Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity
• Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biop...
Saved in:
Published in | The New phytologist Vol. 230; no. 6; pp. 2246 - 2260 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.06.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential.
• In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum.
• The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal.
• The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. |
---|---|
AbstractList | Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan-Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon-water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan-Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon-water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. • Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. • In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. • The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation-driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. • The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂ A /∂ E ) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂ A /∂ E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂ A /∂ N ) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂ A /∂ E ) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. Summary Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential. In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum. The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂E smaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal. The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations. |
Author | Buckley, Thomas N. |
Author_xml | – sequence: 1 givenname: Thomas N. surname: Buckley fullname: Buckley, Thomas N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33454975$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEYRS0URDaBggcAWaIJxST-nZ8yighBiggSFHSWx_NN1qtZ29jeRPMMvDRedpciAuHCdnHukf3dE3TkvAOEXlNyTsu6cGF5Thvadc_Qgoq6q1rKmyO0IIS1VS3q78foJKUVIaSTNXuBjjkXUnSNXKCfdyHbtZ6w0bH3Dgcds83WO-vu8RKmkHAE452xE-C8BKxDQcBlPNgHiPfgDOAe8iOAw37v0m7Avk8QH2AoYufDjEP0Y3Ek7Ecclj77NLviy9YUImhj8_wSPR_1lODV_jxFX68_fLu6qW7vPn66urytjCBtV5l6MP3YQc84Z30_St4ToYUpF0bbsomx4R0H2QlZPkwMH1vWyYFzQznwU3S2s5YX_dhAymptk4Fp0g78JikmaypZQ5r2_6ho2qaRUpCCvnuCrvwmuvKNImQtqbnkW-HbPbXp1zCoEMu84qwOfRTgYgeY6FOKMKoyGL3tI0dtJ0WJ2jauSuPqd-Ml8f5J4iD9G7u3P5Ym5n-D6vOXm0PizS6xStnHP4kyHkmIYPwXyADF6Q |
CitedBy_id | crossref_primary_10_3390_plants10102121 crossref_primary_10_1111_nph_19431 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_1111_nph_18901 crossref_primary_10_1111_nph_18539 crossref_primary_10_1111_pce_14704 crossref_primary_10_3390_su14095405 crossref_primary_10_1016_j_crope_2024_04_001 crossref_primary_10_1111_pce_14427 crossref_primary_10_1007_s11120_023_01043_9 crossref_primary_10_1111_pce_14448 |
Cites_doi | 10.1093/aob/mcn125 10.1016/j.jtbi.2016.01.003 10.1111/j.1469-8137.1988.tb00289.x 10.2307/1941205 10.1016/j.envexpbot.2018.12.013 10.1007/BF00379180 10.1006/anbo.1996.0056 10.1007/s004420050847 10.1111/nph.12798 10.1093/treephys/tps045 10.1007/BF00316946 10.1007/BF00379710 10.1111/pce.12091 10.1071/PP9950593 10.1093/aob/mcn244 10.1073/pnas.1615144113 10.1111/pce.12343 10.1046/j.1365-3040.2003.00993.x 10.1093/treephys/26.2.145 10.1007/s004250050205 10.1111/nph.16419 10.1146/annurev.pp.40.060189.000315 10.5194/bg-7-1833-2010 10.1093/treephys/26.2.129 10.1016/S0168-1923(00)00144-1 10.1111/j.1365-3040.1997.00094.x 10.1104/pp.89.4.1060 10.1093/treephys/tps023 10.1093/jxb/erf065 10.1093/aobpla/plaa039 10.1104/pp.88.3.574 10.1111/j.1365-3040.2004.01213.x 10.14214/sf.530 10.1046/j.1466-822x.2001.00268.x 10.1093/aobpla/plv116 10.14214/sf.531 10.1038/nature11688 10.1007/BF00386231 10.1007/BF00378977 10.1104/pp.17.01213 10.1007/s00442-019-04583-x 10.2307/1313077 10.1111/nph.13096 10.1007/s00442-002-1042-1 10.1111/nph.15899 10.1093/aob/mcw099 10.1111/j.1399-3054.1987.tb04631.x 10.1098/rstb.1989.0016 10.1111/pce.12970 10.1007/BF00014590 10.1111/j.1365-3040.1992.tb01455.x 10.1071/PP9930055 10.1093/treephys/16.7.627 10.1111/pce.12852 10.1093/treephys/25.5.533 10.1007/s00442-016-3705-3 10.1038/nature02417 10.1111/pce.13607 |
ContentType | Journal Article |
Copyright | 2021 The Author © 2021 New Phytologist Foundation 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust |
Copyright_xml | – notice: 2021 The Author © 2021 New Phytologist Foundation – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17199 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2260 |
ExternalDocumentID | 33454975 10_1111_nph_17199 NPH17199 27050042 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1557906; 1951244 – fundername: National Institute of Food and Agriculture funderid: #2020‐67013‐30913; 1016439 – fundername: National Science Foundation grantid: 1951244 – fundername: National Science Foundation grantid: 1557906 – fundername: National Institute of Food and Agriculture grantid: #2020-67013-30913 – fundername: National Institute of Food and Agriculture grantid: 1016439 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4089-c6dcbf9eb2332bbf53b04a4cf532185324f7393e59450950c3f8295d33c13e3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:31:50 EDT 2025 Thu Jul 10 23:55:17 EDT 2025 Fri Jul 25 11:55:31 EDT 2025 Wed Feb 19 02:28:51 EST 2025 Thu Apr 24 22:59:56 EDT 2025 Tue Jul 01 02:28:37 EDT 2025 Wed Jan 22 16:30:33 EST 2025 Thu Jul 03 21:34:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | canopies stomata transpiration optimality photosynthesis |
Language | English |
License | 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4089-c6dcbf9eb2332bbf53b04a4cf532185324f7393e59450950c3f8295d33c13e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7610-7136 |
PMID | 33454975 |
PQID | 2528063538 |
PQPubID | 2026848 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2561527078 proquest_miscellaneous_2478775540 proquest_journals_2528063538 pubmed_primary_33454975 crossref_citationtrail_10_1111_nph_17199 crossref_primary_10_1111_nph_17199 wiley_primary_10_1111_nph_17199_NPH17199 jstor_primary_27050042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210601 June 2021 2021-06-00 2021-Jun |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210601 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2006b; 26 2017; 40 1989; 40 1989; 89 1987; 71 2002; 53 1987; 72 2004; 27 1997; 47 1993; 20 1995; 76 1999; 120 1988; 77 2020; 12 1992; 15 2016; 182 1983; 56 2005; 25 1996; 77 2012; 491 1980; 149 1994; 100 2018; 176 2016; 118 1995; 22 2016; 113 2019; 159 1988; 88 1977; 31 1982 1994; 39 2010; 7 2014; 203 2016; 394 2006a; 26 2001; 10 2002; 36 2004; 42 1997; 20 2002; 133 2020; 226 2008 1996 2019; 224 2015; 205 1996; 16 2015; 7 2012; 32 1997; 203 2013; 36 2019; 42 1989; 323 2000; 104 2020 2020; 192 2014; 37 2003; 26 1988; 110 2009; 103 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Cowan IR (e_1_2_6_16_1) 1977; 31 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Evans JR (e_1_2_6_22_1) 1996 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 World Meteorological Organization (e_1_2_6_63_1) 2008 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Cowan IR (e_1_2_6_15_1) 1982 e_1_2_6_8_1 e_1_2_6_4_1 Rohatgi A (e_1_2_6_52_1) 2020 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 25 start-page: 533 year: 2005 end-page: 544 article-title: Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a crown in relation to light acclimation publication-title: Tree Physiology – volume: 12 start-page: plaa039 year: 2020 article-title: Wide variation in the suboptimal distribution of photosynthetic capacity in relation to light across genotypes of wheat publication-title: AoB PLANTS – volume: 53 start-page: 2207 year: 2002 end-page: 2216 article-title: Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration publication-title: Journal of Experimental Botany – volume: 133 start-page: 267 year: 2002 end-page: 279 article-title: Acclimation of photosynthesis in canopies: models and limitations publication-title: Oecologia – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 56 start-page: 341 year: 1983 end-page: 347 article-title: Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program publication-title: Oecologia – volume: 31 start-page: 471 year: 1977 end-page: 505 article-title: Stomatal function in relation to leaf metabolism and environment publication-title: Symposium of the Society for Experimental Biology – volume: 192 start-page: 323 year: 2020 end-page: 339 article-title: Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir publication-title: Oecologia – volume: 39 start-page: 321 year: 1994 end-page: 350 article-title: Scaling CO ‐photosynthesis relationships from the leaf to the canopy publication-title: Photosynthesis Research – volume: 10 start-page: 603 year: 2001 end-page: 619 article-title: Modelling canopy CO fluxes: are ‘big‐leaf’ simplifications justified? publication-title: Global Ecology and Biogeography – volume: 120 start-page: 183 year: 1999 end-page: 192 article-title: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance publication-title: Oecologia – start-page: 589 year: 1982 end-page: 630 – volume: 226 start-page: 1622 year: 2020 end-page: 1637 article-title: Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate publication-title: New Phytologist – volume: 22 start-page: 593 year: 1995 end-page: 601 article-title: Modelling canopy production. I. Optimal distribution of photosynthetic resources publication-title: Australian Journal of Plant Physiology – volume: 27 start-page: 1077 year: 2004 end-page: 1087 article-title: Hydraulic responses to height growth in maritime pine trees publication-title: Plant, Cell & Environment – volume: 7 start-page: plv116 year: 2015 article-title: An empirical model that uses light attenuation and plant nitrogen status to predict within‐canopy nitrogen distribution and upscale photosynthesis from leaf to whole canopy publication-title: AoB Plants – volume: 182 start-page: 713 year: 2016 end-page: 730 article-title: Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees publication-title: Oecologia – volume: 205 start-page: 973 year: 2015 end-page: 993 article-title: A worldwide analysis of within‐canopy variations in leaf structural, chemical and physiological traits across plant functional types publication-title: New Phytologist – volume: 394 start-page: 160 year: 2016 end-page: 171 article-title: Optimal stomatal behaviour under stochastic rainfall publication-title: Journal of Theoretical Biology – volume: 159 start-page: 75 year: 2019 end-page: 86 article-title: Optimised nitrogen allocation favours improvement in canopy photosynthetic nitrogen‐use efficiency: Evidence from late‐sown winter wheat publication-title: Environmental and Experimental Botany – volume: 118 start-page: 239 year: 2016 end-page: 247 article-title: A meta‐analysis of leaf nitrogen distribution within plant canopies publication-title: Annals of Botany – volume: 72 start-page: 520 year: 1987 end-page: 526 article-title: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy publication-title: Oecologia – volume: 103 start-page: 561 year: 2009 end-page: 579 article-title: Causes of decreased photosynthetic rate and metabolic capacity in water‐deficient leaf cells: a critical evaluation of mechanisms and integration of processes publication-title: Annals of Botany – volume: 36 start-page: 639 year: 2002 end-page: 669 article-title: The mathematics of linked optimisation for nitrogen and water use in a canopy publication-title: Silva Fennica – volume: 36 start-page: 625 year: 2002 end-page: 637 article-title: Stomatal control in relation to leaf area and nitrogen content publication-title: Silva Fennica – year: 2008 – volume: 26 start-page: 585 year: 2003 end-page: 594 article-title: The use of low [CO ] to estimate diffusional and non‐diffusional limitations of photosynthetic capacity of salt‐stressed olive saplings publication-title: Plant, Cell & Environment – volume: 36 start-page: 1547 year: 2013 end-page: 1563 article-title: What does optimisation theory actually predict about crown profiles of photosynthetic capacity, when models incorporate greater realism? publication-title: Plant, Cell & Environment – volume: 203 start-page: 355 year: 2014 end-page: 358 article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin publication-title: New Phytologist – volume: 76 start-page: 466 year: 1995 end-page: 474 article-title: Canopy structure and photon flux partitioning among species in a herbaceous plant community publication-title: Ecology – volume: 104 start-page: 13 year: 2000 end-page: 23 article-title: Hydraulic constraints on gas exchange publication-title: Agricultural and Forest Meteorology – volume: 323 start-page: 357 year: 1989 end-page: 367 article-title: Models of integrated photosynthesis of cells and leaves publication-title: Philosophical Transactions of the Royal Society of London, Series B – volume: 176 start-page: 1233 year: 2018 end-page: 1246 article-title: Suboptimal acclimation of photosynthesis to light in wheat canopies publication-title: Plant Physiology – volume: 77 start-page: 145 year: 1988 end-page: 150 article-title: Canopy structure and leaf nitrogen distribution in a stand of L. as influenced by stand density publication-title: Oecologia – start-page: 281 year: 1996 end-page: 304 – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO assimilation in leaves of C species publication-title: Planta – volume: 100 start-page: 203 year: 1994 end-page: 212 article-title: Photosynthetic capacity and nitrogen partitioning among species in the canopy of a herbaceous plant community publication-title: Oecologia – volume: 26 start-page: 145 year: 2006b end-page: 157 article-title: How should leaf area, sapwood area and stomatal conductance vary with tree height to maximise growth? publication-title: Tree Physiology – volume: 32 start-page: 505 year: 2012 end-page: 509 article-title: Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints publication-title: Tree Physiology – volume: 77 start-page: 461 year: 1996 end-page: 467 article-title: Optimal control of gas exchange during drought: theoretical analysis publication-title: Annals of Botany – volume: 16 start-page: 627 year: 1996 end-page: 634 article-title: Optimality and nitrogen allocation in a tree canopy publication-title: Tree Physiology – volume: 203 start-page: 390 year: 1997 end-page: 398 article-title: Leaf photosynthesis, plant growth and nitrogen allocation in rice under difference irradiances publication-title: Planta – volume: 40 start-page: 19 year: 1989 end-page: 38 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annual Review of Plant Physiology and Molecular Biology – volume: 103 start-page: 551 year: 2009 end-page: 560 article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell publication-title: Annals of Botany – volume: 224 start-page: 21 year: 2019 end-page: 36 article-title: How do stomata respond to water status? publication-title: New Phytologist – volume: 42 start-page: 2789 year: 2019 end-page: 2807 article-title: A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants publication-title: Plant, Cell & Environment – volume: 491 start-page: 752 year: 2012 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 40 start-page: 1618 year: 2017 end-page: 1628 article-title: Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status publication-title: Plant, Cell & Environment – volume: 89 start-page: 1060 year: 1989 end-page: 1065 article-title: Mild water stress effects on carbon‐reduction‐cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves publication-title: Plant Physiology – volume: 88 start-page: 574 year: 1988 end-page: 580 article-title: Do woody plants operate near the point of catastrphic xylem dysfunction caused by dynamic water stress? Answers from a model publication-title: Plant Physiology – volume: 42 start-page: 851 year: 2004 end-page: 854 article-title: The limits to tree height publication-title: Nature – volume: 20 start-page: 55 year: 1993 end-page: 67 article-title: Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy characteristics publication-title: Australian Journal of Plant Physiology – volume: 15 start-page: 25 year: 1992 end-page: 35 article-title: The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions publication-title: Plant, Cell & Environment – volume: 113 start-page: E7222 year: 2016 end-page: E7230 article-title: Optimal stomatal behavior with competition for water and risk of hydraulic impairment publication-title: Proceedings of the National Academy of Sciences, USA – volume: 47 start-page: 235 year: 1997 end-page: 242 article-title: Hydraulic limits to tree height and tree growth publication-title: BioScience – volume: 71 start-page: 142 year: 1987 end-page: 149 article-title: Effects of water deficit on photosynthetic capacity publication-title: Physiologia Plantarum – year: 2020 – volume: 37 start-page: 2707 year: 2014 end-page: 2721 article-title: Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine ( ) publication-title: Plant, Cell & Environment – volume: 32 start-page: 510 year: 2012 end-page: 519 article-title: Co‐optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies publication-title: Tree Physiology – volume: 26 start-page: 129 year: 2006a end-page: 144 article-title: DESPOT, a process‐based tree growth model that allocates carbon to maximize carbon gain publication-title: Tree Physiology – volume: 110 start-page: 503 year: 1988 end-page: 509 article-title: Non‐uniform stomatal closure induced by water stress causes putative non‐stomatal inhibition of photosynthesis publication-title: New Phytologist – volume: 7 start-page: 1833 year: 2010 end-page: 1859 article-title: Optimisation of photosynthetic carbon gain and within‐canopy gradients of associated foliar traits for Amazon forest trees publication-title: Biogeosciences – volume: 20 start-page: 537 year: 1997 end-page: 557 article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models publication-title: Plant, Cell & Environment – ident: e_1_2_6_13_1 doi: 10.1093/aob/mcn125 – ident: e_1_2_6_42_1 doi: 10.1016/j.jtbi.2016.01.003 – ident: e_1_2_6_19_1 doi: 10.1111/j.1469-8137.1988.tb00289.x – ident: e_1_2_6_33_1 doi: 10.2307/1941205 – ident: e_1_2_6_64_1 doi: 10.1016/j.envexpbot.2018.12.013 – ident: e_1_2_6_31_1 doi: 10.1007/BF00379180 – ident: e_1_2_6_43_1 doi: 10.1006/anbo.1996.0056 – ident: e_1_2_6_5_1 doi: 10.1007/s004420050847 – ident: e_1_2_6_17_1 doi: 10.1111/nph.12798 – volume: 31 start-page: 471 year: 1977 ident: e_1_2_6_16_1 article-title: Stomatal function in relation to leaf metabolism and environment publication-title: Symposium of the Society for Experimental Biology – ident: e_1_2_6_47_1 doi: 10.1093/treephys/tps045 – start-page: 281 volume-title: Photosynthesis and the environment year: 1996 ident: e_1_2_6_22_1 – ident: e_1_2_6_32_1 doi: 10.1007/BF00316946 – ident: e_1_2_6_26_1 doi: 10.1007/BF00379710 – ident: e_1_2_6_7_1 doi: 10.1111/pce.12091 – ident: e_1_2_6_55_1 doi: 10.1071/PP9950593 – ident: e_1_2_6_39_1 doi: 10.1093/aob/mcn244 – ident: e_1_2_6_62_1 doi: 10.1073/pnas.1615144113 – ident: e_1_2_6_8_1 doi: 10.1111/pce.12343 – ident: e_1_2_6_12_1 doi: 10.1046/j.1365-3040.2003.00993.x – ident: e_1_2_6_11_1 doi: 10.1093/treephys/26.2.145 – ident: e_1_2_6_44_1 doi: 10.1007/s004250050205 – ident: e_1_2_6_20_1 doi: 10.1111/nph.16419 – ident: e_1_2_6_61_1 doi: 10.1146/annurev.pp.40.060189.000315 – ident: e_1_2_6_40_1 doi: 10.5194/bg-7-1833-2010 – ident: e_1_2_6_10_1 doi: 10.1093/treephys/26.2.129 – ident: e_1_2_6_57_1 doi: 10.1016/S0168-1923(00)00144-1 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-3040.1997.00094.x – ident: e_1_2_6_56_1 doi: 10.1104/pp.89.4.1060 – ident: e_1_2_6_49_1 doi: 10.1093/treephys/tps023 – ident: e_1_2_6_27_1 doi: 10.1093/jxb/erf065 – ident: e_1_2_6_54_1 doi: 10.1093/aobpla/plaa039 – ident: e_1_2_6_60_1 doi: 10.1104/pp.88.3.574 – ident: e_1_2_6_18_1 doi: 10.1111/j.1365-3040.2004.01213.x – volume-title: WebPlotDigitizer year: 2020 ident: e_1_2_6_52_1 – ident: e_1_2_6_24_1 doi: 10.14214/sf.530 – ident: e_1_2_6_28_1 doi: 10.1046/j.1466-822x.2001.00268.x – ident: e_1_2_6_41_1 doi: 10.1093/aobpla/plv116 – ident: e_1_2_6_9_1 doi: 10.14214/sf.531 – ident: e_1_2_6_14_1 doi: 10.1038/nature11688 – ident: e_1_2_6_25_1 doi: 10.1007/BF00386231 – ident: e_1_2_6_30_1 doi: 10.1007/BF00378977 – ident: e_1_2_6_59_1 doi: 10.1104/pp.17.01213 – ident: e_1_2_6_4_1 doi: 10.1007/s00442-019-04583-x – ident: e_1_2_6_53_1 doi: 10.2307/1313077 – ident: e_1_2_6_48_1 doi: 10.1111/nph.13096 – ident: e_1_2_6_38_1 doi: 10.1007/s00442-002-1042-1 – ident: e_1_2_6_6_1 doi: 10.1111/nph.15899 – ident: e_1_2_6_29_1 doi: 10.1093/aob/mcw099 – ident: e_1_2_6_36_1 doi: 10.1111/j.1399-3054.1987.tb04631.x – start-page: 589 volume-title: Encyclopedia of plant physiology. 12B. Physiological plant ecology year: 1982 ident: e_1_2_6_15_1 – ident: e_1_2_6_23_1 doi: 10.1098/rstb.1989.0016 – ident: e_1_2_6_46_1 doi: 10.1111/pce.12970 – volume-title: Guide to Meteorological Instruments and Methods of Observation year: 2008 ident: e_1_2_6_63_1 – ident: e_1_2_6_3_1 doi: 10.1007/BF00014590 – ident: e_1_2_6_51_1 doi: 10.1111/j.1365-3040.1992.tb01455.x – ident: e_1_2_6_21_1 doi: 10.1071/PP9930055 – ident: e_1_2_6_34_1 doi: 10.1093/treephys/16.7.627 – ident: e_1_2_6_58_1 doi: 10.1111/pce.12852 – ident: e_1_2_6_35_1 doi: 10.1093/treephys/25.5.533 – ident: e_1_2_6_2_1 doi: 10.1007/s00442-016-3705-3 – ident: e_1_2_6_37_1 doi: 10.1038/nature02417 – ident: e_1_2_6_45_1 doi: 10.1111/pce.13607 |
SSID | ssj0009562 |
Score | 2.4256988 |
Snippet | • Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves,... Summary Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit... Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂ A /∂ E ) is smaller, in shaded leaves than sunlit leaves,... Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves,... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2246 |
SubjectTerms | Canopies Canopy Capacity Carbon Conductance evaporative demand Gas exchange hydraulic conductivity income Invariance Irradiance leaf water potential Leaves light intensity Modules Nitrogen optimality Optimization Partitioning Photosynthesis Resistance Revenue Spatial variations stomata transpiration Water potential |
Title | Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity |
URI | https://www.jstor.org/stable/27050042 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17199 https://www.ncbi.nlm.nih.gov/pubmed/33454975 https://www.proquest.com/docview/2528063538 https://www.proquest.com/docview/2478775540 https://www.proquest.com/docview/2561527078 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqqgcuQIHCQkEGceCSVdaPJFZPgKhWSBTEQ9oDUmQ7sVZqsaMme9j-hf7pzjgPtaggxC2SJ844mbG_mYw_E_I6x2VBWJcUthaJEDxPVK3SRBnHnNTW6Ug8_-kkW_4QH1dytUOOxr0wPT_ElHBDz4jzNTq4Nu01J_fNer7IFwo372GtFgKir-wa4W7GRgbmTGSrgVUIq3imO2-sRX054m1A8yZujQvP8T3yc1S5rzc5nW86M7cXv7E5_ueY7pO7AyClb3sL2ic7tX9A9t4FAI3bh-TyM0wpv6Dd6nMTPG3Q0oYcLl3XZ01LY0ht4XEUsCTVDZa0-45WWPARmT7pUAtGw9CX9hUNBtPBdQUd-9Bs6XB2eEuDo806dKHdeugPlAIJiOshWHhEvh1_-P5-mQznNyRWpIVKbFZZ4xTE7pwzY5zkJhUaDENyhjCBCYd8fLVUAmCLTC13BVOy4txibvaA7Prg6yeEFrziSNujFhUXMMmYSjmpCqkzvRCOFzPyZvyOpR2ozfGEjbNyDHHgxZbxxc7Iq0m06fk8bhM6iMYwSbA8lTi9zcjhaB3l4OttyST-neYS9Xg5NYOX4q8X7euwARnkQMoBuqV_kQEoKxmyL83I497yJgU4FxDI5xJGGu3nz7qXJ1-W8eLpv4s-I3cYlurE5NIh2e3ON_VzwFqdeRGd6grnxSYE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYIL77YLBQziwCWrrB9JLHEBRLVAu6C2SHupotiJtRKtHXWzh-Uv8KeZcR5qUakQt0iZOGNnxv5mPPlMyOsUlwVhbJSZSkRC8DRSlYojpS2zsjC2CMTzB7Nk-l18nsv5Bnnb_wvT8kMMCTf0jDBfo4NjQvqCl7t6MZ6kE6VukJt4oncIqA7ZBcrdhPUczIlI5h2vENbxDI9eWo3agsSroOZl5BqWnr175KRXuq04-TFeNXpsfv7B5_i_vbpP7naYlL5rjegB2ajcQ3LrvQfcuH5Efn2FWeUM7pviXHtHazS2Lo1LF9VpvaQhqjbwPgpwkhY1VrW7hpZY8xHIPmlXDkZ911bhSuo1ZoSrEhp2vl7T7vjwJfWW1gvf-OXaQXugFEhAaA_xwmNytPfx-MM06o5wiIyIMxWZpDTaKgjfOWdaW8l1LAqwDckZIgUmLFLyVVIJQC4yNtxmTMmSc4Pp2S2y6byrdgjNeMmRuUdNSi5gntGlslJlskiKibA8G5E3_YfMTcdujodsnOZ9lAMDm4eBHZFXg2jdUnpcJbQVrGGQYGkscYYbkd3ePPLO3Zc5k7hBzSXq8XK4DY6Kuy-Fq_wKZJAGKQX0Fl8jA2hWMiRgGpHt1vQGBTgXEMunEnoaDOjvuuezb9Nw8eTfRV-Q29Pjg_18_9Psy1Nyh2HlTsg17ZLN5nxVPQPo1ejnwcN-AydTKh8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYgL78JCCwZx4JJV1o8kFifaslpeS8VD2kOlKHZirUSxo272sP0L_GlmnIdaVBDiFskTZxzP2N9MJp8JeZHitiCMjTJTiUgInkaqUnGktGVWFsYWgXj-4zyZfRPvFnKxRV71_8K0_BBDwg09I6zX6OB1ac85uauX40k6UeoKuSqSOEOTPvzMzjHuJqynYE5EsuhohbCMZ7j1wmbU1iNehjQvAtew80xvkeNe57bg5Pt43eixOfuNzvE_B3Wb3OwQKX3dmtAdslW5u-TavgfUuLlHfn6CNeUHtJviVHtHazS1LolLl9VJvaIhpjbwOApgkhY11rS7hpZY8RGoPmlXDEZ911fhSuo15oOrEjp2vt7Q7vDwFfWW1kvf-NXGQX-gFEhAYA_Rwn3yZfrm68Es6g5wiIyACYlMUhptFQTvnDOtreQ6FgVYhuQMcQITFgn5KqkE4BYZG24zpmTJucHk7A7Zdt5VDwnNeMmRt0dNSi5gldGlslJlskiKibA8G5GX_TzmpuM2xyM2TvI-xoEXm4cXOyLPB9G6JfS4TGgnGMMgwdJY4vo2Iru9deSds69yJvHzNJeox7OhGdwUv70UrvJrkEESpBSwW_wXGcCykiH90og8aC1vUIBzAZF8KmGkwX7-rHs-P5qFi0f_LvqUXD86nOYf3s7fPyY3GJbthETTLtluTtfVHuCuRj8J_vULrT4o1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+carbon+partitioning+helps+reconcile+the+apparent+divergence+between+optimal+and+observed+canopy+profiles+of+photosynthetic+capacity&rft.jtitle=The+New+phytologist&rft.au=Buckley%2C+Thomas+N&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=230&rft.issue=6&rft.spage=2246&rft.epage=2260&rft_id=info:doi/10.1111%2Fnph.17199&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |