Beamforming in Noninvasive Brain-Computer Interfaces

Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 56; no. 4; pp. 1209 - 1219
Main Authors Grosse-Wentrup, Moritz, Liefhold, Christian, Gramann, Klaus, Buss, Martin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2008.2009768

Cover

Loading…
Abstract Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.
AbstractList Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.
Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components.
Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.
Author Buss, Martin
Gramann, Klaus
Grosse-Wentrup, Moritz
Liefhold, Christian
Author_xml – sequence: 1
  givenname: Moritz
  surname: Grosse-Wentrup
  fullname: Grosse-Wentrup, Moritz
– sequence: 2
  givenname: Christian
  surname: Liefhold
  fullname: Liefhold, Christian
  email: christian.liefhold@mytum.de
  organization: Max-Planck-Inst. for Biol. Cybern., Tubingen
– sequence: 3
  givenname: Klaus
  surname: Gramann
  fullname: Gramann, Klaus
  email: klaus@sccn.ucsd.edu
  organization: Swartz Center for Comput. Neurosci., Univ. of California, San Diego, CA
– sequence: 4
  givenname: Martin
  surname: Buss
  fullname: Buss, Martin
  email: m.buss@ieee.org
  organization: Inst. of Autom. Control Eng., Tech. Univ. Munchen, Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19423426$$D View this record in MEDLINE/PubMed
BookMark eNqF0UlLAzEYBuAgitblB4ggxYO30ezL0RY3cLnoOWRiIpFOUpOZgv_elFYFD3r5QuB5E5J3F2zGFB0AhwieIQTV-dPk_vIMQyiXQwkuN8AIMSYbzAjaBCMIkWwUVnQH7JbyVrdUUr4NdpCimFDMR4BOnOl8yl2Ir-MQxw8phrgwJSzceJJNiM00dfOhd3l8G-v0xrqyD7a8mRV3sF73wPPV5dP0prl7vL6dXtw1lkLZNwiy1svWty9Mtq2RWFlLmVXOCcuokIRzi7yCnjPsiSDcK6G8hdAzz7EyZA-crs6d5_Q-uNLrLhTrZjMTXRqK5gIjTqD8FxLKuKruX4ihEFhKWuHJL_iWhhzra7VkAhPMFKvoeI2GtnMvep5DZ_KH_vreCtAK2JxKyc7_EKiXFeplhXpZoV5XWDPiV8aG3vQhxb72MfszebRKBufc902UK4owJJ_2BaYz
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_neucom_2015_05_133
crossref_primary_10_1142_S0129065721500386
crossref_primary_10_1371_journal_pone_0263641
crossref_primary_10_1016_j_neuroimage_2011_01_056
crossref_primary_10_1088_1741_2552_ad6793
crossref_primary_10_1186_s12868_023_00819_y
crossref_primary_10_1016_j_cmpb_2017_05_009
crossref_primary_10_1109_JTEHM_2016_2609901
crossref_primary_10_1088_1741_2552_ab839e
crossref_primary_10_1088_1741_2560_11_5_056015
crossref_primary_10_1109_TBME_2010_2082540
crossref_primary_10_1007_s42979_021_00586_9
crossref_primary_10_1109_TBME_2018_2793882
crossref_primary_10_1016_j_neunet_2020_01_027
crossref_primary_10_3390_bioengineering11100967
crossref_primary_10_1016_j_bea_2025_100156
crossref_primary_10_1016_j_bspc_2014_07_014
crossref_primary_10_31857_S0044467724020069
crossref_primary_10_1088_1741_2552_aa86d0
crossref_primary_10_1016_j_jneumeth_2020_108690
crossref_primary_10_1016_j_neuroimage_2015_07_012
crossref_primary_10_1155_2013_591216
crossref_primary_10_1088_1741_2552_aadea0
crossref_primary_10_3390_computers11050061
crossref_primary_10_1109_MSMC_2017_2778458
crossref_primary_10_1371_journal_pone_0076923
crossref_primary_10_1109_ACCESS_2018_2842082
crossref_primary_10_1109_TNSRE_2018_2873061
crossref_primary_10_1016_j_bspc_2012_12_004
crossref_primary_10_1088_1741_2560_13_5_056017
crossref_primary_10_1109_TCYB_2020_2968625
crossref_primary_10_1109_TBME_2014_2312397
crossref_primary_10_1109_TBME_2015_2468588
crossref_primary_10_3390_e20010007
crossref_primary_10_1142_S0129065716500143
crossref_primary_10_1016_j_irbm_2021_01_002
crossref_primary_10_1109_JBHI_2015_2413752
crossref_primary_10_1088_1741_2560_10_3_036014
crossref_primary_10_1007_s11063_021_10567_x
crossref_primary_10_1016_j_patrec_2015_09_003
crossref_primary_10_1109_TNSRE_2019_2934496
crossref_primary_10_1088_1741_2552_aa6baf
crossref_primary_10_3390_brainsci11111525
crossref_primary_10_1109_RBME_2013_2290621
crossref_primary_10_1088_1741_2552_abd51f
crossref_primary_10_1109_TBME_2018_2889705
crossref_primary_10_1109_TNN_2010_2084099
crossref_primary_10_3389_fnhum_2023_1134869
crossref_primary_10_1016_j_bspc_2021_102930
crossref_primary_10_1007_s11055_024_01727_2
crossref_primary_10_1016_j_cmpb_2020_105808
crossref_primary_10_1007_s11571_016_9417_x
crossref_primary_10_3389_fnins_2017_00630
crossref_primary_10_1016_j_jneumeth_2010_11_016
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1109_TNSRE_2019_2893113
crossref_primary_10_1016_j_procs_2020_09_270
crossref_primary_10_1016_j_compbiomed_2019_02_009
crossref_primary_10_1016_j_neunet_2019_07_008
crossref_primary_10_1088_1741_2560_8_2_025004
crossref_primary_10_1016_j_neuroimage_2016_01_019
crossref_primary_10_1109_JPROC_2012_2185009
crossref_primary_10_1145_3297713
crossref_primary_10_1016_j_jneumeth_2016_01_005
crossref_primary_10_1016_j_jneumeth_2019_03_018
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1007_s11517_024_03069_0
crossref_primary_10_1088_1741_2560_10_1_016002
crossref_primary_10_1109_TNNLS_2013_2249087
crossref_primary_10_1371_journal_pone_0159988
crossref_primary_10_1007_s11042_024_18892_8
crossref_primary_10_3389_fnagi_2017_00386
crossref_primary_10_1016_j_jneumeth_2011_11_002
crossref_primary_10_1007_s11517_017_1611_4
crossref_primary_10_1371_journal_pone_0207351
crossref_primary_10_3389_fnhum_2018_00340
crossref_primary_10_1016_j_neunet_2024_106100
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_4015_S1016237214500409
crossref_primary_10_1007_s11042_023_15468_w
crossref_primary_10_1088_1741_2560_9_2_026013
crossref_primary_10_1088_1741_2560_10_5_056014
crossref_primary_10_1186_1743_0003_7_34
crossref_primary_10_1109_JPROC_2015_2404941
crossref_primary_10_1109_THMS_2016_2608931
crossref_primary_10_1088_1741_2552_aa7ab4
crossref_primary_10_1088_1741_2560_13_6_066021
crossref_primary_10_1109_ACCESS_2019_2929545
crossref_primary_10_1109_TNSRE_2022_3184402
crossref_primary_10_1142_S0218126619501238
crossref_primary_10_1016_j_clinph_2017_10_026
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_3389_fnhum_2022_818770
crossref_primary_10_1016_j_nec_2013_08_006
crossref_primary_10_1088_1741_2552_ad19ea
crossref_primary_10_1109_TNSRE_2012_2184838
crossref_primary_10_1162_imag_a_00391
crossref_primary_10_1007_s12021_018_9396_7
crossref_primary_10_1109_TBME_2010_2082539
crossref_primary_10_1080_2326263X_2022_2140467
crossref_primary_10_1109_TBME_2015_2439216
crossref_primary_10_1088_1741_2560_8_2_025012
Cites_doi 10.1016/j.patrec.2007.01.002
10.1109/MSP.2008.4408441
10.1016/j.jneumeth.2003.10.009
10.1007/s004220050304
10.1016/S0013-4694(97)00022-2
10.1109/CNE.2005.1419570
10.1109/TBME.2004.826691
10.1109/86.895946
10.1109/TNSRE.2003.814484
10.1007/s10439-006-9170-0
10.1109/TNSRE.2003.814441
10.1016/S1388-2457(99)00141-8
10.1109/TBME.2008.921154
10.1109/TBME.1969.4502598
10.1016/S1388-2457(02)00057-3
10.1109/53.665
10.1109/79.962275
10.1109/5.720250
10.1016/S0013-4694(97)00080-1
10.1088/0031-9155/44/8/317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7TK
7X8
DOI 10.1109/TBME.2008.2009768
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
Materials Research Database

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1219
ExternalDocumentID 2293771271
19423426
10_1109_TBME_2008_2009768
4694120
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7TK
7X8
ID FETCH-LOGICAL-c408t-105bf8bfbd58bba829cc45c9ee7c5478366c1f90f652f3736f979fc00f5f629a3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Sep 05 08:35:25 EDT 2025
Fri Sep 05 00:03:45 EDT 2025
Fri Sep 05 09:10:03 EDT 2025
Mon Jun 30 08:35:34 EDT 2025
Mon Jul 21 06:03:16 EDT 2025
Tue Jul 01 02:15:36 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-105bf8bfbd58bba829cc45c9ee7c5478366c1f90f652f3736f979fc00f5f629a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 19423426
PQID 857232595
PQPubID 85474
PageCount 11
ParticipantIDs proquest_miscellaneous_34569083
proquest_miscellaneous_67216308
proquest_miscellaneous_20772884
ieee_primary_4694120
proquest_journals_857232595
pubmed_primary_19423426
crossref_primary_10_1109_TBME_2008_2009768
crossref_citationtrail_10_1109_TBME_2008_2009768
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-April
2009-04-00
2009-Apr
20090401
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-April
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref23
ref15
ref14
wolpaw (ref24) 2002; 113
ref20
ref22
ref10
ref21
ref2
ref1
grosse-wentrup (ref11) 2007; 19
ref19
ng (ref16) 0
ref18
ref8
ref7
ref9
nunez (ref17) 2005
ref4
ref3
ref6
ref5
koh (ref12) 2007; 8
References_xml – ident: ref4
  doi: 10.1016/j.patrec.2007.01.002
– ident: ref3
  doi: 10.1109/MSP.2008.4408441
– ident: ref6
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref18
  doi: 10.1007/s004220050304
– volume: 19
  start-page: 537
  year: 2007
  ident: ref11
  publication-title: Advances in neural information processing systems
– ident: ref14
  doi: 10.1016/S0013-4694(97)00022-2
– ident: ref10
  doi: 10.1109/CNE.2005.1419570
– ident: ref2
  doi: 10.1109/TBME.2004.826691
– ident: ref21
  doi: 10.1109/86.895946
– ident: ref15
  doi: 10.1109/TNSRE.2003.814484
– ident: ref13
  doi: 10.1007/s10439-006-9170-0
– ident: ref7
  doi: 10.1109/TNSRE.2003.814441
– ident: ref19
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref9
  doi: 10.1109/TBME.2008.921154
– ident: ref22
  doi: 10.1109/TBME.1969.4502598
– year: 2005
  ident: ref17
  publication-title: Electric Fields of the Brain The Neurophysics of EEG
– volume: 113
  start-page: 767
  year: 2002
  ident: ref24
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 8
  start-page: 1519
  year: 2007
  ident: ref12
  article-title: An interior point method for largescale l1 -regularized logistic regression
  publication-title: J Mach Learning Res
– ident: ref23
  doi: 10.1109/53.665
– ident: ref1
  doi: 10.1109/79.962275
– ident: ref5
  doi: 10.1109/5.720250
– ident: ref20
  doi: 10.1016/S0013-4694(97)00080-1
– year: 0
  ident: ref16
  article-title: Feature selection, L1 vs.L2 regularization, and rotational invariance
  publication-title: Proc 21st Int Conf Mach Learning (ICML 2004)
– ident: ref8
  doi: 10.1088/0031-9155/44/8/317
SSID ssj0014846
Score 2.3387659
Snippet Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common...
Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1209
SubjectTerms Adult
Algorithms
Array signal processing
Beamforming
Brain computer interfaces
Brain Mapping - methods
common spatial patterns
Data mining
Electroencephalography
Electroencephalography - methods
Female
Humans
Independent component analysis
Information filtering
Information filters
Male
Motor Cortex - physiology
motor imagery
Pattern Recognition, Automated - methods
Reference Values
Rendering (computer graphics)
Signal Processing, Computer-Assisted
spatial filtering
Spatial filters
Training data
User-Computer Interface
Title Beamforming in Noninvasive Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/4694120
https://www.ncbi.nlm.nih.gov/pubmed/19423426
https://www.proquest.com/docview/857232595
https://www.proquest.com/docview/20772884
https://www.proquest.com/docview/34569083
https://www.proquest.com/docview/67216308
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB92N99uBJ7Jq2SZocXVFEWE8K3kqSJiBqV3TXg7_eTJtWEVe8FTItyWTSfMnMfANwRDkrSaJNXEqpY-qMipVyJE6TkmmaEyMlJicPb_jVHb2-Z_czcNLlwlhr6-Az28fH2pdfjswEr8pOKWZdpv6APuvNrMnV6jwGVDRJOSTxCziVNHgwEyJPbwfDiyZqEl0BHl_XTKEeR1CkVPi2HdX1VaZDzXrLuVyGYdvZJtLksT8Z6775-MHj-N_RrMBSwJ7RWWMsqzBjqzVY_MZIuAbzw-BrXwc6sOoZIa1viB6q6AYvbt8VhrtHAywsEbcVIaL6WtFhcNcG3F1e3J5fxaHGQmwoEWP_F2baCe10yYTWSqTSGMqMtDY3SPWVcW4SJ4njLHVZnnEnc-kMIY45nkqVbcJcNarsNkTOIZU8TxObJ9RhWR9BKcuIZUoxobIekFbVhQkE5FgH46moDyJEFjhRTV3MMFE9OO5eeWnYN_4SXkcld4JBvz3YbeezCOvzrRAs91CSSdaDw67VLyz0lqjKjiZv_qv-4CEEnS6RefApPYSdLsGRGikjvmtbjSF9jSLY387vnd6FhdZtRZI9mBu_Tuy-Rz9jfVCb_SdvXPyA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4hkMb2wDYYo3QbedgTWoqT2I79uCKqbpA-FYm3yHZsCW2k02h54NfjS5yAEJ32FsmXyD774s--u-8AvlLOKpJoE1dS6pg6o2KlHInTpGKa5sRIicnJxYxPL-nPK3a1Ad_6XBhrbRN8Zkf42Pjyq4VZ4VXZCcWsy9Qf0Lf8vk9Zm63V-wyoaNNySOJNOJU0-DATIk_m4-KsjZtEZ4BH2A1XqEcSFEkVnmxITYWV9WCz2XQmb6HoutvGmvwarZZ6ZO6fMTn-73jewU5An9H3drm8hw1b78KbJ5yEu_CqCN72PaBjq24Q1PqG6LqOZnh1e6cw4D0aY2mJuKsJETUXiw7Duz7A5eRsfjqNQ5WF2FAilv4_zLQT2umKCa2VSKUxlBlpbW6Q7Cvj3CROEsdZ6rI8407m0hlCHHM8lSrbh816UdsDiJxDMnmeJjZPqMPCPoJSlhHLlGJCZQMgnapLEyjIsRLG77I5ihBZ4kS1lTHDRA3guH_lT8u_8S_hPVRyLxj0O4BhN59lsNDbUrDcg0km2QCO-lZvWugvUbVdrG79V_3RQwi6XiLz8FN6ELtegiM5UkZ81z62C-lxFGH9Hb7c6SPYns6Li_Lix-x8CK87JxZJPsHm8u_KfvZYaKm_NCbwAM4z_80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beamforming+in+noninvasive+brain-computer+interfaces&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Grosse-Wentrup%2C+Moritz&rft.au=Liefhold%2C+Christian&rft.au=Gramann%2C+Klaus&rft.au=Buss%2C+Martin&rft.date=2009-04-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=56&rft.issue=4&rft.spage=1209&rft_id=info:doi/10.1109%2FTBME.2008.2009768&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon