident: ref1
  doi: 10.1109/TGRS.2013.2246837
– ident: ref28
  doi: 10.1109/TIP.2017.2725580
– ident: ref27
  doi: 10.1109/TIP.2018.2809606
– volume: 10
  start-page: 318
  year: 2013
  ident: ref8
  article-title: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2205216
– volume: 11
  start-page: 823
  year: 2014
  ident: ref22
  article-title: Bayesian classification of hyperspectral imagery based on probabilistic sparse representation and Markov random field
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2013.2279395
– ident: ref35
  doi: 10.1016/0034-4257(94)90141-4
– ident: ref19
  doi: 10.1109/TGRS.2010.2097268
– ident: ref20
  doi: 10.1109/TGRS.2016.2603190
– ident: ref12
  doi: 10.1109/TGRS.2015.2436335
– ident: ref3
  doi: 10.1016/j.isprsjprs.2016.04.008
– ident: ref11
  doi: 10.3390/rs8040296
– ident: ref5
  doi: 10.1109/TGRS.2006.877950
– ident: ref7
  doi: 10.1109/TGRS.2014.2333539
– ident: ref17
  doi: 10.1109/TGRS.2014.2306692
– ident: ref21
  doi: 10.1109/LGRS.2016.2645708
SSID ssj0000816957
Score 2.1311612
Snippet It is known that a typical hyper-spectral image consists of a sequence of wavelength bands and each wavelength band illustrates a two-dimensional image. This...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119420
SubjectTerms Accuracy
Algorithms
Classification
classification accuracy
Divergence
Fields (mathematics)
hyper-spectral characteristics
Hyper-spectral image
hyper-spectral image classification
Image classification
Methods
object verification
Remote sensors
Satellite imagery
Sensors
Spectra
Verification
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61e4JDHxTULaXyocdm6ziOH8d2RbVCWnqAot4svyIhULZqdy_8ejyON6KAELfIsiMn3zj-ZjL-BuCc1Y7XMmBWI5MVDz6tOcG6ikdhaeuFiBLPDi8_isUd_3Df3u_AxXgWJsaYk8_iDC_zv_yw8hsMlV0mW0v0Re7CbnLchrNaYzwFC0joVhZhoZrqy6v5PD0DZm_pWdrUkCg_23yyRn8pqvLHlzhvLzf7sNxObMgq-TbbrN3M__hNs_F_Z34Ae4VnkqvBMA5hJ_av4OUv6oNH8GmRfNDHCivQY7iDzJ9rN5OvPcGan4mfk1VHbh1GbEguoonpRRlRYvtAvqQR24bXcHfz_vN8UZUaC5XnVK2rmlmnXMc0pQ6l2hODE8raoLlwQXrd0KBlbKTyMQR0l6VHjpX8LqtYY33zBib9qo_HQGwT68B8IgXBc6WtCx21UkonvFLasymw7cs3vgiQYx2M7yY7IlSbATGDiJmC2BQuxkEPg_7Gv7tfI6pjVxTPzg0JDVPWouk0lVohEWKaWyWsdK4NwnPbyNaFNNEjRHC8SQFvCqdbGzFloT8ZxlFhTfJWn_x91Ft4gRMcojanMFk_buK7xGPW7iwb8E_NU-5X
  priority: 102
  providerName: IEEE
Title Hyper-Spectral Characteristics in Support of Object Classification and Verification
URI https://ieeexplore.ieee.org/document/8805077
https://www.proquest.com/docview/2455637459
https://doaj.org/article/f907989015294a86a7bb5d6c4a375bd2
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx5EnWJ1Sg4erWvTNB_HWRxDUA862S3kqyBIJ3P-_-al3dgQ9OK1JG3z3st7vxdefg-hK5IbmnMHVY2Ep9TZsOcYqVPqmc5Ky5jncHf44ZFNpvR-Vs42Wn1BTVhLD9wKbliH7E0KiFpEUi2Y5saUjlmqC14aF71viHkbyVT0wSJnsuQdzVCeyeGoqsKKoJZL3oQQB7B5KxRFxv6uxcoPvxyDzfgA7XcoEY_avztEO745Qnsb3IF99DwJGeQihf7xcFiBq23mZfzWYOjYGdA1ntf4ycB5C44tMKE4KOoD68bh1zBj9eAYTcd3L9Uk7TokpJZmYpnmRBthaiKzzADResBfTGjtJGXGcSuLzEnuCy6sdw6SXW4BIYWsSQtSaFucoF4zb_wpwrrwuSM2hHRnqZDauDrTnHPDrBDSkgSRlbCU7ejDoYvFu4ppRCZVK2EFEladhBN0vZ700bJn_D78FrSwHgrU1_FBMAjVGYT6yyAS1Acdrl8SHFTAvDxBg5VOVbdNPxWhwI_GaSnP_uPT52gXltOe0AxQb7n48hcBsyzNZTTPy3i98BvjF-VA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeyqMgthTwgWOzdRzHj2NZtVqgWw60qDfLr0gIlEXt7oVfj8fxRhQQ6i2y7GiSGWe-mYy_AXjLasdrGbCqkcmKB5_2nGBdxaOwtPVCRIlnhxfnYn7JP1y1V1twOJ6FiTHm4rM4xcv8Lz8s_RpTZUfJ1hJ8kffgfvL7LRtOa40ZFWwhoVtZqIVqqo-OZ7P0FFi_pafJrSFUvuV-Mkt_aavy17c4O5jTR7DYiDbUlXybrldu6n_-wdp4V9kfw25BmuR4MI0nsBX7p7DzG__gHnyepyj0usIe9JjwILPb7M3ka0-w62dC6GTZkU8OczYkt9HEAqOsU2L7QL6kFZuBZ3B5enIxm1ely0LlOVWrqmbWKdcxTalDsvaE4YSyNmguXJBeNzRoGRupfAwBA2bpEWWlyMsq1ljfPIftftnHF0BsE-vAfIIFwXOlrQsdtVJKJ7xS2rMJsM3LN75QkGMnjO8mhyJUm0FjBjVmisYmcDgu-jEwcPx_-jvU6jgV6bPzQNKGKbvRdJpKrRAKMc2tElY61wbhuW1k60ISdA81ON6kKG8CBxsbMWWr3xjGkWNN8lbv_3vVG3gwv1icmbP35x9fwkMUdsjhHMD26nodXyVUs3KvszH_AmMx8aE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-Spectral+Characteristics+in+Support+of+Object+Classification+and+Verification&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Liren&rft.au=Lu%2C+Hao&rft.au=Zhang%2C+Hang&rft.au=Zhao%2C+Yuefeng&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=119420&rft.epage=119429&rft_id=info:doi/10.1109%2FACCESS.2019.2936130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2936130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon