Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity

• Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biop...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 6; pp. 2246 - 2260
Main Author Buckley, Thomas N.
Format Journal Article
LanguageEnglish
Published England Wiley 01.06.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. • In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. • The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. • The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
AbstractList Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan-Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon-water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan-Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon-water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
• Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. • In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. • The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. • The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂ A /∂ E ) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂ A /∂ E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂ A /∂ N ) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂ A /∂ E ) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
Summary Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.
Author Buckley, Thomas N.
Author_xml – sequence: 1
  givenname: Thomas N.
  surname: Buckley
  fullname: Buckley, Thomas N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33454975$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEYRS0URDaBggcAWaIJxST-nZ8yighBiggSFHSWx_NN1qtZ29jeRPMMvDRedpciAuHCdnHukf3dE3TkvAOEXlNyTsu6cGF5Thvadc_Qgoq6q1rKmyO0IIS1VS3q78foJKUVIaSTNXuBjjkXUnSNXKCfdyHbtZ6w0bH3Dgcds83WO-vu8RKmkHAE452xE-C8BKxDQcBlPNgHiPfgDOAe8iOAw37v0m7Avk8QH2AoYufDjEP0Y3Ek7Ecclj77NLviy9YUImhj8_wSPR_1lODV_jxFX68_fLu6qW7vPn66urytjCBtV5l6MP3YQc84Z30_St4ToYUpF0bbsomx4R0H2QlZPkwMH1vWyYFzQznwU3S2s5YX_dhAymptk4Fp0g78JikmaypZQ5r2_6ho2qaRUpCCvnuCrvwmuvKNImQtqbnkW-HbPbXp1zCoEMu84qwOfRTgYgeY6FOKMKoyGL3tI0dtJ0WJ2jauSuPqd-Ml8f5J4iD9G7u3P5Ym5n-D6vOXm0PizS6xStnHP4kyHkmIYPwXyADF6Q
CitedBy_id crossref_primary_10_3390_plants10102121
crossref_primary_10_1111_nph_19431
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_1111_nph_18901
crossref_primary_10_1111_nph_18539
crossref_primary_10_1111_pce_14704
crossref_primary_10_3390_su14095405
crossref_primary_10_1016_j_crope_2024_04_001
crossref_primary_10_1111_pce_14427
crossref_primary_10_1007_s11120_023_01043_9
crossref_primary_10_1111_pce_14448
Cites_doi 10.1093/aob/mcn125
10.1016/j.jtbi.2016.01.003
10.1111/j.1469-8137.1988.tb00289.x
10.2307/1941205
10.1016/j.envexpbot.2018.12.013
10.1007/BF00379180
10.1006/anbo.1996.0056
10.1007/s004420050847
10.1111/nph.12798
10.1093/treephys/tps045
10.1007/BF00316946
10.1007/BF00379710
10.1111/pce.12091
10.1071/PP9950593
10.1093/aob/mcn244
10.1073/pnas.1615144113
10.1111/pce.12343
10.1046/j.1365-3040.2003.00993.x
10.1093/treephys/26.2.145
10.1007/s004250050205
10.1111/nph.16419
10.1146/annurev.pp.40.060189.000315
10.5194/bg-7-1833-2010
10.1093/treephys/26.2.129
10.1016/S0168-1923(00)00144-1
10.1111/j.1365-3040.1997.00094.x
10.1104/pp.89.4.1060
10.1093/treephys/tps023
10.1093/jxb/erf065
10.1093/aobpla/plaa039
10.1104/pp.88.3.574
10.1111/j.1365-3040.2004.01213.x
10.14214/sf.530
10.1046/j.1466-822x.2001.00268.x
10.1093/aobpla/plv116
10.14214/sf.531
10.1038/nature11688
10.1007/BF00386231
10.1007/BF00378977
10.1104/pp.17.01213
10.1007/s00442-019-04583-x
10.2307/1313077
10.1111/nph.13096
10.1007/s00442-002-1042-1
10.1111/nph.15899
10.1093/aob/mcw099
10.1111/j.1399-3054.1987.tb04631.x
10.1098/rstb.1989.0016
10.1111/pce.12970
10.1007/BF00014590
10.1111/j.1365-3040.1992.tb01455.x
10.1071/PP9930055
10.1093/treephys/16.7.627
10.1111/pce.12852
10.1093/treephys/25.5.533
10.1007/s00442-016-3705-3
10.1038/nature02417
10.1111/pce.13607
ContentType Journal Article
Copyright 2021 The Author © 2021 New Phytologist Foundation
2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 The Author © 2021 New Phytologist Foundation
– notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17199
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2260
ExternalDocumentID 33454975
10_1111_nph_17199
NPH17199
27050042
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1557906; 1951244
– fundername: National Institute of Food and Agriculture
  funderid: #2020‐67013‐30913; 1016439
– fundername: National Science Foundation
  grantid: 1951244
– fundername: National Science Foundation
  grantid: 1557906
– fundername: National Institute of Food and Agriculture
  grantid: #2020-67013-30913
– fundername: National Institute of Food and Agriculture
  grantid: 1016439
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4089-c6dcbf9eb2332bbf53b04a4cf532185324f7393e59450950c3f8295d33c13e3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:50 EDT 2025
Thu Jul 10 23:55:17 EDT 2025
Fri Jul 25 11:55:31 EDT 2025
Wed Feb 19 02:28:51 EST 2025
Thu Apr 24 22:59:56 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Wed Jan 22 16:30:33 EST 2025
Thu Jul 03 21:34:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords canopies
stomata
transpiration
optimality
photosynthesis
Language English
License 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4089-c6dcbf9eb2332bbf53b04a4cf532185324f7393e59450950c3f8295d33c13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7610-7136
PMID 33454975
PQID 2528063538
PQPubID 2026848
PageCount 15
ParticipantIDs proquest_miscellaneous_2561527078
proquest_miscellaneous_2478775540
proquest_journals_2528063538
pubmed_primary_33454975
crossref_citationtrail_10_1111_nph_17199
crossref_primary_10_1111_nph_17199
wiley_primary_10_1111_nph_17199_NPH17199
jstor_primary_27050042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210601
June 2021
2021-06-00
2021-Jun
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210601
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2006b; 26
2017; 40
1989; 40
1989; 89
1987; 71
2002; 53
1987; 72
2004; 27
1997; 47
1993; 20
1995; 76
1999; 120
1988; 77
2020; 12
1992; 15
2016; 182
1983; 56
2005; 25
1996; 77
2012; 491
1980; 149
1994; 100
2018; 176
2016; 118
1995; 22
2016; 113
2019; 159
1988; 88
1977; 31
1982
1994; 39
2010; 7
2014; 203
2016; 394
2006a; 26
2001; 10
2002; 36
2004; 42
1997; 20
2002; 133
2020; 226
2008
1996
2019; 224
2015; 205
1996; 16
2015; 7
2012; 32
1997; 203
2013; 36
2019; 42
1989; 323
2000; 104
2020
2020; 192
2014; 37
2003; 26
1988; 110
2009; 103
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Cowan IR (e_1_2_6_16_1) 1977; 31
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Evans JR (e_1_2_6_22_1) 1996
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
World Meteorological Organization (e_1_2_6_63_1) 2008
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Cowan IR (e_1_2_6_15_1) 1982
e_1_2_6_8_1
e_1_2_6_4_1
Rohatgi A (e_1_2_6_52_1) 2020
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 25
  start-page: 533
  year: 2005
  end-page: 544
  article-title: Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a crown in relation to light acclimation
  publication-title: Tree Physiology
– volume: 12
  start-page: plaa039
  year: 2020
  article-title: Wide variation in the suboptimal distribution of photosynthetic capacity in relation to light across genotypes of wheat
  publication-title: AoB PLANTS
– volume: 53
  start-page: 2207
  year: 2002
  end-page: 2216
  article-title: Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration
  publication-title: Journal of Experimental Botany
– volume: 133
  start-page: 267
  year: 2002
  end-page: 279
  article-title: Acclimation of photosynthesis in canopies: models and limitations
  publication-title: Oecologia
– volume: 40
  start-page: 816
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– volume: 56
  start-page: 341
  year: 1983
  end-page: 347
  article-title: Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program
  publication-title: Oecologia
– volume: 31
  start-page: 471
  year: 1977
  end-page: 505
  article-title: Stomatal function in relation to leaf metabolism and environment
  publication-title: Symposium of the Society for Experimental Biology
– volume: 192
  start-page: 323
  year: 2020
  end-page: 339
  article-title: Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir
  publication-title: Oecologia
– volume: 39
  start-page: 321
  year: 1994
  end-page: 350
  article-title: Scaling CO ‐photosynthesis relationships from the leaf to the canopy
  publication-title: Photosynthesis Research
– volume: 10
  start-page: 603
  year: 2001
  end-page: 619
  article-title: Modelling canopy CO fluxes: are ‘big‐leaf’ simplifications justified?
  publication-title: Global Ecology and Biogeography
– volume: 120
  start-page: 183
  year: 1999
  end-page: 192
  article-title: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance
  publication-title: Oecologia
– start-page: 589
  year: 1982
  end-page: 630
– volume: 226
  start-page: 1622
  year: 2020
  end-page: 1637
  article-title: Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate
  publication-title: New Phytologist
– volume: 22
  start-page: 593
  year: 1995
  end-page: 601
  article-title: Modelling canopy production. I. Optimal distribution of photosynthetic resources
  publication-title: Australian Journal of Plant Physiology
– volume: 27
  start-page: 1077
  year: 2004
  end-page: 1087
  article-title: Hydraulic responses to height growth in maritime pine trees
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: plv116
  year: 2015
  article-title: An empirical model that uses light attenuation and plant nitrogen status to predict within‐canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy
  publication-title: AoB Plants
– volume: 182
  start-page: 713
  year: 2016
  end-page: 730
  article-title: Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees
  publication-title: Oecologia
– volume: 205
  start-page: 973
  year: 2015
  end-page: 993
  article-title: A worldwide analysis of within‐canopy variations in leaf structural, chemical and physiological traits across plant functional types
  publication-title: New Phytologist
– volume: 394
  start-page: 160
  year: 2016
  end-page: 171
  article-title: Optimal stomatal behaviour under stochastic rainfall
  publication-title: Journal of Theoretical Biology
– volume: 159
  start-page: 75
  year: 2019
  end-page: 86
  article-title: Optimised nitrogen allocation favours improvement in canopy photosynthetic nitrogen‐use efficiency: Evidence from late‐sown winter wheat
  publication-title: Environmental and Experimental Botany
– volume: 118
  start-page: 239
  year: 2016
  end-page: 247
  article-title: A meta‐analysis of leaf nitrogen distribution within plant canopies
  publication-title: Annals of Botany
– volume: 72
  start-page: 520
  year: 1987
  end-page: 526
  article-title: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy
  publication-title: Oecologia
– volume: 103
  start-page: 561
  year: 2009
  end-page: 579
  article-title: Causes of decreased photosynthetic rate and metabolic capacity in water‐deficient leaf cells: a critical evaluation of mechanisms and integration of processes
  publication-title: Annals of Botany
– volume: 36
  start-page: 639
  year: 2002
  end-page: 669
  article-title: The mathematics of linked optimisation for nitrogen and water use in a canopy
  publication-title: Silva Fennica
– volume: 36
  start-page: 625
  year: 2002
  end-page: 637
  article-title: Stomatal control in relation to leaf area and nitrogen content
  publication-title: Silva Fennica
– year: 2008
– volume: 26
  start-page: 585
  year: 2003
  end-page: 594
  article-title: The use of low [CO ] to estimate diffusional and non‐diffusional limitations of photosynthetic capacity of salt‐stressed olive saplings
  publication-title: Plant, Cell & Environment
– volume: 36
  start-page: 1547
  year: 2013
  end-page: 1563
  article-title: What does optimisation theory actually predict about crown profiles of photosynthetic capacity, when models incorporate greater realism?
  publication-title: Plant, Cell & Environment
– volume: 203
  start-page: 355
  year: 2014
  end-page: 358
  article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin
  publication-title: New Phytologist
– volume: 76
  start-page: 466
  year: 1995
  end-page: 474
  article-title: Canopy structure and photon flux partitioning among species in a herbaceous plant community
  publication-title: Ecology
– volume: 104
  start-page: 13
  year: 2000
  end-page: 23
  article-title: Hydraulic constraints on gas exchange
  publication-title: Agricultural and Forest Meteorology
– volume: 323
  start-page: 357
  year: 1989
  end-page: 367
  article-title: Models of integrated photosynthesis of cells and leaves
  publication-title: Philosophical Transactions of the Royal Society of London, Series B
– volume: 176
  start-page: 1233
  year: 2018
  end-page: 1246
  article-title: Suboptimal acclimation of photosynthesis to light in wheat canopies
  publication-title: Plant Physiology
– volume: 77
  start-page: 145
  year: 1988
  end-page: 150
  article-title: Canopy structure and leaf nitrogen distribution in a stand of L. as influenced by stand density
  publication-title: Oecologia
– start-page: 281
  year: 1996
  end-page: 304
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO assimilation in leaves of C species
  publication-title: Planta
– volume: 100
  start-page: 203
  year: 1994
  end-page: 212
  article-title: Photosynthetic capacity and nitrogen partitioning among species in the canopy of a herbaceous plant community
  publication-title: Oecologia
– volume: 26
  start-page: 145
  year: 2006b
  end-page: 157
  article-title: How should leaf area, sapwood area and stomatal conductance vary with tree height to maximise growth?
  publication-title: Tree Physiology
– volume: 32
  start-page: 505
  year: 2012
  end-page: 509
  article-title: Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints
  publication-title: Tree Physiology
– volume: 77
  start-page: 461
  year: 1996
  end-page: 467
  article-title: Optimal control of gas exchange during drought: theoretical analysis
  publication-title: Annals of Botany
– volume: 16
  start-page: 627
  year: 1996
  end-page: 634
  article-title: Optimality and nitrogen allocation in a tree canopy
  publication-title: Tree Physiology
– volume: 203
  start-page: 390
  year: 1997
  end-page: 398
  article-title: Leaf photosynthesis, plant growth and nitrogen allocation in rice under difference irradiances
  publication-title: Planta
– volume: 40
  start-page: 19
  year: 1989
  end-page: 38
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annual Review of Plant Physiology and Molecular Biology
– volume: 103
  start-page: 551
  year: 2009
  end-page: 560
  article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell
  publication-title: Annals of Botany
– volume: 224
  start-page: 21
  year: 2019
  end-page: 36
  article-title: How do stomata respond to water status?
  publication-title: New Phytologist
– volume: 42
  start-page: 2789
  year: 2019
  end-page: 2807
  article-title: A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants
  publication-title: Plant, Cell & Environment
– volume: 491
  start-page: 752
  year: 2012
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 40
  start-page: 1618
  year: 2017
  end-page: 1628
  article-title: Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status
  publication-title: Plant, Cell & Environment
– volume: 89
  start-page: 1060
  year: 1989
  end-page: 1065
  article-title: Mild water stress effects on carbon‐reduction‐cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves
  publication-title: Plant Physiology
– volume: 88
  start-page: 574
  year: 1988
  end-page: 580
  article-title: Do woody plants operate near the point of catastrphic xylem dysfunction caused by dynamic water stress? Answers from a model
  publication-title: Plant Physiology
– volume: 42
  start-page: 851
  year: 2004
  end-page: 854
  article-title: The limits to tree height
  publication-title: Nature
– volume: 20
  start-page: 55
  year: 1993
  end-page: 67
  article-title: Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy characteristics
  publication-title: Australian Journal of Plant Physiology
– volume: 15
  start-page: 25
  year: 1992
  end-page: 35
  article-title: The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions
  publication-title: Plant, Cell & Environment
– volume: 113
  start-page: E7222
  year: 2016
  end-page: E7230
  article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 47
  start-page: 235
  year: 1997
  end-page: 242
  article-title: Hydraulic limits to tree height and tree growth
  publication-title: BioScience
– volume: 71
  start-page: 142
  year: 1987
  end-page: 149
  article-title: Effects of water deficit on photosynthetic capacity
  publication-title: Physiologia Plantarum
– year: 2020
– volume: 37
  start-page: 2707
  year: 2014
  end-page: 2721
  article-title: Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine ( )
  publication-title: Plant, Cell & Environment
– volume: 32
  start-page: 510
  year: 2012
  end-page: 519
  article-title: Co‐optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies
  publication-title: Tree Physiology
– volume: 26
  start-page: 129
  year: 2006a
  end-page: 144
  article-title: DESPOT, a process‐based tree growth model that allocates carbon to maximize carbon gain
  publication-title: Tree Physiology
– volume: 110
  start-page: 503
  year: 1988
  end-page: 509
  article-title: Non‐uniform stomatal closure induced by water stress causes putative non‐stomatal inhibition of photosynthesis
  publication-title: New Phytologist
– volume: 7
  start-page: 1833
  year: 2010
  end-page: 1859
  article-title: Optimisation of photosynthetic carbon gain and within‐canopy gradients of associated foliar traits for Amazon forest trees
  publication-title: Biogeosciences
– volume: 20
  start-page: 537
  year: 1997
  end-page: 557
  article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models
  publication-title: Plant, Cell & Environment
– ident: e_1_2_6_13_1
  doi: 10.1093/aob/mcn125
– ident: e_1_2_6_42_1
  doi: 10.1016/j.jtbi.2016.01.003
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-8137.1988.tb00289.x
– ident: e_1_2_6_33_1
  doi: 10.2307/1941205
– ident: e_1_2_6_64_1
  doi: 10.1016/j.envexpbot.2018.12.013
– ident: e_1_2_6_31_1
  doi: 10.1007/BF00379180
– ident: e_1_2_6_43_1
  doi: 10.1006/anbo.1996.0056
– ident: e_1_2_6_5_1
  doi: 10.1007/s004420050847
– ident: e_1_2_6_17_1
  doi: 10.1111/nph.12798
– volume: 31
  start-page: 471
  year: 1977
  ident: e_1_2_6_16_1
  article-title: Stomatal function in relation to leaf metabolism and environment
  publication-title: Symposium of the Society for Experimental Biology
– ident: e_1_2_6_47_1
  doi: 10.1093/treephys/tps045
– start-page: 281
  volume-title: Photosynthesis and the environment
  year: 1996
  ident: e_1_2_6_22_1
– ident: e_1_2_6_32_1
  doi: 10.1007/BF00316946
– ident: e_1_2_6_26_1
  doi: 10.1007/BF00379710
– ident: e_1_2_6_7_1
  doi: 10.1111/pce.12091
– ident: e_1_2_6_55_1
  doi: 10.1071/PP9950593
– ident: e_1_2_6_39_1
  doi: 10.1093/aob/mcn244
– ident: e_1_2_6_62_1
  doi: 10.1073/pnas.1615144113
– ident: e_1_2_6_8_1
  doi: 10.1111/pce.12343
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-3040.2003.00993.x
– ident: e_1_2_6_11_1
  doi: 10.1093/treephys/26.2.145
– ident: e_1_2_6_44_1
  doi: 10.1007/s004250050205
– ident: e_1_2_6_20_1
  doi: 10.1111/nph.16419
– ident: e_1_2_6_61_1
  doi: 10.1146/annurev.pp.40.060189.000315
– ident: e_1_2_6_40_1
  doi: 10.5194/bg-7-1833-2010
– ident: e_1_2_6_10_1
  doi: 10.1093/treephys/26.2.129
– ident: e_1_2_6_57_1
  doi: 10.1016/S0168-1923(00)00144-1
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-3040.1997.00094.x
– ident: e_1_2_6_56_1
  doi: 10.1104/pp.89.4.1060
– ident: e_1_2_6_49_1
  doi: 10.1093/treephys/tps023
– ident: e_1_2_6_27_1
  doi: 10.1093/jxb/erf065
– ident: e_1_2_6_54_1
  doi: 10.1093/aobpla/plaa039
– ident: e_1_2_6_60_1
  doi: 10.1104/pp.88.3.574
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-3040.2004.01213.x
– volume-title: WebPlotDigitizer
  year: 2020
  ident: e_1_2_6_52_1
– ident: e_1_2_6_24_1
  doi: 10.14214/sf.530
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1466-822x.2001.00268.x
– ident: e_1_2_6_41_1
  doi: 10.1093/aobpla/plv116
– ident: e_1_2_6_9_1
  doi: 10.14214/sf.531
– ident: e_1_2_6_14_1
  doi: 10.1038/nature11688
– ident: e_1_2_6_25_1
  doi: 10.1007/BF00386231
– ident: e_1_2_6_30_1
  doi: 10.1007/BF00378977
– ident: e_1_2_6_59_1
  doi: 10.1104/pp.17.01213
– ident: e_1_2_6_4_1
  doi: 10.1007/s00442-019-04583-x
– ident: e_1_2_6_53_1
  doi: 10.2307/1313077
– ident: e_1_2_6_48_1
  doi: 10.1111/nph.13096
– ident: e_1_2_6_38_1
  doi: 10.1007/s00442-002-1042-1
– ident: e_1_2_6_6_1
  doi: 10.1111/nph.15899
– ident: e_1_2_6_29_1
  doi: 10.1093/aob/mcw099
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1399-3054.1987.tb04631.x
– start-page: 589
  volume-title: Encyclopedia of plant physiology. 12B. Physiological plant ecology
  year: 1982
  ident: e_1_2_6_15_1
– ident: e_1_2_6_23_1
  doi: 10.1098/rstb.1989.0016
– ident: e_1_2_6_46_1
  doi: 10.1111/pce.12970
– volume-title: Guide to Meteorological Instruments and Methods of Observation
  year: 2008
  ident: e_1_2_6_63_1
– ident: e_1_2_6_3_1
  doi: 10.1007/BF00014590
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1365-3040.1992.tb01455.x
– ident: e_1_2_6_21_1
  doi: 10.1071/PP9930055
– ident: e_1_2_6_34_1
  doi: 10.1093/treephys/16.7.627
– ident: e_1_2_6_58_1
  doi: 10.1111/pce.12852
– ident: e_1_2_6_35_1
  doi: 10.1093/treephys/25.5.533
– ident: e_1_2_6_2_1
  doi: 10.1007/s00442-016-3705-3
– ident: e_1_2_6_37_1
  doi: 10.1038/nature02417
– ident: e_1_2_6_45_1
  doi: 10.1111/pce.13607
SSID ssj0009562
Score 2.4256988
Snippet • Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves,...
Summary Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit...
Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂ A /∂ E ) is smaller, in shaded leaves than sunlit leaves,...
Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves,...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2246
SubjectTerms Canopies
Canopy
Capacity
Carbon
Conductance
evaporative demand
Gas exchange
hydraulic conductivity
income
Invariance
Irradiance
leaf water potential
Leaves
light intensity
Modules
Nitrogen
optimality
Optimization
Partitioning
Photosynthesis
Resistance
Revenue
Spatial variations
stomata
transpiration
Water potential
Title Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity
URI https://www.jstor.org/stable/27050042
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17199
https://www.ncbi.nlm.nih.gov/pubmed/33454975
https://www.proquest.com/docview/2528063538
https://www.proquest.com/docview/2478775540
https://www.proquest.com/docview/2561527078
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqqgcuQIHCQkEGceCSVdaPJFZPgKhWSBTEQ9oDUmQ7sVZqsaMme9j-hf7pzjgPtaggxC2SJ844mbG_mYw_E_I6x2VBWJcUthaJEDxPVK3SRBnHnNTW6Ug8_-kkW_4QH1dytUOOxr0wPT_ElHBDz4jzNTq4Nu01J_fNer7IFwo372GtFgKir-wa4W7GRgbmTGSrgVUIq3imO2-sRX054m1A8yZujQvP8T3yc1S5rzc5nW86M7cXv7E5_ueY7pO7AyClb3sL2ic7tX9A9t4FAI3bh-TyM0wpv6Dd6nMTPG3Q0oYcLl3XZ01LY0ht4XEUsCTVDZa0-45WWPARmT7pUAtGw9CX9hUNBtPBdQUd-9Bs6XB2eEuDo806dKHdeugPlAIJiOshWHhEvh1_-P5-mQznNyRWpIVKbFZZ4xTE7pwzY5zkJhUaDENyhjCBCYd8fLVUAmCLTC13BVOy4txibvaA7Prg6yeEFrziSNujFhUXMMmYSjmpCqkzvRCOFzPyZvyOpR2ozfGEjbNyDHHgxZbxxc7Iq0m06fk8bhM6iMYwSbA8lTi9zcjhaB3l4OttyST-neYS9Xg5NYOX4q8X7euwARnkQMoBuqV_kQEoKxmyL83I497yJgU4FxDI5xJGGu3nz7qXJ1-W8eLpv4s-I3cYlurE5NIh2e3ON_VzwFqdeRGd6grnxSYE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYIL77YLBQziwCWrrB9JLHEBRLVAu6C2SHupotiJtRKtHXWzh-Uv8KeZcR5qUakQt0iZOGNnxv5mPPlMyOsUlwVhbJSZSkRC8DRSlYojpS2zsjC2CMTzB7Nk-l18nsv5Bnnb_wvT8kMMCTf0jDBfo4NjQvqCl7t6MZ6kE6VukJt4oncIqA7ZBcrdhPUczIlI5h2vENbxDI9eWo3agsSroOZl5BqWnr175KRXuq04-TFeNXpsfv7B5_i_vbpP7naYlL5rjegB2ajcQ3LrvQfcuH5Efn2FWeUM7pviXHtHazS2Lo1LF9VpvaQhqjbwPgpwkhY1VrW7hpZY8xHIPmlXDkZ911bhSuo1ZoSrEhp2vl7T7vjwJfWW1gvf-OXaQXugFEhAaA_xwmNytPfx-MM06o5wiIyIMxWZpDTaKgjfOWdaW8l1LAqwDckZIgUmLFLyVVIJQC4yNtxmTMmSc4Pp2S2y6byrdgjNeMmRuUdNSi5gntGlslJlskiKibA8G5E3_YfMTcdujodsnOZ9lAMDm4eBHZFXg2jdUnpcJbQVrGGQYGkscYYbkd3ePPLO3Zc5k7hBzSXq8XK4DY6Kuy-Fq_wKZJAGKQX0Fl8jA2hWMiRgGpHt1vQGBTgXEMunEnoaDOjvuuezb9Nw8eTfRV-Q29Pjg_18_9Psy1Nyh2HlTsg17ZLN5nxVPQPo1ejnwcN-AydTKh8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYgL78JCCwZx4JJV1o8kFifaslpeS8VD2kOlKHZirUSxo272sP0L_GlmnIdaVBDiFskTZxzP2N9MJp8JeZHitiCMjTJTiUgInkaqUnGktGVWFsYWgXj-4zyZfRPvFnKxRV71_8K0_BBDwg09I6zX6OB1ac85uauX40k6UeoKuSqSOEOTPvzMzjHuJqynYE5EsuhohbCMZ7j1wmbU1iNehjQvAtew80xvkeNe57bg5Pt43eixOfuNzvE_B3Wb3OwQKX3dmtAdslW5u-TavgfUuLlHfn6CNeUHtJviVHtHazS1LolLl9VJvaIhpjbwOApgkhY11rS7hpZY8RGoPmlXDEZ911fhSuo15oOrEjp2vt7Q7vDwFfWW1kvf-NXGQX-gFEhAYA_Rwn3yZfrm68Es6g5wiIyACYlMUhptFQTvnDOtreQ6FgVYhuQMcQITFgn5KqkE4BYZG24zpmTJucHk7A7Zdt5VDwnNeMmRt0dNSi5gldGlslJlskiKibA8G5GX_TzmpuM2xyM2TvI-xoEXm4cXOyLPB9G6JfS4TGgnGMMgwdJY4vo2Iru9deSds69yJvHzNJeox7OhGdwUv70UrvJrkEESpBSwW_wXGcCykiH90og8aC1vUIBzAZF8KmGkwX7-rHs-P5qFi0f_LvqUXD86nOYf3s7fPyY3GJbthETTLtluTtfVHuCuRj8J_vULrT4o1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+carbon+partitioning+helps+reconcile+the+apparent+divergence+between+optimal+and+observed+canopy+profiles+of+photosynthetic+capacity&rft.jtitle=The+New+phytologist&rft.au=Buckley%2C+Thomas+N&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=230&rft.issue=6&rft.spage=2246&rft.epage=2260&rft_id=info:doi/10.1111%2Fnph.17199&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon