Beamforming in Noninvasive Brain-Computer Interfaces
Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 56; no. 4; pp. 1209 - 1219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2008.2009768 |
Cover
Loading…
Abstract | Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain. |
---|---|
AbstractList | Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain. Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain. |
Author | Buss, Martin Gramann, Klaus Grosse-Wentrup, Moritz Liefhold, Christian |
Author_xml | – sequence: 1 givenname: Moritz surname: Grosse-Wentrup fullname: Grosse-Wentrup, Moritz – sequence: 2 givenname: Christian surname: Liefhold fullname: Liefhold, Christian email: christian.liefhold@mytum.de organization: Max-Planck-Inst. for Biol. Cybern., Tubingen – sequence: 3 givenname: Klaus surname: Gramann fullname: Gramann, Klaus email: klaus@sccn.ucsd.edu organization: Swartz Center for Comput. Neurosci., Univ. of California, San Diego, CA – sequence: 4 givenname: Martin surname: Buss fullname: Buss, Martin email: m.buss@ieee.org organization: Inst. of Autom. Control Eng., Tech. Univ. Munchen, Munich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19423426$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UlLAzEYBuAgitblB4ggxYO30ezL0RY3cLnoOWRiIpFOUpOZgv_elFYFD3r5QuB5E5J3F2zGFB0AhwieIQTV-dPk_vIMQyiXQwkuN8AIMSYbzAjaBCMIkWwUVnQH7JbyVrdUUr4NdpCimFDMR4BOnOl8yl2Ir-MQxw8phrgwJSzceJJNiM00dfOhd3l8G-v0xrqyD7a8mRV3sF73wPPV5dP0prl7vL6dXtw1lkLZNwiy1svWty9Mtq2RWFlLmVXOCcuokIRzi7yCnjPsiSDcK6G8hdAzz7EyZA-crs6d5_Q-uNLrLhTrZjMTXRqK5gIjTqD8FxLKuKruX4ihEFhKWuHJL_iWhhzra7VkAhPMFKvoeI2GtnMvep5DZ_KH_vreCtAK2JxKyc7_EKiXFeplhXpZoV5XWDPiV8aG3vQhxb72MfszebRKBufc902UK4owJJ_2BaYz |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_neucom_2015_05_133 crossref_primary_10_1142_S0129065721500386 crossref_primary_10_1371_journal_pone_0263641 crossref_primary_10_1016_j_neuroimage_2011_01_056 crossref_primary_10_1088_1741_2552_ad6793 crossref_primary_10_1186_s12868_023_00819_y crossref_primary_10_1016_j_cmpb_2017_05_009 crossref_primary_10_1109_JTEHM_2016_2609901 crossref_primary_10_1088_1741_2552_ab839e crossref_primary_10_1088_1741_2560_11_5_056015 crossref_primary_10_1109_TBME_2010_2082540 crossref_primary_10_1007_s42979_021_00586_9 crossref_primary_10_1109_TBME_2018_2793882 crossref_primary_10_1016_j_neunet_2020_01_027 crossref_primary_10_3390_bioengineering11100967 crossref_primary_10_1016_j_bea_2025_100156 crossref_primary_10_1016_j_bspc_2014_07_014 crossref_primary_10_31857_S0044467724020069 crossref_primary_10_1088_1741_2552_aa86d0 crossref_primary_10_1016_j_jneumeth_2020_108690 crossref_primary_10_1016_j_neuroimage_2015_07_012 crossref_primary_10_1155_2013_591216 crossref_primary_10_1088_1741_2552_aadea0 crossref_primary_10_3390_computers11050061 crossref_primary_10_1109_MSMC_2017_2778458 crossref_primary_10_1371_journal_pone_0076923 crossref_primary_10_1109_ACCESS_2018_2842082 crossref_primary_10_1109_TNSRE_2018_2873061 crossref_primary_10_1016_j_bspc_2012_12_004 crossref_primary_10_1088_1741_2560_13_5_056017 crossref_primary_10_1109_TCYB_2020_2968625 crossref_primary_10_1109_TBME_2014_2312397 crossref_primary_10_1109_TBME_2015_2468588 crossref_primary_10_3390_e20010007 crossref_primary_10_1142_S0129065716500143 crossref_primary_10_1016_j_irbm_2021_01_002 crossref_primary_10_1109_JBHI_2015_2413752 crossref_primary_10_1088_1741_2560_10_3_036014 crossref_primary_10_1007_s11063_021_10567_x crossref_primary_10_1016_j_patrec_2015_09_003 crossref_primary_10_1109_TNSRE_2019_2934496 crossref_primary_10_1088_1741_2552_aa6baf crossref_primary_10_3390_brainsci11111525 crossref_primary_10_1109_RBME_2013_2290621 crossref_primary_10_1088_1741_2552_abd51f crossref_primary_10_1109_TBME_2018_2889705 crossref_primary_10_1109_TNN_2010_2084099 crossref_primary_10_3389_fnhum_2023_1134869 crossref_primary_10_1016_j_bspc_2021_102930 crossref_primary_10_1007_s11055_024_01727_2 crossref_primary_10_1016_j_cmpb_2020_105808 crossref_primary_10_1007_s11571_016_9417_x crossref_primary_10_3389_fnins_2017_00630 crossref_primary_10_1016_j_jneumeth_2010_11_016 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1109_TNSRE_2019_2893113 crossref_primary_10_1016_j_procs_2020_09_270 crossref_primary_10_1016_j_compbiomed_2019_02_009 crossref_primary_10_1016_j_neunet_2019_07_008 crossref_primary_10_1088_1741_2560_8_2_025004 crossref_primary_10_1016_j_neuroimage_2016_01_019 crossref_primary_10_1109_JPROC_2012_2185009 crossref_primary_10_1145_3297713 crossref_primary_10_1016_j_jneumeth_2016_01_005 crossref_primary_10_1016_j_jneumeth_2019_03_018 crossref_primary_10_1088_1741_2552_ad0a01 crossref_primary_10_1007_s11517_024_03069_0 crossref_primary_10_1088_1741_2560_10_1_016002 crossref_primary_10_1109_TNNLS_2013_2249087 crossref_primary_10_1371_journal_pone_0159988 crossref_primary_10_1007_s11042_024_18892_8 crossref_primary_10_3389_fnagi_2017_00386 crossref_primary_10_1016_j_jneumeth_2011_11_002 crossref_primary_10_1007_s11517_017_1611_4 crossref_primary_10_1371_journal_pone_0207351 crossref_primary_10_3389_fnhum_2018_00340 crossref_primary_10_1016_j_neunet_2024_106100 crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_4015_S1016237214500409 crossref_primary_10_1007_s11042_023_15468_w crossref_primary_10_1088_1741_2560_9_2_026013 crossref_primary_10_1088_1741_2560_10_5_056014 crossref_primary_10_1186_1743_0003_7_34 crossref_primary_10_1109_JPROC_2015_2404941 crossref_primary_10_1109_THMS_2016_2608931 crossref_primary_10_1088_1741_2552_aa7ab4 crossref_primary_10_1088_1741_2560_13_6_066021 crossref_primary_10_1109_ACCESS_2019_2929545 crossref_primary_10_1109_TNSRE_2022_3184402 crossref_primary_10_1142_S0218126619501238 crossref_primary_10_1016_j_clinph_2017_10_026 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_3389_fnhum_2022_818770 crossref_primary_10_1016_j_nec_2013_08_006 crossref_primary_10_1088_1741_2552_ad19ea crossref_primary_10_1109_TNSRE_2012_2184838 crossref_primary_10_1162_imag_a_00391 crossref_primary_10_1007_s12021_018_9396_7 crossref_primary_10_1109_TBME_2010_2082539 crossref_primary_10_1080_2326263X_2022_2140467 crossref_primary_10_1109_TBME_2015_2439216 crossref_primary_10_1088_1741_2560_8_2_025012 |
Cites_doi | 10.1016/j.patrec.2007.01.002 10.1109/MSP.2008.4408441 10.1016/j.jneumeth.2003.10.009 10.1007/s004220050304 10.1016/S0013-4694(97)00022-2 10.1109/CNE.2005.1419570 10.1109/TBME.2004.826691 10.1109/86.895946 10.1109/TNSRE.2003.814484 10.1007/s10439-006-9170-0 10.1109/TNSRE.2003.814441 10.1016/S1388-2457(99)00141-8 10.1109/TBME.2008.921154 10.1109/TBME.1969.4502598 10.1016/S1388-2457(02)00057-3 10.1109/53.665 10.1109/79.962275 10.1109/5.720250 10.1016/S0013-4694(97)00080-1 10.1088/0031-9155/44/8/317 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7TK 7X8 |
DOI | 10.1109/TBME.2008.2009768 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database Materials Research Database Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1219 |
ExternalDocumentID | 2293771271 19423426 10_1109_TBME_2008_2009768 4694120 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7TK 7X8 |
ID | FETCH-LOGICAL-c408t-105bf8bfbd58bba829cc45c9ee7c5478366c1f90f652f3736f979fc00f5f629a3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Sep 05 08:35:25 EDT 2025 Fri Sep 05 00:03:45 EDT 2025 Fri Sep 05 09:10:03 EDT 2025 Mon Jun 30 08:35:34 EDT 2025 Mon Jul 21 06:03:16 EDT 2025 Tue Jul 01 02:15:36 EDT 2025 Thu Apr 24 23:12:21 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-105bf8bfbd58bba829cc45c9ee7c5478366c1f90f652f3736f979fc00f5f629a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 19423426 |
PQID | 857232595 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_34569083 proquest_miscellaneous_67216308 proquest_miscellaneous_20772884 ieee_primary_4694120 proquest_journals_857232595 pubmed_primary_19423426 crossref_primary_10_1109_TBME_2008_2009768 crossref_citationtrail_10_1109_TBME_2008_2009768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-April 2009-04-00 2009-Apr 20090401 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-April |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2009 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref23 ref15 ref14 wolpaw (ref24) 2002; 113 ref20 ref22 ref10 ref21 ref2 ref1 grosse-wentrup (ref11) 2007; 19 ref19 ng (ref16) 0 ref18 ref8 ref7 ref9 nunez (ref17) 2005 ref4 ref3 ref6 ref5 koh (ref12) 2007; 8 |
References_xml | – ident: ref4 doi: 10.1016/j.patrec.2007.01.002 – ident: ref3 doi: 10.1109/MSP.2008.4408441 – ident: ref6 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref18 doi: 10.1007/s004220050304 – volume: 19 start-page: 537 year: 2007 ident: ref11 publication-title: Advances in neural information processing systems – ident: ref14 doi: 10.1016/S0013-4694(97)00022-2 – ident: ref10 doi: 10.1109/CNE.2005.1419570 – ident: ref2 doi: 10.1109/TBME.2004.826691 – ident: ref21 doi: 10.1109/86.895946 – ident: ref15 doi: 10.1109/TNSRE.2003.814484 – ident: ref13 doi: 10.1007/s10439-006-9170-0 – ident: ref7 doi: 10.1109/TNSRE.2003.814441 – ident: ref19 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref9 doi: 10.1109/TBME.2008.921154 – ident: ref22 doi: 10.1109/TBME.1969.4502598 – year: 2005 ident: ref17 publication-title: Electric Fields of the Brain The Neurophysics of EEG – volume: 113 start-page: 767 year: 2002 ident: ref24 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 8 start-page: 1519 year: 2007 ident: ref12 article-title: An interior point method for largescale l1 -regularized logistic regression publication-title: J Mach Learning Res – ident: ref23 doi: 10.1109/53.665 – ident: ref1 doi: 10.1109/79.962275 – ident: ref5 doi: 10.1109/5.720250 – ident: ref20 doi: 10.1016/S0013-4694(97)00080-1 – year: 0 ident: ref16 article-title: Feature selection, L1 vs.L2 regularization, and rotational invariance publication-title: Proc 21st Int Conf Mach Learning (ICML 2004) – ident: ref8 doi: 10.1088/0031-9155/44/8/317 |
SSID | ssj0014846 |
Score | 2.3387659 |
Snippet | Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common... Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1209 |
SubjectTerms | Adult Algorithms Array signal processing Beamforming Brain computer interfaces Brain Mapping - methods common spatial patterns Data mining Electroencephalography Electroencephalography - methods Female Humans Independent component analysis Information filtering Information filters Male Motor Cortex - physiology motor imagery Pattern Recognition, Automated - methods Reference Values Rendering (computer graphics) Signal Processing, Computer-Assisted spatial filtering Spatial filters Training data User-Computer Interface |
Title | Beamforming in Noninvasive Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/4694120 https://www.ncbi.nlm.nih.gov/pubmed/19423426 https://www.proquest.com/docview/857232595 https://www.proquest.com/docview/20772884 https://www.proquest.com/docview/34569083 https://www.proquest.com/docview/67216308 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB92N99uBJ7Jq2SZocXVFEWE8K3kqSJiBqV3TXg7_eTJtWEVe8FTItyWTSfMnMfANwRDkrSaJNXEqpY-qMipVyJE6TkmmaEyMlJicPb_jVHb2-Z_czcNLlwlhr6-Az28fH2pdfjswEr8pOKWZdpv6APuvNrMnV6jwGVDRJOSTxCziVNHgwEyJPbwfDiyZqEl0BHl_XTKEeR1CkVPi2HdX1VaZDzXrLuVyGYdvZJtLksT8Z6775-MHj-N_RrMBSwJ7RWWMsqzBjqzVY_MZIuAbzw-BrXwc6sOoZIa1viB6q6AYvbt8VhrtHAywsEbcVIaL6WtFhcNcG3F1e3J5fxaHGQmwoEWP_F2baCe10yYTWSqTSGMqMtDY3SPWVcW4SJ4njLHVZnnEnc-kMIY45nkqVbcJcNarsNkTOIZU8TxObJ9RhWR9BKcuIZUoxobIekFbVhQkE5FgH46moDyJEFjhRTV3MMFE9OO5eeWnYN_4SXkcld4JBvz3YbeezCOvzrRAs91CSSdaDw67VLyz0lqjKjiZv_qv-4CEEnS6RefApPYSdLsGRGikjvmtbjSF9jSLY387vnd6FhdZtRZI9mBu_Tuy-Rz9jfVCb_SdvXPyA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4hkMb2wDYYo3QbedgTWoqT2I79uCKqbpA-FYm3yHZsCW2k02h54NfjS5yAEJ32FsmXyD774s--u-8AvlLOKpJoE1dS6pg6o2KlHInTpGKa5sRIicnJxYxPL-nPK3a1Ad_6XBhrbRN8Zkf42Pjyq4VZ4VXZCcWsy9Qf0Lf8vk9Zm63V-wyoaNNySOJNOJU0-DATIk_m4-KsjZtEZ4BH2A1XqEcSFEkVnmxITYWV9WCz2XQmb6HoutvGmvwarZZ6ZO6fMTn-73jewU5An9H3drm8hw1b78KbJ5yEu_CqCN72PaBjq24Q1PqG6LqOZnh1e6cw4D0aY2mJuKsJETUXiw7Duz7A5eRsfjqNQ5WF2FAilv4_zLQT2umKCa2VSKUxlBlpbW6Q7Cvj3CROEsdZ6rI8407m0hlCHHM8lSrbh816UdsDiJxDMnmeJjZPqMPCPoJSlhHLlGJCZQMgnapLEyjIsRLG77I5ihBZ4kS1lTHDRA3guH_lT8u_8S_hPVRyLxj0O4BhN59lsNDbUrDcg0km2QCO-lZvWugvUbVdrG79V_3RQwi6XiLz8FN6ELtegiM5UkZ81z62C-lxFGH9Hb7c6SPYns6Li_Lix-x8CK87JxZJPsHm8u_KfvZYaKm_NCbwAM4z_80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beamforming+in+noninvasive+brain-computer+interfaces&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Grosse-Wentrup%2C+Moritz&rft.au=Liefhold%2C+Christian&rft.au=Gramann%2C+Klaus&rft.au=Buss%2C+Martin&rft.date=2009-04-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=56&rft.issue=4&rft.spage=1209&rft_id=info:doi/10.1109%2FTBME.2008.2009768&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |