Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review
Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the r...
Saved in:
Published in | Chemical record Vol. 21; no. 4; pp. 663 - 714 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.
Flow fields are the important component of Proton Exchange Membrane Fuel Cell (PEMFC) Many design modifications have been carried out on the conventional flow field designs and Noval flow field designs have been developed with insert technology to improve the performance of PEMFC. The various flow field designs and their design and operating parameters along with the power output are highlighted. The clamping pressure is also affecting the performance of PEMFC. |
---|---|
AbstractList | Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated. Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated. Flow fields are the important component of Proton Exchange Membrane Fuel Cell (PEMFC) Many design modifications have been carried out on the conventional flow field designs and Noval flow field designs have been developed with insert technology to improve the performance of PEMFC. The various flow field designs and their design and operating parameters along with the power output are highlighted. The clamping pressure is also affecting the performance of PEMFC. Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated. |
Author | Sundaram, Senthilarasu Palaniswamy, Karthikeyan Velayutham, Rajavel Chul, Kim Byung Marappan, Muthukumar Velumani, Thiagarajan Shivakumar, Praveenkumar |
Author_xml | – sequence: 1 givenname: Muthukumar surname: Marappan fullname: Marappan, Muthukumar email: muthupsgtech@gmail.com organization: Nandha Engineering College (Autonomous Institution, Affiliated to Anna University) – sequence: 2 givenname: Karthikeyan surname: Palaniswamy fullname: Palaniswamy, Karthikeyan email: apk.auto@psgtech.ac.in organization: PSG College of Technology – sequence: 3 givenname: Thiagarajan surname: Velumani fullname: Velumani, Thiagarajan email: vthiagu90@gmail.com organization: PSG College of Technology – sequence: 4 givenname: Kim Byung surname: Chul fullname: Chul, Kim Byung email: bckim@scnu.ac.kr organization: Sunchon National University – sequence: 5 givenname: Rajavel surname: Velayutham fullname: Velayutham, Rajavel email: mek.rajavel68@gmail.com organization: Sunchon National University – sequence: 6 givenname: Praveenkumar surname: Shivakumar fullname: Shivakumar, Praveenkumar email: sivapraveen09@gmail.com organization: S.A. Engineering College – sequence: 7 givenname: Senthilarasu surname: Sundaram fullname: Sundaram, Senthilarasu email: S.Sundaram@exeter.ac.uk organization: University of Exeter Penryn Campus, Penryn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33543591$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctO3DAUhq0KVC5lyRZZ6oZNwJc4dpbVwLSVqEBA15aTnAxGiU1th4Fd34E35EnqdrhISGVx5LP4_qNP_rfQmvMOENql5IASwg5TGw4YYYQQytUHtEkFUwWparr2b5eFqut6A23FeJ0RWkr5EW1wLkouarqJFmcQeh9G41rAF2nqLETse3wWfPIOH9-1V8YtAP-AsQnGAZ5PMOAZDEPES5uu8JHtewjgEp4PfonnFoYOH0G0Cxfx4-8HfA63Fpaf0Hpvhgg7T-82-jk_vpx9K05Ov36ffTkp2pIoVRiSnbvaSGiYZMBIxzjtqBCqrrrsL6oeuDAVAVCyIgKgkX1XlYwb0ggl-TbaX929Cf7XBDHp0cY262Z3P0XNSiWpIFyWGf38Br32U3DZTjNBWZ5aiEztPVFTM0Knb4IdTbjXz1-YAb4C2uBjDNDr1iaTrHcpGDtoSvTfonQuSr8UlVPFm9Tz4f_xcsUv7QD378P6cnb-mvwDFOOjKg |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_117468 crossref_primary_10_1016_j_ijhydene_2024_11_301 crossref_primary_10_1002_fuce_202200131 crossref_primary_10_1021_acs_energyfuels_3c04556 crossref_primary_10_33961_jecst_2022_00479 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122235 crossref_primary_10_1016_j_energy_2023_129664 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125543 crossref_primary_10_1007_s42235_024_00607_2 crossref_primary_10_3390_en16114390 crossref_primary_10_1016_j_ijhydene_2024_09_012 crossref_primary_10_1177_09544070241286251 crossref_primary_10_1007_s11581_024_05494_5 crossref_primary_10_1016_j_enconman_2021_115069 crossref_primary_10_1016_j_renene_2024_121008 crossref_primary_10_1080_10407782_2023_2275274 crossref_primary_10_3390_ijms232314768 crossref_primary_10_1007_s11581_024_05584_4 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121900 crossref_primary_10_1016_j_jestch_2024_101755 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125956 crossref_primary_10_1039_D3RE00053B crossref_primary_10_32604_fdmp_2023_025282 crossref_primary_10_1016_j_ijhydene_2021_11_170 crossref_primary_10_1016_j_ijhydene_2023_02_030 crossref_primary_10_1016_j_ijhydene_2023_05_025 crossref_primary_10_1007_s11581_023_05151_3 crossref_primary_10_1016_j_enconman_2022_115707 crossref_primary_10_32604_fdmp_2023_025566 crossref_primary_10_1016_j_enconman_2023_117712 crossref_primary_10_3390_batteries10080276 crossref_primary_10_3390_en15249520 crossref_primary_10_1063_5_0121729 crossref_primary_10_1016_j_cej_2024_156951 crossref_primary_10_1016_j_cirpj_2023_01_007 crossref_primary_10_1016_j_fuel_2024_131617 crossref_primary_10_1021_acs_chemrev_2c00539 crossref_primary_10_1016_j_ces_2023_118803 crossref_primary_10_1080_17452759_2023_2225490 crossref_primary_10_1016_j_ijhydene_2024_12_106 crossref_primary_10_1016_j_renene_2023_119489 crossref_primary_10_3390_en16145492 crossref_primary_10_1016_j_ijhydene_2023_03_229 crossref_primary_10_1016_j_ecmx_2023_100469 crossref_primary_10_1061_JLEED9_EYENG_4764 crossref_primary_10_1016_j_ijhydene_2024_05_412 crossref_primary_10_1002_celc_202200499 crossref_primary_10_1016_j_enconman_2024_118797 crossref_primary_10_1016_j_ijhydene_2022_08_024 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124595 crossref_primary_10_48084_etasr_6996 crossref_primary_10_1016_j_applthermaleng_2023_119986 crossref_primary_10_1016_j_cej_2022_138276 crossref_primary_10_1002_advs_202205305 crossref_primary_10_1007_s10008_024_06144_6 crossref_primary_10_1080_01430750_2023_2284263 crossref_primary_10_1177_09544089231158956 crossref_primary_10_1002_fuce_202300196 crossref_primary_10_1016_j_apenergy_2023_121632 crossref_primary_10_1016_j_ijhydene_2024_08_310 crossref_primary_10_1016_j_matlet_2022_132361 crossref_primary_10_3390_pr12061140 crossref_primary_10_1007_s44029_023_0798_4 crossref_primary_10_1016_j_rser_2023_114198 crossref_primary_10_1016_j_jpowsour_2022_232609 crossref_primary_10_5796_electrochemistry_23_00043 crossref_primary_10_1016_j_jaecs_2023_100244 crossref_primary_10_1016_j_ijhydene_2023_03_130 crossref_primary_10_1016_j_est_2024_112303 crossref_primary_10_1007_s42235_022_00174_4 crossref_primary_10_1002_aic_17758 crossref_primary_10_3390_en18040986 crossref_primary_10_1063_5_0124224 crossref_primary_10_1016_j_ijnaoe_2025_100649 crossref_primary_10_1002_apj_2939 crossref_primary_10_1016_j_jpowsour_2024_235753 crossref_primary_10_1016_j_jpowsour_2022_232526 crossref_primary_10_1016_j_jclepro_2022_134187 crossref_primary_10_1016_j_icheatmasstransfer_2024_107785 crossref_primary_10_1016_j_cej_2024_149572 crossref_primary_10_1007_s41918_023_00196_4 crossref_primary_10_1016_j_fuel_2024_131552 |
Cites_doi | 10.1016/j.jclepro.2018.12.293 10.1016/j.egypro.2015.11.541 10.1016/j.joei.2016.04.006 10.1016/j.apenergy.2011.06.034 10.1016/j.enconman.2015.12.036 10.4028/www.scientific.net/AMM.592-594.1728 10.1016/j.jpowsour.2011.05.029 10.1016/j.ijhydene.2017.04.079 10.24297/jac.v13i9.5739 10.1016/j.ijhydene.2016.11.042 10.1016/j.enconman.2019.112386 10.1016/j.energy.2017.07.021 10.1016/j.ijhydene.2019.03.244 10.1016/j.jpowsour.2005.07.064 10.1016/j.jpowsour.2013.01.020 10.1016/j.joei.2016.07.002 10.1016/j.ijhydene.2013.01.084 10.1016/j.enconman.2018.04.018 10.1007/s10973-018-7270-3 10.1016/j.ref.2019.05.002 10.1016/j.jpowsour.2007.12.017 10.1002/fuce.201600096 10.1002/fuce.201600141 10.1016/j.ijhydene.2010.07.052 10.4028/www.scientific.net/AMM.592-594.1672 10.1016/j.ijhydene.2014.10.069 10.1365/s40112-014-0568-z 10.1016/j.jpowsour.2007.11.065 10.1016/j.jpowsour.2019.04.018 10.1016/j.ijhydene.2020.04.023 10.1016/j.jpowsour.2007.12.055 10.1016/j.ijhydene.2013.09.081 10.1016/j.egypro.2011.09.035 10.1007/s12678-017-0450-2 10.1016/j.energy.2018.04.005 10.1016/j.apenergy.2017.09.044 10.36410/jcpr.2019.20.5.490 10.1016/j.ijhydene.2017.04.001 10.1061/(ASCE)EY.1943-7897.0000701 10.1016/j.apenergy.2017.03.022 10.1016/j.elecom.2006.10.031 10.1016/j.ijhydene.2014.04.078 10.1016/j.jpowsour.2008.11.047 10.1016/j.ijhydene.2014.03.243 10.1016/j.jpowsour.2006.01.063 10.1016/j.egypro.2015.11.559 10.1016/j.ijhydene.2009.10.086 10.1016/j.ijhydene.2015.01.037 10.1002/fuce.201800171 10.5772/intechopen.89736 10.1007/s00231-015-1737-6 10.1016/j.ijhydene.2011.02.099 10.1016/j.energy.2016.07.079 10.1016/j.mcm.2011.10.047 10.1016/j.energy.2019.116670 10.1016/j.jpowsour.2006.10.015 10.1016/j.rser.2019.109420 10.1016/j.jpowsour.2009.06.107 10.1016/j.ijhydene.2015.01.039 10.1016/j.ces.2020.115499 10.1149/1.1836666 10.1016/j.ijhydene.2019.01.266 10.1016/j.ijhydene.2019.09.113 10.1002/fuce.201900124 10.1016/j.jpowsour.2005.02.066 10.1016/j.ijhydene.2016.03.189 10.1002/fuce.202000002 10.1016/j.jpowsour.2007.08.037 10.1016/j.ijhydene.2020.04.238 10.1016/j.jpowsour.2006.06.083 10.1007/978-1-4939-7789-5_151 10.1016/j.ijhydene.2016.03.028 10.1016/j.cep.2009.11.003 10.1016/j.proeng.2013.09.114 10.1007/s13369-017-2813-7 10.1016/j.jpowsour.2004.12.018 10.1016/j.ijhydene.2015.08.077 10.1016/j.ijhydene.2012.04.028 10.1016/j.ijhydene.2011.07.017 10.1016/j.aej.2018.03.010 10.1016/j.ijhydene.2015.01.175 10.1149/1.2976356 10.1016/j.enconman.2018.08.104 10.1016/j.ijhydene.2012.03.150 10.1016/j.ijhydene.2015.10.148 10.1016/j.ijhydene.2016.04.228 10.1007/s13132-018-0523-3 10.1016/j.apenergy.2012.04.011 10.1016/j.enconman.2018.08.041 10.1016/j.egypro.2017.12.110 10.1016/j.ijhydene.2012.05.091 10.1016/j.ijhydene.2016.09.178 10.1016/j.apenergy.2016.05.016 10.1016/j.jpowsour.2012.07.021 10.1016/j.enconman.2018.09.024 10.1016/j.ijhydene.2006.11.032 10.1016/j.egypro.2019.01.392 10.1016/j.energy.2016.02.026 10.1016/j.jpowsour.2016.08.020 10.1016/j.ijhydene.2016.10.076 10.1016/j.ijhydene.2010.10.073 10.1016/j.ijhydene.2007.11.015 10.3390/molecules26020286 10.1080/01430750.2019.1568911 10.1016/j.ijhydene.2018.11.147 10.1016/j.jpowsour.2006.01.099 10.1016/j.ijhydene.2014.05.086 10.1016/j.ijhydene.2010.08.076 10.1016/j.jpowsour.2020.228034 10.24084/repqj13.236 10.1016/j.egypro.2012.08.047 10.1016/j.jpowsour.2007.01.015 10.1016/j.jpowsour.2009.09.004 10.1016/j.ijhydene.2010.12.060 10.1016/j.jpowsour.2006.05.007 10.1016/j.ijheatmasstransfer.2018.10.050 10.1016/j.energy.2016.10.101 10.1016/j.applthermaleng.2019.114464 10.1016/j.ijhydene.2019.07.120 10.1016/j.enconman.2019.112335 10.1016/j.ijhydene.2015.04.113 10.1016/j.jpowsour.2019.227218 10.1080/15435075.2019.1677238 10.1016/j.ijhydene.2012.02.012 10.1016/j.ijhydene.2007.05.044 10.1016/j.fuel.2019.116713 10.1016/j.ijhydene.2016.03.049 10.1016/j.proeng.2014.12.437 10.1016/j.ijhydene.2017.01.017 10.1016/j.ijhydene.2017.01.007 10.1016/j.ijhydene.2017.11.172 10.1016/j.ijhydene.2018.10.032 10.1016/j.ijheatmasstransfer.2018.01.053 10.1016/j.renene.2011.10.008 10.1016/j.enconman.2017.09.009 10.1016/j.energy.2015.10.132 10.1016/j.ijheatmasstransfer.2011.06.037 10.1016/j.jpowsour.2004.06.025 10.1016/j.enconman.2018.11.059 10.1016/j.jpowsour.2003.07.007 10.1504/PCFD.2019.102039 10.1016/j.ijhydene.2017.04.212 10.1016/j.ijhydene.2019.05.205 10.1016/j.ijhydene.2014.11.139 10.1016/S0378-7753(02)00475-5 10.1016/j.ijhydene.2011.01.147 10.1016/j.jpowsour.2007.12.068 10.1007/s13369-015-1890-8 10.1016/j.energy.2018.07.143 10.1016/j.energy.2018.07.127 10.1016/j.ijhydene.2015.04.007 10.1016/j.apenergy.2017.03.008 10.1016/j.jpowsour.2003.11.078 10.1016/j.jpowsour.2015.01.050 10.1016/j.ijhydene.2019.08.151 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH – notice: 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202000138 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Engineering Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 714 |
ExternalDocumentID | 33543591 10_1002_tcr_202000138 TCR202000138 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: RCUK EPSRC funderid: EP/P003605/1 – fundername: RCUK EPSRC grantid: EP/P003605/1 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 24P 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4088-a0152d9a7eb272e20d231d155896d00156fe35a60ee87605eeb7fd6423a0b5873 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 03:14:03 EDT 2025 Fri Jul 25 10:46:49 EDT 2025 Wed Feb 19 02:28:09 EST 2025 Thu Apr 24 23:13:08 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Wed Jan 22 16:29:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | fuel cells channel design PEMFC flow field water management |
Language | English |
License | Attribution 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4088-a0152d9a7eb272e20d231d155896d00156fe35a60ee87605eeb7fd6423a0b5873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000138 |
PMID | 33543591 |
PQID | 2512251955 |
PQPubID | 1006501 |
PageCount | 52 |
ParticipantIDs | proquest_miscellaneous_2487150374 proquest_journals_2512251955 pubmed_primary_33543591 crossref_citationtrail_10_1002_tcr_202000138 crossref_primary_10_1002_tcr_202000138 wiley_primary_10_1002_tcr_202000138_TCR202000138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-Apr 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 79 2018; 166 2018; 161 2020; 20 2020; 164 2019; 10 2013; 64 2019; 16 2019; 19 2020; 205 2011; 54 2020; 12 2008; 33 1996; 143 2017; 152 2016; 302 2011; 196 2018; 43 2012; 99 2019; 442 2017; 208 2018; 174 2018; 9 2018; 176 2019; 20 2007; 173 2020; 457 2007; 9 2013; 232 2006; 162 2020; 217 2016; 41 2019; 158 2010; 195 2012; 28 2006; 161 2006; 160 2014; 97 2014; 592–594 2010; 35 2019; 30 2016; 328 2020; 263 2007; 163 2016; 97 2020; 146 2012; 37 2016; 16 2017; 137 2011; 9 2016; 6 2010; 49 2019; 180 2019; 44 2019; 45 2009; 187 2019; 214 2011; 88 2017; 142 2014; 39 2016; 175 2017; 42(5) 2012; 41 2017; 42 2021; 26 2018; 121 2017; 2 2004; 125 2017; 43 2016; 101 2011; 10 2017; 195 2019; 129 2007; 32 2003; 113 2012; 55 2017; 118 2004; 131 2004; 138 2014; 3 2005; 144 2015; 40 2005; 145 2016; 113 2019; 116 2016; 110 2020; 45 2008; 155 2012; 219 2015; 6 2010 2015; 166 2015; 11 2015; 10 2016; 52 2011; 36 2019; 426 2006; 157 2018; 152 2017; 90 2013; 38 2015; 279 2017; 17 2020 2020; 192 2017; 13 2019 2019; 135 2018 2016 2015 2008; 179 2008; 178 2008; 177 2018; 57 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_166_1 Praveenkumar S. (e_1_2_13_16_1) 2015; 11 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_147_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_162_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 Alvarez-Meaza I. (e_1_2_13_9_1) 2020; 12 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_154_1 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_112_1 e_1_2_13_158_1 Muthukumara M. (e_1_2_13_153_1) 2016; 302 e_1_2_13_135_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_173_1 e_1_2_13_70_1 e_1_2_13_150_1 Jang S.-H. (e_1_2_13_87_1) 2011; 10 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_165_1 e_1_2_13_100_1 e_1_2_13_142_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_169_1 e_1_2_13_104_1 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_161_1 Kahveci E. E. (e_1_2_13_61_1) 2017; 2 e_1_2_13_91_1 e_1_2_13_95_2 Nguyen T. V. (e_1_2_13_101_1) 2010 e_1_2_13_116_1 e_1_2_13_139_1 e_1_2_13_18_1 Yang Y. (e_1_2_13_99_1) 2017; 43 e_1_2_13_14_1 e_1_2_13_130_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_157_1 e_1_2_13_176_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_172_1 e_1_2_13_71_1 Chen R. (e_1_2_13_177_1) 2018 e_1_2_13_1_1 Abdulla S. (e_1_2_13_79_1) 2020 e_1_2_13_108_1 e_1_2_13_127_1 Sheikh A. (e_1_2_13_78_1) 2019 Lee J. (e_1_2_13_159_1) 2019 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_141_1 e_1_2_13_164_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_145_1 e_1_2_13_168_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 Kumar M. (e_1_2_13_15_1) 2016; 6 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 Limjeerajarus N. (e_1_2_13_111_1) 2019 e_1_2_13_160_1 Muthukumar M. (e_1_2_13_5_1) 2016 e_1_2_13_90_1 e_1_2_13_94_2 e_1_2_13_98_1 Arvay A. (e_1_2_13_123_1) 2015; 6 e_1_2_13_119_1 e_1_2_13_138_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_152_1 e_1_2_13_137_1 e_1_2_13_175_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_156_1 e_1_2_13_171_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_149_1 Kahraman H. (e_1_2_13_125_1) 2020 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_163_1 e_1_2_13_102_1 e_1_2_13_148_1 Muthukumar M. (e_1_2_13_59_1) 2015; 10 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_167_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_80_1 e_1_2_13_140_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_155_1 e_1_2_13_178_1 e_1_2_13_35_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_174_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_170_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_151_1 Xu Y. (e_1_2_13_55_1) 2020 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_129_1 e_1_2_13_89_1 Muthukumar M. (e_1_2_13_6_1) 2020 e_1_2_13_28_1 Abdulla S. (e_1_2_13_77_1) 2020 |
References_xml | – volume: 196 start-page: 8019 year: 2011 end-page: 8030 publication-title: J. Power Sources – volume: 13 start-page: 6462 year: 2017 end-page: 6467 publication-title: J. Adv. Chemistry. – volume: 129 start-page: 1151 year: 2019 end-page: 1160 publication-title: Int. J. Heat Mass Transfer – year: 2016 publication-title: Ph.D Thesis – volume: 279 start-page: 533 year: 2015 end-page: 539 publication-title: J. Power Sources – volume: 44 start-page: 7505 year: 2019 end-page: 7517 publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 5807 year: 2013 end-page: 5812 publication-title: Int. J. Hydrogen Energy – volume: 328 start-page: 364 year: 2016 end-page: 376 publication-title: J. Power Sources – volume: 39 start-page: 9430 year: 2014 end-page: 9439 publication-title: Int. J. Hydrogen Energy – year: 2020 publication-title: Arabian J. Sci. Eng. – volume: 457 year: 2020 publication-title: J. Power Sources – volume: 426 start-page: 97 year: 2019 end-page: 110 publication-title: J. Power Sources – volume: 41 start-page: 6885 year: 2016 end-page: 6893 publication-title: Int. J. Hydrogen Energy – volume: 2 start-page: 155 year: 2017 end-page: 163 publication-title: EJSDR – volume: 43 start-page: 10 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 10286 year: 2012 end-page: 10298 publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 1052 year: 2008 end-page: 1066 publication-title: Int. J. Hydrogen Energy – volume: 178 start-page: 103 year: 2008 end-page: 117 publication-title: J. Power Sources – volume: 43 start-page: 21928 year: 2018 end-page: 21939 publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 3415 year: 2016 end-page: 3423 publication-title: Arabian J. Sci. Eng. – volume: 40 start-page: 2303 year: 2015 end-page: 2311 publication-title: Int. J. Hydrogen Energy – volume: 163 start-page: 933 year: 2007 end-page: 942 publication-title: J. Power Sources – volume: 195 start-page: 1122 year: 2010 end-page: 1129 publication-title: J. Power Sources – volume: 19 start-page: 515 year: 2019 end-page: 529 publication-title: Fuel Cells – volume: 10 start-page: 1183 year: 2019 end-page: 1203 publication-title: J. Knowl. Econ. – volume: 43 start-page: 1225 year: 2018 end-page: 1234 publication-title: Arabian J. Sci. Eng. – volume: 178 start-page: 174 year: 2008 end-page: 180 publication-title: J. Power Sources – volume: 44 start-page: 24036 year: 2019 end-page: 24042 publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 13415 year: 2019 end-page: 13423 publication-title: Int. J. Hydrogen Energy – volume: 20 start-page: 547 year: 2020 end-page: 557 publication-title: Fuel Cells – volume: 161 start-page: 28 year: 2018 end-page: 37 publication-title: Energy – volume: 40 start-page: 4641 year: 2015 end-page: 4648 publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2019 end-page: 5 publication-title: Int. J. Ambient Energy – volume: 137 start-page: 302 year: 2017 end-page: 313 publication-title: Energy – volume: 79 start-page: 733 year: 2015 end-page: 745 publication-title: Energy Procedia – volume: 144 start-page: 94 year: 2005 end-page: 106 publication-title: J. Power Sources – volume: 16 start-page: 1591 year: 2019 end-page: 1601 publication-title: Int. J. Green Energy – volume: 9 start-page: 326 year: 2011 end-page: 337 publication-title: Energy Procedia – volume: 42 start-page: 25686 year: 2017 end-page: 25694 publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 7719 year: 2012 end-page: 7729 publication-title: Int. J. Hydrogen Energy – volume: 20 start-page: 33 year: 2020 end-page: 39 publication-title: Fuel Cells – volume: 38 start-page: 16253 year: 2013 end-page: 16263 publication-title: Int. J. Hydrogen Energy – year: 2010 publication-title: Handb. Fuel Cells – volume: 36 start-page: 1613 year: 2011 end-page: 1627 publication-title: Int. J. Hydrogen Energy – volume: 146 year: 2020 publication-title: J. Energy Eng. – volume: 52 start-page: 2167 year: 2016 end-page: 2176 publication-title: Heat Mass Transfer – volume: 45 start-page: 7863 year: 2019 end-page: 7872 publication-title: Int. J. Hydrogen Energy – volume: 176 start-page: 227 year: 2018 end-page: 235 publication-title: Energy Convers. Manage. – volume: 9 start-page: 497 year: 2007 end-page: 503 publication-title: Electrochem. Commun. – volume: 11 start-page: 505 year: 2015 end-page: 513 publication-title: Int. J. Appl. Chem – volume: 152 start-page: 10 year: 2018 publication-title: Energy – volume: 592–594 start-page: 1728 year: 2014 end-page: 1732 publication-title: Appl. Mech. Mater. – volume: 142 start-page: 667 year: 2017 end-page: 673 publication-title: Energy Procedia – volume: 90 start-page: 363 year: 2017 end-page: 371 publication-title: J. Energy Inst. – volume: 42 start-page: 5272 year: 2017 end-page: 5283 publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 7144 year: 2015 end-page: 7158 publication-title: Int. J. Hydrogen Energy – volume: 302 start-page: 305 year: 2016 publication-title: Int J AdvEngg Tech/Vol. VII/Issue II/April-June – year: 2020 publication-title: Mater. Today Proc. – volume: 40 start-page: 8172 year: 2015 end-page: 8181 publication-title: Int. J. Hydrogen Energy – volume: 32 start-page: 4489 year: 2007 end-page: 4502 publication-title: Int. J. Hydrogen Energy – volume: 121 start-page: 775 year: 2018 end-page: 787 publication-title: Int. J. Heat Mass Transfer – volume: 55 start-page: 1540 year: 2012 end-page: 1557 publication-title: Math. Comput. Model. – volume: 160 start-page: 116 year: 2006 end-page: 122 publication-title: J. Power Sources – volume: 40 start-page: 15032 year: 2015 end-page: 15039 publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 3614 year: 2011 end-page: 3622 publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 12965 year: 2011 end-page: 12976 publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 671 year: 2010 end-page: 681 publication-title: Int. J. Hydrogen Energy – volume: 263 year: 2020 publication-title: Fuel – volume: 20 start-page: 490 year: 2019 end-page: 498 publication-title: J. Ceram. Process. Res. – volume: 41 start-page: 10844 year: 2016 end-page: 10853 publication-title: Int. J. Hydrogen Energy – volume: 64 start-page: 409 year: 2013 end-page: 418 publication-title: Procedia Eng. – volume: 44 start-page: 30644 year: 2019 end-page: 30662 publication-title: Int. J. Hydrogen Energy – volume: 442 year: 2019 publication-title: J. Power Sources – year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 4819 year: 2015 end-page: 4829 publication-title: Int. J. Hydrogen Energy – volume: 219 start-page: 52 year: 2012 end-page: 59 publication-title: J. Power Sources – volume: 45 start-page: 10549 year: 2020 end-page: 10558 publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 907 year: 2006 end-page: 919 publication-title: J. Power Sources – volume: 180 start-page: 1217 year: 2019 end-page: 1224 publication-title: Energy Convers. Manage. – volume: 42 start-page: 25619 year: 2017 end-page: 25629 publication-title: Int. J. Hydrogen Energy – volume: 152 start-page: 31 year: 2017 end-page: 44 publication-title: Energy Convers. Manage. – volume: 214 start-page: 738 year: 2019 end-page: 748 publication-title: J. Cleaner Prod. – volume: 125 start-page: 40 year: 2004 end-page: 51 publication-title: J. Power Sources – volume: 12 start-page: 10 year: 2020 publication-title: Sustain. – start-page: 62 year: 2015 end-page: 65 publication-title: Renew. Energy Power Qual. J. – volume: 17 start-page: 27 year: 2017 end-page: 36 publication-title: Fuel Cells – volume: 135 start-page: 1823 year: 2019 end-page: 1833 publication-title: J. Therm. Anal. Calorim. – volume: 40 start-page: 3739 year: 2015 end-page: 3748 publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 2265 year: 2017 end-page: 2277 publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 12469 year: 2010 end-page: 12479 publication-title: Int. J. Hydrogen Energy – volume: 145 start-page: 572 year: 2005 end-page: 581 publication-title: J. Power Sources – volume: 187 start-page: 407 year: 2009 end-page: 414 publication-title: J. Power Sources – volume: 45 start-page: 17833 year: 2020 end-page: 17843 publication-title: Int. J. Hydrogen Energy – volume: 174 start-page: 260 year: 2018 end-page: 275 publication-title: Energy Convers. Manage. – volume: 110 start-page: 356 year: 2016 end-page: 366 publication-title: Energy Convers. Manage. – volume: 41 start-page: 86 year: 2012 end-page: 95 publication-title: Renewable Energy – volume: 39 start-page: 21185 year: 2014 end-page: 21195 publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 15642 year: 2020 end-page: 15649 publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 15778 year: 2012 end-page: 15786 publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 104 year: 2018 end-page: 117 publication-title: Energy – volume: 88 start-page: 4879 year: 2011 end-page: 4890 publication-title: Appl. Energy – volume: 3 start-page: 18 year: 2014 end-page: 23 publication-title: Auto Tech Rev. – volume: 10 start-page: 22429 year: 2015 end-page: 22435 publication-title: Int. J. Appl. Eng. Res. – volume: 57 start-page: 3953 year: 2018 end-page: 3958 publication-title: Alexandria Eng. J. – volume: 113 start-page: 558 year: 2016 end-page: 573 publication-title: Energy – volume: 208 start-page: 1083 year: 2017 end-page: 1096 publication-title: Appl. Energy – start-page: 2018 year: 2018 end-page: 01 publication-title: SAE [Tech. Pap.] – volume: 42(5) start-page: 3185 year: 2017 end-page: 3196 publication-title: Int. J. Hydrogen Energy – volume: 16 start-page: 777 year: 2016 end-page: 783 publication-title: Fuel Cells – year: 2020 publication-title: AIChE J. – volume: 30 start-page: 71 year: 2019 end-page: 77 publication-title: Renew. Energy Focus – volume: 205 year: 2020 publication-title: Energy Convers. Manage. – volume: 232 start-page: 199 year: 2013 end-page: 208 publication-title: J. Power Sources – volume: 138 start-page: 1 year: 2004 end-page: 13 publication-title: J. Power Sources – volume: 41 start-page: 10060 year: 2016 end-page: 10070 publication-title: Int. J. Hydrogen Energy – volume: 26 start-page: 286 year: 2021 publication-title: Molecules – volume: 49 start-page: 689 year: 2010 end-page: 696 publication-title: Chem. Eng. Process. – volume: 164 year: 2020 publication-title: Appl. Therm. Eng. – volume: 175 start-page: 212 year: 2016 end-page: 217 publication-title: Appl. Energy – volume: 54 start-page: 4462 year: 2011 end-page: 4472 publication-title: Int. J. Heat Mass Transfer – volume: 39 start-page: 11186 year: 2014 end-page: 11195 publication-title: Int. J. Hydrogen Energy – volume: 79 start-page: 612 year: 2015 end-page: 619 publication-title: Energy Procedia – volume: 162 start-page: 327 year: 2006 end-page: 339 publication-title: J. Power Sources – volume: 42 start-page: 14708 year: 2017 end-page: 14724 publication-title: Int. J. Hydrogen Energy – volume: 101 start-page: 252 year: 2016 end-page: 265 publication-title: Energy – volume: 155 start-page: 10 year: 2008 publication-title: J. Electrochem. Soc. – volume: 116 year: 2019 publication-title: Renewable Sustainable Energy Rev. – volume: 10 start-page: 1205 year: 2011 end-page: 1210 publication-title: World Renewable Energy Congress – volume: 42 start-page: 9210 year: 2017 end-page: 9218 publication-title: Int. J. Hydrogen Energy – volume: 157 start-page: 358 year: 2006 end-page: 367 publication-title: J. Power Sources – volume: 97 start-page: 400 year: 2016 end-page: 410 publication-title: Energy – volume: 32 start-page: 842 year: 2007 end-page: 856 publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 6795 year: 2011 end-page: 6808 publication-title: Int. J. Hydrogen Energy – volume: 158 start-page: 1678 year: 2019 end-page: 1684 publication-title: Energy Procedia – volume: 45 start-page: 7848 year: 2020 end-page: 7862 publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 1 year: 2015 end-page: 9 publication-title: Open Electrochem. J. – volume: 35 start-page: 11425 year: 2010 end-page: 11436 publication-title: Int. J. Hydrogen Energy – volume: 176 start-page: 99 year: 2018 end-page: 109 publication-title: Energy Convers. Manage. – volume: 173 start-page: 210 year: 2007 end-page: 221 publication-title: J. Power Sources – volume: 118 start-page: 705 year: 2017 end-page: 715 publication-title: Energy – volume: 192 year: 2020 publication-title: Energy – volume: 195 start-page: 278 year: 2017 end-page: 288 publication-title: Appl. Energy – volume: 37 start-page: 11904 year: 2012 end-page: 11911 publication-title: Int. J. Hydrogen Energy – volume: 143 start-page: L103 year: 1996 end-page: L105 publication-title: J. Electrochem. Soc. – volume: 177 start-page: 96 year: 2008 end-page: 103 publication-title: J. Power Sources – volume: 9 start-page: 582 year: 2018 end-page: 592 publication-title: Electrocatalysis – volume: 43 start-page: 2359 year: 2018 end-page: 2368 publication-title: Int. J. Hydrogen Energy – year: 2019 publication-title: Int. J. Energy Res. – volume: 6 start-page: 1387 year: 2016 publication-title: Asian J. Res. Soc. Sci. Humanit. – year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 6067 year: 2011 end-page: 6072 publication-title: Int. J. Hydrogen Energy – volume: 28 start-page: 134 year: 2012 end-page: 139 publication-title: Energy Procedia – volume: 166 start-page: 149 year: 2015 end-page: 154 publication-title: J. Power Sources – volume: 42 start-page: 9795 year: 2017 end-page: 9805 publication-title: Int. J. Hydrogen Energy – volume: 179 start-page: 305 year: 2008 end-page: 309 publication-title: J. Power Sources – volume: 113 start-page: 11 year: 2003 end-page: 18 publication-title: J. Power Sources – volume: 195 start-page: 13 year: 2017 end-page: 22 publication-title: Appl. Energy – volume: 42 start-page: 21546 year: 2017 end-page: 21558 publication-title: Int. J. Hydrogen Energy – volume: 592–594 start-page: 1672 year: 2014 end-page: 1676 publication-title: Appl. Mech. Mater. – volume: 97 start-page: 1534 year: 2014 end-page: 1542 publication-title: Procedia Eng. – volume: 131 start-page: 175 year: 2004 end-page: 181 publication-title: J. Power Sources – volume: 160 start-page: 398 year: 2006 end-page: 406 publication-title: J. Power Sources – volume: 99 start-page: 67 year: 2012 end-page: 79 publication-title: Appl. Energy – volume: 166 start-page: 281 year: 2018 end-page: 296 publication-title: Energy Convers. Manage. – volume: 217 year: 2020 publication-title: Chem. Eng. Sci. – volume: 90 start-page: 752 year: 2017 end-page: 763 publication-title: J. Energy Inst. – volume: 41 start-page: 2867 year: 2016 end-page: 2874 publication-title: Int. J. Hydrogen Energy – volume: 19 start-page: 328 year: 2019 publication-title: Prog. Comput. Fluid Dyn. An Int. J. – volume: 39 start-page: 16694 year: 2014 end-page: 16705 publication-title: Int. J. Hydrogen Energy – volume: 195 start-page: 62 year: 2010 end-page: 68 publication-title: J. Power Sources – ident: e_1_2_13_130_1 doi: 10.1016/j.jclepro.2018.12.293 – ident: e_1_2_13_144_1 doi: 10.1016/j.egypro.2015.11.541 – ident: e_1_2_13_129_1 doi: 10.1016/j.joei.2016.04.006 – ident: e_1_2_13_24_1 doi: 10.1016/j.apenergy.2011.06.034 – ident: e_1_2_13_34_1 doi: 10.1016/j.enconman.2015.12.036 – ident: e_1_2_13_58_1 doi: 10.4028/www.scientific.net/AMM.592-594.1728 – ident: e_1_2_13_112_1 doi: 10.1016/j.jpowsour.2011.05.029 – ident: e_1_2_13_160_1 doi: 10.1016/j.ijhydene.2017.04.079 – ident: e_1_2_13_14_1 doi: 10.24297/jac.v13i9.5739 – ident: e_1_2_13_30_1 doi: 10.1016/j.ijhydene.2016.11.042 – ident: e_1_2_13_23_1 doi: 10.1016/j.enconman.2019.112386 – ident: e_1_2_13_127_1 doi: 10.1016/j.energy.2017.07.021 – ident: e_1_2_13_13_1 doi: 10.1016/j.ijhydene.2019.03.244 – ident: e_1_2_13_29_1 doi: 10.1016/j.jpowsour.2005.07.064 – ident: e_1_2_13_104_1 doi: 10.1016/j.jpowsour.2013.01.020 – ident: e_1_2_13_52_1 doi: 10.1016/j.joei.2016.07.002 – ident: e_1_2_13_110_1 doi: 10.1016/j.ijhydene.2013.01.084 – ident: e_1_2_13_64_1 doi: 10.1016/j.enconman.2018.04.018 – volume: 12 start-page: 10 year: 2020 ident: e_1_2_13_9_1 publication-title: Sustain. – ident: e_1_2_13_53_1 doi: 10.1007/s10973-018-7270-3 – ident: e_1_2_13_82_1 doi: 10.1016/j.ref.2019.05.002 – ident: e_1_2_13_85_1 doi: 10.1016/j.jpowsour.2007.12.017 – volume: 2 start-page: 155 year: 2017 ident: e_1_2_13_61_1 publication-title: EJSDR – ident: e_1_2_13_89_1 doi: 10.1002/fuce.201600096 – year: 2016 ident: e_1_2_13_5_1 publication-title: Ph.D Thesis – ident: e_1_2_13_149_1 doi: 10.1002/fuce.201600141 – ident: e_1_2_13_132_1 doi: 10.1016/j.ijhydene.2010.07.052 – ident: e_1_2_13_152_1 doi: 10.4028/www.scientific.net/AMM.592-594.1672 – ident: e_1_2_13_122_1 doi: 10.1016/j.ijhydene.2014.10.069 – ident: e_1_2_13_93_1 – ident: e_1_2_13_1_1 doi: 10.1365/s40112-014-0568-z – ident: e_1_2_13_21_1 doi: 10.1016/j.jpowsour.2007.11.065 – ident: e_1_2_13_175_1 doi: 10.1016/j.jpowsour.2019.04.018 – ident: e_1_2_13_3_1 – ident: e_1_2_13_162_1 doi: 10.1016/j.ijhydene.2020.04.023 – ident: e_1_2_13_174_1 doi: 10.1016/j.jpowsour.2007.12.055 – ident: e_1_2_13_107_1 doi: 10.1016/j.ijhydene.2013.09.081 – ident: e_1_2_13_165_1 doi: 10.1016/j.egypro.2011.09.035 – ident: e_1_2_13_11_1 doi: 10.1007/s12678-017-0450-2 – ident: e_1_2_13_43_1 doi: 10.1016/j.energy.2018.04.005 – ident: e_1_2_13_88_1 doi: 10.1016/j.apenergy.2017.09.044 – year: 2019 ident: e_1_2_13_111_1 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 1205 year: 2011 ident: e_1_2_13_87_1 publication-title: World Renewable Energy Congress – ident: e_1_2_13_92_1 doi: 10.36410/jcpr.2019.20.5.490 – ident: e_1_2_13_83_1 doi: 10.1016/j.ijhydene.2017.04.001 – ident: e_1_2_13_41_1 doi: 10.1061/(ASCE)EY.1943-7897.0000701 – ident: e_1_2_13_74_1 doi: 10.1016/j.apenergy.2017.03.022 – ident: e_1_2_13_71_1 doi: 10.1016/j.elecom.2006.10.031 – ident: e_1_2_13_114_1 doi: 10.1016/j.ijhydene.2014.04.078 – ident: e_1_2_13_106_1 doi: 10.1016/j.jpowsour.2008.11.047 – ident: e_1_2_13_142_1 doi: 10.1016/j.ijhydene.2014.03.243 – ident: e_1_2_13_102_1 doi: 10.1016/j.jpowsour.2006.01.063 – ident: e_1_2_13_145_1 doi: 10.1016/j.egypro.2015.11.559 – ident: e_1_2_13_20_1 doi: 10.1016/j.ijhydene.2009.10.086 – ident: e_1_2_13_155_1 doi: 10.1016/j.ijhydene.2015.01.037 – ident: e_1_2_13_7_1 doi: 10.1002/fuce.201800171 – ident: e_1_2_13_2_1 doi: 10.5772/intechopen.89736 – year: 2019 ident: e_1_2_13_159_1 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_13_119_1 doi: 10.1007/s00231-015-1737-6 – ident: e_1_2_13_140_1 doi: 10.1016/j.ijhydene.2011.02.099 – ident: e_1_2_13_50_1 doi: 10.1016/j.energy.2016.07.079 – ident: e_1_2_13_56_1 doi: 10.1016/j.mcm.2011.10.047 – ident: e_1_2_13_22_1 doi: 10.1016/j.energy.2019.116670 – year: 2020 ident: e_1_2_13_55_1 publication-title: AIChE J. – ident: e_1_2_13_168_1 doi: 10.1016/j.jpowsour.2006.10.015 – year: 2019 ident: e_1_2_13_78_1 publication-title: Int. J. Energy Res. – ident: e_1_2_13_36_1 doi: 10.1016/j.rser.2019.109420 – ident: e_1_2_13_176_1 doi: 10.1016/j.jpowsour.2009.06.107 – ident: e_1_2_13_133_1 doi: 10.1016/j.ijhydene.2015.01.039 – ident: e_1_2_13_32_1 doi: 10.1016/j.ces.2020.115499 – ident: e_1_2_13_100_1 doi: 10.1149/1.1836666 – volume: 6 start-page: 1387 year: 2016 ident: e_1_2_13_15_1 publication-title: Asian J. Res. Soc. Sci. Humanit. – ident: e_1_2_13_80_1 doi: 10.1016/j.ijhydene.2019.01.266 – ident: e_1_2_13_115_1 doi: 10.1016/j.ijhydene.2019.09.113 – ident: e_1_2_13_131_1 doi: 10.1002/fuce.201900124 – ident: e_1_2_13_134_1 doi: 10.1016/j.jpowsour.2005.02.066 – ident: e_1_2_13_31_1 doi: 10.1016/j.ijhydene.2016.03.189 – ident: e_1_2_13_65_1 doi: 10.1002/fuce.202000002 – ident: e_1_2_13_68_1 doi: 10.1016/j.jpowsour.2007.08.037 – ident: e_1_2_13_96_1 doi: 10.1016/j.ijhydene.2020.04.238 – ident: e_1_2_13_147_1 doi: 10.1016/j.jpowsour.2006.06.083 – ident: e_1_2_13_18_1 doi: 10.1007/978-1-4939-7789-5_151 – ident: e_1_2_13_39_1 doi: 10.1016/j.ijhydene.2016.03.028 – start-page: 2018 year: 2018 ident: e_1_2_13_177_1 publication-title: SAE [Tech. Pap.] – ident: e_1_2_13_42_1 doi: 10.1016/j.cep.2009.11.003 – volume: 43 start-page: 10 year: 2017 ident: e_1_2_13_99_1 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_13_17_1 doi: 10.1016/j.proeng.2013.09.114 – ident: e_1_2_13_67_1 doi: 10.1007/s13369-017-2813-7 – ident: e_1_2_13_28_1 doi: 10.1016/j.jpowsour.2004.12.018 – ident: e_1_2_13_81_1 doi: 10.1016/j.ijhydene.2015.08.077 – ident: e_1_2_13_150_1 doi: 10.1016/j.ijhydene.2012.04.028 – ident: e_1_2_13_137_1 doi: 10.1016/j.ijhydene.2011.07.017 – ident: e_1_2_13_10_1 – ident: e_1_2_13_4_1 doi: 10.1016/j.aej.2018.03.010 – ident: e_1_2_13_90_1 doi: 10.1016/j.ijhydene.2015.01.175 – ident: e_1_2_13_97_1 doi: 10.1149/1.2976356 – ident: e_1_2_13_164_1 doi: 10.1016/j.enconman.2018.08.104 – ident: e_1_2_13_25_1 doi: 10.1016/j.ijhydene.2012.03.150 – ident: e_1_2_13_91_1 doi: 10.1016/j.ijhydene.2015.10.148 – ident: e_1_2_13_126_1 doi: 10.1016/j.ijhydene.2016.04.228 – ident: e_1_2_13_8_1 doi: 10.1007/s13132-018-0523-3 – year: 2020 ident: e_1_2_13_79_1 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 22429 year: 2015 ident: e_1_2_13_59_1 publication-title: Int. J. Appl. Eng. Res. – ident: e_1_2_13_113_1 doi: 10.1016/j.apenergy.2012.04.011 – ident: e_1_2_13_139_1 doi: 10.1016/j.enconman.2018.08.041 – ident: e_1_2_13_86_1 doi: 10.1016/j.egypro.2017.12.110 – ident: e_1_2_13_69_1 doi: 10.1016/j.ijhydene.2012.05.091 – ident: e_1_2_13_173_1 doi: 10.1016/j.ijhydene.2016.09.178 – ident: e_1_2_13_171_1 doi: 10.1016/j.apenergy.2016.05.016 – volume: 11 start-page: 505 year: 2015 ident: e_1_2_13_16_1 publication-title: Int. J. Appl. Chem – ident: e_1_2_13_170_1 doi: 10.1016/j.jpowsour.2012.07.021 – ident: e_1_2_13_45_1 doi: 10.1016/j.enconman.2018.09.024 – ident: e_1_2_13_138_1 doi: 10.1016/j.ijhydene.2006.11.032 – ident: e_1_2_13_163_1 doi: 10.1016/j.egypro.2019.01.392 – ident: e_1_2_13_60_1 doi: 10.1016/j.energy.2016.02.026 – year: 2020 ident: e_1_2_13_125_1 publication-title: Arabian J. Sci. Eng. – ident: e_1_2_13_172_1 doi: 10.1016/j.jpowsour.2016.08.020 – ident: e_1_2_13_40_1 doi: 10.1016/j.ijhydene.2016.10.076 – ident: e_1_2_13_146_1 doi: 10.1016/j.ijhydene.2010.10.073 – ident: e_1_2_13_57_1 doi: 10.1016/j.ijhydene.2007.11.015 – ident: e_1_2_13_95_2 doi: 10.3390/molecules26020286 – ident: e_1_2_13_109_1 doi: 10.1080/01430750.2019.1568911 – ident: e_1_2_13_72_1 doi: 10.1016/j.ijhydene.2018.11.147 – year: 2020 ident: e_1_2_13_77_1 publication-title: Arabian J. Sci. Eng. – ident: e_1_2_13_66_1 doi: 10.1016/j.jpowsour.2006.01.099 – ident: e_1_2_13_105_1 doi: 10.1016/j.ijhydene.2014.05.086 – volume: 6 start-page: 1 year: 2015 ident: e_1_2_13_123_1 publication-title: Open Electrochem. J. – ident: e_1_2_13_98_1 doi: 10.1016/j.ijhydene.2010.08.076 – ident: e_1_2_13_37_1 doi: 10.1016/j.jpowsour.2020.228034 – ident: e_1_2_13_70_1 doi: 10.24084/repqj13.236 – ident: e_1_2_13_118_1 doi: 10.1016/j.egypro.2012.08.047 – ident: e_1_2_13_169_1 doi: 10.1016/j.jpowsour.2007.01.015 – ident: e_1_2_13_38_1 doi: 10.1016/j.jpowsour.2009.09.004 – ident: e_1_2_13_103_1 doi: 10.1016/j.ijhydene.2010.12.060 – ident: e_1_2_13_156_1 doi: 10.1016/j.jpowsour.2006.05.007 – ident: e_1_2_13_19_1 doi: 10.1016/j.ijheatmasstransfer.2018.10.050 – ident: e_1_2_13_35_1 doi: 10.1016/j.energy.2016.10.101 – ident: e_1_2_13_49_1 doi: 10.1016/j.applthermaleng.2019.114464 – ident: e_1_2_13_124_1 doi: 10.1016/j.ijhydene.2019.07.120 – ident: e_1_2_13_135_1 doi: 10.1016/j.enconman.2019.112335 – year: 2010 ident: e_1_2_13_101_1 publication-title: Handb. Fuel Cells – ident: e_1_2_13_46_1 doi: 10.1016/j.ijhydene.2015.04.113 – ident: e_1_2_13_54_1 doi: 10.1016/j.jpowsour.2019.227218 – ident: e_1_2_13_121_1 doi: 10.1080/15435075.2019.1677238 – ident: e_1_2_13_116_1 doi: 10.1016/j.ijhydene.2012.02.012 – ident: e_1_2_13_148_1 doi: 10.1016/j.ijhydene.2007.05.044 – ident: e_1_2_13_154_1 doi: 10.1016/j.fuel.2019.116713 – ident: e_1_2_13_62_1 doi: 10.1016/j.ijhydene.2016.03.049 – ident: e_1_2_13_141_1 doi: 10.1016/j.proeng.2014.12.437 – year: 2020 ident: e_1_2_13_6_1 publication-title: Mater. Today Proc. – ident: e_1_2_13_12_1 doi: 10.1016/j.ijhydene.2017.01.017 – ident: e_1_2_13_120_1 doi: 10.1016/j.ijhydene.2017.01.007 – ident: e_1_2_13_44_1 doi: 10.1016/j.ijhydene.2017.11.172 – ident: e_1_2_13_27_1 doi: 10.1016/j.ijhydene.2018.10.032 – ident: e_1_2_13_128_1 doi: 10.1016/j.ijheatmasstransfer.2018.01.053 – ident: e_1_2_13_117_1 doi: 10.1016/j.renene.2011.10.008 – ident: e_1_2_13_158_1 doi: 10.1016/j.enconman.2017.09.009 – ident: e_1_2_13_167_1 doi: 10.1016/j.energy.2015.10.132 – ident: e_1_2_13_157_1 doi: 10.1016/j.ijheatmasstransfer.2011.06.037 – ident: e_1_2_13_166_1 doi: 10.1016/j.jpowsour.2004.06.025 – ident: e_1_2_13_75_1 doi: 10.1016/j.enconman.2018.11.059 – ident: e_1_2_13_108_1 doi: 10.1016/j.jpowsour.2003.07.007 – ident: e_1_2_13_143_1 doi: 10.1504/PCFD.2019.102039 – ident: e_1_2_13_73_1 doi: 10.1016/j.ijhydene.2017.04.212 – ident: e_1_2_13_51_1 doi: 10.1016/j.ijhydene.2019.05.205 – ident: e_1_2_13_26_1 doi: 10.1016/j.ijhydene.2014.11.139 – ident: e_1_2_13_151_1 doi: 10.1016/S0378-7753(02)00475-5 – ident: e_1_2_13_76_1 doi: 10.1016/j.ijhydene.2011.01.147 – ident: e_1_2_13_178_1 doi: 10.1016/j.jpowsour.2007.12.068 – ident: e_1_2_13_33_1 doi: 10.1007/s13369-015-1890-8 – volume: 302 start-page: 305 year: 2016 ident: e_1_2_13_153_1 publication-title: Int J AdvEngg Tech/Vol. VII/Issue II/April-June – ident: e_1_2_13_161_1 doi: 10.1016/j.energy.2018.07.143 – ident: e_1_2_13_48_1 doi: 10.1016/j.energy.2018.07.127 – ident: e_1_2_13_63_1 doi: 10.1016/j.ijhydene.2015.04.007 – ident: e_1_2_13_84_1 doi: 10.1016/j.apenergy.2017.03.008 – ident: e_1_2_13_136_1 doi: 10.1016/j.jpowsour.2003.11.078 – ident: e_1_2_13_47_1 doi: 10.1016/j.jpowsour.2015.01.050 – ident: e_1_2_13_94_2 doi: 10.1016/j.ijhydene.2019.08.151 |
SSID | ssj0011477 |
Score | 2.5653818 |
SecondaryResourceType | review_article |
Snippet | Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 663 |
SubjectTerms | Baffles channel design Channels Electric power generation Fins Flow channels flow field Flow rates Fuel cells Fuel technology Inserts Mass flow rate Material properties Parameters PEMFC Performance enhancement Physical properties Proton exchange membrane fuel cells Protons Relative humidity Tapering Water management |
Title | Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000138 https://www.ncbi.nlm.nih.gov/pubmed/33543591 https://www.proquest.com/docview/2512251955 https://www.proquest.com/docview/2487150374 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ui158P-pjiSCerHaTptkeZbWIsLKIgrfapokH61b2geLJ_-A_9Jc4abqVVRTEY2lC2klm8k3yzQzAHtVBFnqau55KmOtrxd0W4gY3lMITKa4CzUy8c-ciOLv2z2_4TVXn1MTC2PwQ9YGb0YzSXhsFT9LB0WfSUDRU6N5Re9eGNtjwtQwouqzTRyHULysvmsqtLvoVYZVjE_sfTfSe3JO-Ac1J3FpuPNEC3I4_2fJN7g9Hw_RQvnzJ5viPf1qE-QqUkmO7ipZgSvWWYbY9rgW3Anfdz_gCUlEPSaFJt18gdiSnzzZ-mHTUAw7fUyQaqZy0VZ4PiDnpJSdVHZYhifLiiUSGN0dOSvbIgLy_vhF7R7EK19HpVfvMrUo0uNJH--QmiCZoFiYCHXRBFfUyxIsZYpRWGGRlmLZWjCeBpxSaXY8rlQqdoc_DEi_lLcHWYKZX9NQGkCaV3HBaA50xXzdlS_qKByJIhERpSOHAwXiSYlnlLzdlNPLYZl6mMUovrqXnwH7d_NEm7vip4fZ4xuNKfwexQX0mppdzB3br1yh0c52CYixG2AZ9PYTTTPgOrNuVUo_EGEccGjYd8Mr5_v0T4qv2Zf2w-fcuWzBHDdWmJBRtw8ywP1I7iJWGaQOmqd9tlGrxAWJyCck |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLefQVHq2Rqp4aNhvH8eaIFqJtu7tCaFfaW5Q4NoemSbUPgTjxH_iH_BLGdjawrahU9RjFjp2xx_7GnvkG4JOvwjzyFHM9mVI3UJK5HcQNbiS4xzOcBYrqeOfBMOyNg28TNnkSxW_5IZoDN60ZZr3WCq4PpFuPrKG4UqF959vLthewobN6G6PqoiGQQrBvci_q3K0uWhZRzbKJH2itVF_dlf6AmqvI1Ww98Raky05bj5Mfx4t5dixufuNz_J-_2oZXNS4lJ3Yi7cCaLHdhs7tMB_caLs8fQwxI7X1IKkXOpxXCR3J2bUOIyUD-xPZLSeKFLEhXFsWM6MNeclqnYpmTuKiuSKxd58ipcSCZkfvbO2KvKd7AOD4bdXtunaXBFQEuUW6KgMLPo5Sjjc596Xs5QsYcYUonCnMTqa0kZWnoSYkrr8ekzLjK0eyhqZexDqdvYb2sSvkeSNsXTLu1hiqngWqLjggkC3mYcoHSENyBL8tRSkRNYa4zaRSJJV_2E5Re0kjPgc9N8V-Wu-O5ggfLIU9qFZ4lGvjpsF7GHDhqXqPQ9Y0KirFaYBk09xBRUx448M5OlaYlShlC0ajtgGcG_O9dSEbdi-Zh79-rfITN3mjQT_pfh9_34aWvPW-Mf9EBrM-nC3mI0GmefTDa8QDAAw0N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhUulLY8UqB1paonAt44jpNjlRBtH7taIVbiFhLH7qFhg9hdUfXU_9B_2F_COM4GbSsqIY5R7NgZz4y_secB8N7TQRlRzV2qcub6WnE3RNzgRlJQUSAXaGbinQfDoD_2P5_z87bOqYmFsfkhugM3IxmNvjYCflXq47ukoaio0Lzz7F3bCjz1Axoatk5Ou_xRiPWb0oumdKuLhkXUJtnEDxwvdV_elP5BmsvAtdl50udwsZizdTj5fjSfFUfy51_pHB_xU5uw0aJS8tGy0Qt4oiYvYS1eFIN7Bd9GdwEGpPU9JLUmo-sawSM5-WEDiMlAXeLwE0XSuapIrKpqSsxRL0naQiwzklb1DUmN4xxJGveRKfnz6zexlxRbME5PzuK-29ZocKWPCsrNEU54ZZQLtNCFpzxaImAsEaSEUVA2cdpaMZ4HVCnUu5QrVQhdotHDclrwULBtWJ3UE7ULpOdJbpxaA10yX_dkKH3FAxHkQiI1pHDgcLFImWwTmJs6GlVmUy97GVIv66jnwIeu-ZXN3HFfw_3FimetAE8zA_tMUC_nDrzrXiPRzX0KkrGeYxs09hBPM-E7sGM5pRuJMY5ANOo5QJv1_v8UsrP4tHt4_fAub-HZKEmzr5-GX_Zg3TNuN41z0T6szq7n6gBx06x408jGLZ8lC8U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Studies+of+Proton+Exchange+Membrane+Fuel+Cells+with+Different+Flow+Field+Designs+-+Review&rft.jtitle=Chemical+record&rft.au=Marappan%2C+Muthukumar&rft.au=Palaniswamy%2C+Karthikeyan&rft.au=Velumani%2C+Thiagarajan&rft.au=Chul%2C+Kim+Byung&rft.date=2021-04-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=21&rft.issue=4&rft.spage=663&rft_id=info:doi/10.1002%2Ftcr.202000138&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |