Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review

Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the r...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 21; no. 4; pp. 663 - 714
Main Authors Marappan, Muthukumar, Palaniswamy, Karthikeyan, Velumani, Thiagarajan, Chul, Kim Byung, Velayutham, Rajavel, Shivakumar, Praveenkumar, Sundaram, Senthilarasu
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated. Flow fields are the important component of Proton Exchange Membrane Fuel Cell (PEMFC) Many design modifications have been carried out on the conventional flow field designs and Noval flow field designs have been developed with insert technology to improve the performance of PEMFC. The various flow field designs and their design and operating parameters along with the power output are highlighted. The clamping pressure is also affecting the performance of PEMFC.
AbstractList Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.
Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross‐sections and insertion of baffles/blockages/pin‐fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated. Flow fields are the important component of Proton Exchange Membrane Fuel Cell (PEMFC) Many design modifications have been carried out on the conventional flow field designs and Noval flow field designs have been developed with insert technology to improve the performance of PEMFC. The various flow field designs and their design and operating parameters along with the power output are highlighted. The clamping pressure is also affecting the performance of PEMFC.
Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.
Author Sundaram, Senthilarasu
Palaniswamy, Karthikeyan
Velayutham, Rajavel
Chul, Kim Byung
Marappan, Muthukumar
Velumani, Thiagarajan
Shivakumar, Praveenkumar
Author_xml – sequence: 1
  givenname: Muthukumar
  surname: Marappan
  fullname: Marappan, Muthukumar
  email: muthupsgtech@gmail.com
  organization: Nandha Engineering College (Autonomous Institution, Affiliated to Anna University)
– sequence: 2
  givenname: Karthikeyan
  surname: Palaniswamy
  fullname: Palaniswamy, Karthikeyan
  email: apk.auto@psgtech.ac.in
  organization: PSG College of Technology
– sequence: 3
  givenname: Thiagarajan
  surname: Velumani
  fullname: Velumani, Thiagarajan
  email: vthiagu90@gmail.com
  organization: PSG College of Technology
– sequence: 4
  givenname: Kim Byung
  surname: Chul
  fullname: Chul, Kim Byung
  email: bckim@scnu.ac.kr
  organization: Sunchon National University
– sequence: 5
  givenname: Rajavel
  surname: Velayutham
  fullname: Velayutham, Rajavel
  email: mek.rajavel68@gmail.com
  organization: Sunchon National University
– sequence: 6
  givenname: Praveenkumar
  surname: Shivakumar
  fullname: Shivakumar, Praveenkumar
  email: sivapraveen09@gmail.com
  organization: S.A. Engineering College
– sequence: 7
  givenname: Senthilarasu
  surname: Sundaram
  fullname: Sundaram, Senthilarasu
  email: S.Sundaram@exeter.ac.uk
  organization: University of Exeter Penryn Campus, Penryn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33543591$$D View this record in MEDLINE/PubMed
BookMark eNp9kctO3DAUhq0KVC5lyRZZ6oZNwJc4dpbVwLSVqEBA15aTnAxGiU1th4Fd34E35EnqdrhISGVx5LP4_qNP_rfQmvMOENql5IASwg5TGw4YYYQQytUHtEkFUwWparr2b5eFqut6A23FeJ0RWkr5EW1wLkouarqJFmcQeh9G41rAF2nqLETse3wWfPIOH9-1V8YtAP-AsQnGAZ5PMOAZDEPES5uu8JHtewjgEp4PfonnFoYOH0G0Cxfx4-8HfA63Fpaf0Hpvhgg7T-82-jk_vpx9K05Ov36ffTkp2pIoVRiSnbvaSGiYZMBIxzjtqBCqrrrsL6oeuDAVAVCyIgKgkX1XlYwb0ggl-TbaX929Cf7XBDHp0cY262Z3P0XNSiWpIFyWGf38Br32U3DZTjNBWZ5aiEztPVFTM0Knb4IdTbjXz1-YAb4C2uBjDNDr1iaTrHcpGDtoSvTfonQuSr8UlVPFm9Tz4f_xcsUv7QD378P6cnb-mvwDFOOjKg
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_117468
crossref_primary_10_1016_j_ijhydene_2024_11_301
crossref_primary_10_1002_fuce_202200131
crossref_primary_10_1021_acs_energyfuels_3c04556
crossref_primary_10_33961_jecst_2022_00479
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122235
crossref_primary_10_1016_j_energy_2023_129664
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125543
crossref_primary_10_1007_s42235_024_00607_2
crossref_primary_10_3390_en16114390
crossref_primary_10_1016_j_ijhydene_2024_09_012
crossref_primary_10_1177_09544070241286251
crossref_primary_10_1007_s11581_024_05494_5
crossref_primary_10_1016_j_enconman_2021_115069
crossref_primary_10_1016_j_renene_2024_121008
crossref_primary_10_1080_10407782_2023_2275274
crossref_primary_10_3390_ijms232314768
crossref_primary_10_1007_s11581_024_05584_4
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121900
crossref_primary_10_1016_j_jestch_2024_101755
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125956
crossref_primary_10_1039_D3RE00053B
crossref_primary_10_32604_fdmp_2023_025282
crossref_primary_10_1016_j_ijhydene_2021_11_170
crossref_primary_10_1016_j_ijhydene_2023_02_030
crossref_primary_10_1016_j_ijhydene_2023_05_025
crossref_primary_10_1007_s11581_023_05151_3
crossref_primary_10_1016_j_enconman_2022_115707
crossref_primary_10_32604_fdmp_2023_025566
crossref_primary_10_1016_j_enconman_2023_117712
crossref_primary_10_3390_batteries10080276
crossref_primary_10_3390_en15249520
crossref_primary_10_1063_5_0121729
crossref_primary_10_1016_j_cej_2024_156951
crossref_primary_10_1016_j_cirpj_2023_01_007
crossref_primary_10_1016_j_fuel_2024_131617
crossref_primary_10_1021_acs_chemrev_2c00539
crossref_primary_10_1016_j_ces_2023_118803
crossref_primary_10_1080_17452759_2023_2225490
crossref_primary_10_1016_j_ijhydene_2024_12_106
crossref_primary_10_1016_j_renene_2023_119489
crossref_primary_10_3390_en16145492
crossref_primary_10_1016_j_ijhydene_2023_03_229
crossref_primary_10_1016_j_ecmx_2023_100469
crossref_primary_10_1061_JLEED9_EYENG_4764
crossref_primary_10_1016_j_ijhydene_2024_05_412
crossref_primary_10_1002_celc_202200499
crossref_primary_10_1016_j_enconman_2024_118797
crossref_primary_10_1016_j_ijhydene_2022_08_024
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124595
crossref_primary_10_48084_etasr_6996
crossref_primary_10_1016_j_applthermaleng_2023_119986
crossref_primary_10_1016_j_cej_2022_138276
crossref_primary_10_1002_advs_202205305
crossref_primary_10_1007_s10008_024_06144_6
crossref_primary_10_1080_01430750_2023_2284263
crossref_primary_10_1177_09544089231158956
crossref_primary_10_1002_fuce_202300196
crossref_primary_10_1016_j_apenergy_2023_121632
crossref_primary_10_1016_j_ijhydene_2024_08_310
crossref_primary_10_1016_j_matlet_2022_132361
crossref_primary_10_3390_pr12061140
crossref_primary_10_1007_s44029_023_0798_4
crossref_primary_10_1016_j_rser_2023_114198
crossref_primary_10_1016_j_jpowsour_2022_232609
crossref_primary_10_5796_electrochemistry_23_00043
crossref_primary_10_1016_j_jaecs_2023_100244
crossref_primary_10_1016_j_ijhydene_2023_03_130
crossref_primary_10_1016_j_est_2024_112303
crossref_primary_10_1007_s42235_022_00174_4
crossref_primary_10_1002_aic_17758
crossref_primary_10_3390_en18040986
crossref_primary_10_1063_5_0124224
crossref_primary_10_1016_j_ijnaoe_2025_100649
crossref_primary_10_1002_apj_2939
crossref_primary_10_1016_j_jpowsour_2024_235753
crossref_primary_10_1016_j_jpowsour_2022_232526
crossref_primary_10_1016_j_jclepro_2022_134187
crossref_primary_10_1016_j_icheatmasstransfer_2024_107785
crossref_primary_10_1016_j_cej_2024_149572
crossref_primary_10_1007_s41918_023_00196_4
crossref_primary_10_1016_j_fuel_2024_131552
Cites_doi 10.1016/j.jclepro.2018.12.293
10.1016/j.egypro.2015.11.541
10.1016/j.joei.2016.04.006
10.1016/j.apenergy.2011.06.034
10.1016/j.enconman.2015.12.036
10.4028/www.scientific.net/AMM.592-594.1728
10.1016/j.jpowsour.2011.05.029
10.1016/j.ijhydene.2017.04.079
10.24297/jac.v13i9.5739
10.1016/j.ijhydene.2016.11.042
10.1016/j.enconman.2019.112386
10.1016/j.energy.2017.07.021
10.1016/j.ijhydene.2019.03.244
10.1016/j.jpowsour.2005.07.064
10.1016/j.jpowsour.2013.01.020
10.1016/j.joei.2016.07.002
10.1016/j.ijhydene.2013.01.084
10.1016/j.enconman.2018.04.018
10.1007/s10973-018-7270-3
10.1016/j.ref.2019.05.002
10.1016/j.jpowsour.2007.12.017
10.1002/fuce.201600096
10.1002/fuce.201600141
10.1016/j.ijhydene.2010.07.052
10.4028/www.scientific.net/AMM.592-594.1672
10.1016/j.ijhydene.2014.10.069
10.1365/s40112-014-0568-z
10.1016/j.jpowsour.2007.11.065
10.1016/j.jpowsour.2019.04.018
10.1016/j.ijhydene.2020.04.023
10.1016/j.jpowsour.2007.12.055
10.1016/j.ijhydene.2013.09.081
10.1016/j.egypro.2011.09.035
10.1007/s12678-017-0450-2
10.1016/j.energy.2018.04.005
10.1016/j.apenergy.2017.09.044
10.36410/jcpr.2019.20.5.490
10.1016/j.ijhydene.2017.04.001
10.1061/(ASCE)EY.1943-7897.0000701
10.1016/j.apenergy.2017.03.022
10.1016/j.elecom.2006.10.031
10.1016/j.ijhydene.2014.04.078
10.1016/j.jpowsour.2008.11.047
10.1016/j.ijhydene.2014.03.243
10.1016/j.jpowsour.2006.01.063
10.1016/j.egypro.2015.11.559
10.1016/j.ijhydene.2009.10.086
10.1016/j.ijhydene.2015.01.037
10.1002/fuce.201800171
10.5772/intechopen.89736
10.1007/s00231-015-1737-6
10.1016/j.ijhydene.2011.02.099
10.1016/j.energy.2016.07.079
10.1016/j.mcm.2011.10.047
10.1016/j.energy.2019.116670
10.1016/j.jpowsour.2006.10.015
10.1016/j.rser.2019.109420
10.1016/j.jpowsour.2009.06.107
10.1016/j.ijhydene.2015.01.039
10.1016/j.ces.2020.115499
10.1149/1.1836666
10.1016/j.ijhydene.2019.01.266
10.1016/j.ijhydene.2019.09.113
10.1002/fuce.201900124
10.1016/j.jpowsour.2005.02.066
10.1016/j.ijhydene.2016.03.189
10.1002/fuce.202000002
10.1016/j.jpowsour.2007.08.037
10.1016/j.ijhydene.2020.04.238
10.1016/j.jpowsour.2006.06.083
10.1007/978-1-4939-7789-5_151
10.1016/j.ijhydene.2016.03.028
10.1016/j.cep.2009.11.003
10.1016/j.proeng.2013.09.114
10.1007/s13369-017-2813-7
10.1016/j.jpowsour.2004.12.018
10.1016/j.ijhydene.2015.08.077
10.1016/j.ijhydene.2012.04.028
10.1016/j.ijhydene.2011.07.017
10.1016/j.aej.2018.03.010
10.1016/j.ijhydene.2015.01.175
10.1149/1.2976356
10.1016/j.enconman.2018.08.104
10.1016/j.ijhydene.2012.03.150
10.1016/j.ijhydene.2015.10.148
10.1016/j.ijhydene.2016.04.228
10.1007/s13132-018-0523-3
10.1016/j.apenergy.2012.04.011
10.1016/j.enconman.2018.08.041
10.1016/j.egypro.2017.12.110
10.1016/j.ijhydene.2012.05.091
10.1016/j.ijhydene.2016.09.178
10.1016/j.apenergy.2016.05.016
10.1016/j.jpowsour.2012.07.021
10.1016/j.enconman.2018.09.024
10.1016/j.ijhydene.2006.11.032
10.1016/j.egypro.2019.01.392
10.1016/j.energy.2016.02.026
10.1016/j.jpowsour.2016.08.020
10.1016/j.ijhydene.2016.10.076
10.1016/j.ijhydene.2010.10.073
10.1016/j.ijhydene.2007.11.015
10.3390/molecules26020286
10.1080/01430750.2019.1568911
10.1016/j.ijhydene.2018.11.147
10.1016/j.jpowsour.2006.01.099
10.1016/j.ijhydene.2014.05.086
10.1016/j.ijhydene.2010.08.076
10.1016/j.jpowsour.2020.228034
10.24084/repqj13.236
10.1016/j.egypro.2012.08.047
10.1016/j.jpowsour.2007.01.015
10.1016/j.jpowsour.2009.09.004
10.1016/j.ijhydene.2010.12.060
10.1016/j.jpowsour.2006.05.007
10.1016/j.ijheatmasstransfer.2018.10.050
10.1016/j.energy.2016.10.101
10.1016/j.applthermaleng.2019.114464
10.1016/j.ijhydene.2019.07.120
10.1016/j.enconman.2019.112335
10.1016/j.ijhydene.2015.04.113
10.1016/j.jpowsour.2019.227218
10.1080/15435075.2019.1677238
10.1016/j.ijhydene.2012.02.012
10.1016/j.ijhydene.2007.05.044
10.1016/j.fuel.2019.116713
10.1016/j.ijhydene.2016.03.049
10.1016/j.proeng.2014.12.437
10.1016/j.ijhydene.2017.01.017
10.1016/j.ijhydene.2017.01.007
10.1016/j.ijhydene.2017.11.172
10.1016/j.ijhydene.2018.10.032
10.1016/j.ijheatmasstransfer.2018.01.053
10.1016/j.renene.2011.10.008
10.1016/j.enconman.2017.09.009
10.1016/j.energy.2015.10.132
10.1016/j.ijheatmasstransfer.2011.06.037
10.1016/j.jpowsour.2004.06.025
10.1016/j.enconman.2018.11.059
10.1016/j.jpowsour.2003.07.007
10.1504/PCFD.2019.102039
10.1016/j.ijhydene.2017.04.212
10.1016/j.ijhydene.2019.05.205
10.1016/j.ijhydene.2014.11.139
10.1016/S0378-7753(02)00475-5
10.1016/j.ijhydene.2011.01.147
10.1016/j.jpowsour.2007.12.068
10.1007/s13369-015-1890-8
10.1016/j.energy.2018.07.143
10.1016/j.energy.2018.07.127
10.1016/j.ijhydene.2015.04.007
10.1016/j.apenergy.2017.03.008
10.1016/j.jpowsour.2003.11.078
10.1016/j.jpowsour.2015.01.050
10.1016/j.ijhydene.2019.08.151
ContentType Journal Article
Copyright 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH
2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH
– notice: 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202000138
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Engineering Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage 714
ExternalDocumentID 33543591
10_1002_tcr_202000138
TCR202000138
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: RCUK EPSRC
  funderid: EP/P003605/1
– fundername: RCUK EPSRC
  grantid: EP/P003605/1
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
24P
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c4088-a0152d9a7eb272e20d231d155896d00156fe35a60ee87605eeb7fd6423a0b5873
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 03:14:03 EDT 2025
Fri Jul 25 10:46:49 EDT 2025
Wed Feb 19 02:28:09 EST 2025
Thu Apr 24 23:13:08 EDT 2025
Tue Jul 01 00:57:28 EDT 2025
Wed Jan 22 16:29:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fuel cells
channel design
PEMFC
flow field
water management
Language English
License Attribution
2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4088-a0152d9a7eb272e20d231d155896d00156fe35a60ee87605eeb7fd6423a0b5873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000138
PMID 33543591
PQID 2512251955
PQPubID 1006501
PageCount 52
ParticipantIDs proquest_miscellaneous_2487150374
proquest_journals_2512251955
pubmed_primary_33543591
crossref_citationtrail_10_1002_tcr_202000138
crossref_primary_10_1002_tcr_202000138
wiley_primary_10_1002_tcr_202000138_TCR202000138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 79
2018; 166
2018; 161
2020; 20
2020; 164
2019; 10
2013; 64
2019; 16
2019; 19
2020; 205
2011; 54
2020; 12
2008; 33
1996; 143
2017; 152
2016; 302
2011; 196
2018; 43
2012; 99
2019; 442
2017; 208
2018; 174
2018; 9
2018; 176
2019; 20
2007; 173
2020; 457
2007; 9
2013; 232
2006; 162
2020; 217
2016; 41
2019; 158
2010; 195
2012; 28
2006; 161
2006; 160
2014; 97
2014; 592–594
2010; 35
2019; 30
2016; 328
2020; 263
2007; 163
2016; 97
2020; 146
2012; 37
2016; 16
2017; 137
2011; 9
2016; 6
2010; 49
2019; 180
2019; 44
2019; 45
2009; 187
2019; 214
2011; 88
2017; 142
2014; 39
2016; 175
2017; 42(5)
2012; 41
2017; 42
2021; 26
2018; 121
2017; 2
2004; 125
2017; 43
2016; 101
2011; 10
2017; 195
2019; 129
2007; 32
2003; 113
2012; 55
2017; 118
2004; 131
2004; 138
2014; 3
2005; 144
2015; 40
2005; 145
2016; 113
2019; 116
2016; 110
2020; 45
2008; 155
2012; 219
2015; 6
2010
2015; 166
2015; 11
2015; 10
2016; 52
2011; 36
2019; 426
2006; 157
2018; 152
2017; 90
2013; 38
2015; 279
2017; 17
2020
2020; 192
2017; 13
2019
2019; 135
2018
2016
2015
2008; 179
2008; 178
2008; 177
2018; 57
e_1_2_13_120_1
e_1_2_13_143_1
e_1_2_13_166_1
Praveenkumar S. (e_1_2_13_16_1) 2015; 11
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_147_1
e_1_2_13_43_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_162_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
Alvarez-Meaza I. (e_1_2_13_9_1) 2020; 12
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_154_1
e_1_2_13_131_1
e_1_2_13_32_1
e_1_2_13_112_1
e_1_2_13_158_1
Muthukumara M. (e_1_2_13_153_1) 2016; 302
e_1_2_13_135_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_173_1
e_1_2_13_70_1
e_1_2_13_150_1
Jang S.-H. (e_1_2_13_87_1) 2011; 10
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_165_1
e_1_2_13_100_1
e_1_2_13_142_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_169_1
e_1_2_13_104_1
e_1_2_13_86_1
e_1_2_13_146_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_161_1
Kahveci E. E. (e_1_2_13_61_1) 2017; 2
e_1_2_13_91_1
e_1_2_13_95_2
Nguyen T. V. (e_1_2_13_101_1) 2010
e_1_2_13_116_1
e_1_2_13_139_1
e_1_2_13_18_1
Yang Y. (e_1_2_13_99_1) 2017; 43
e_1_2_13_14_1
e_1_2_13_130_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_134_1
e_1_2_13_157_1
e_1_2_13_176_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_172_1
e_1_2_13_71_1
Chen R. (e_1_2_13_177_1) 2018
e_1_2_13_1_1
Abdulla S. (e_1_2_13_79_1) 2020
e_1_2_13_108_1
e_1_2_13_127_1
Sheikh A. (e_1_2_13_78_1) 2019
Lee J. (e_1_2_13_159_1) 2019
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_141_1
e_1_2_13_164_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_126_1
e_1_2_13_145_1
e_1_2_13_168_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
Kumar M. (e_1_2_13_15_1) 2016; 6
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
Limjeerajarus N. (e_1_2_13_111_1) 2019
e_1_2_13_160_1
Muthukumar M. (e_1_2_13_5_1) 2016
e_1_2_13_90_1
e_1_2_13_94_2
e_1_2_13_98_1
Arvay A. (e_1_2_13_123_1) 2015; 6
e_1_2_13_119_1
e_1_2_13_138_1
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_152_1
e_1_2_13_137_1
e_1_2_13_175_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_156_1
e_1_2_13_171_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_149_1
Kahraman H. (e_1_2_13_125_1) 2020
e_1_2_13_121_1
e_1_2_13_144_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_163_1
e_1_2_13_102_1
e_1_2_13_148_1
Muthukumar M. (e_1_2_13_59_1) 2015; 10
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_167_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_80_1
e_1_2_13_140_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_132_1
e_1_2_13_155_1
e_1_2_13_178_1
e_1_2_13_35_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_136_1
e_1_2_13_174_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_170_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_151_1
Xu Y. (e_1_2_13_55_1) 2020
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_129_1
e_1_2_13_89_1
Muthukumar M. (e_1_2_13_6_1) 2020
e_1_2_13_28_1
Abdulla S. (e_1_2_13_77_1) 2020
References_xml – volume: 196
  start-page: 8019
  year: 2011
  end-page: 8030
  publication-title: J. Power Sources
– volume: 13
  start-page: 6462
  year: 2017
  end-page: 6467
  publication-title: J. Adv. Chemistry.
– volume: 129
  start-page: 1151
  year: 2019
  end-page: 1160
  publication-title: Int. J. Heat Mass Transfer
– year: 2016
  publication-title: Ph.D Thesis
– volume: 279
  start-page: 533
  year: 2015
  end-page: 539
  publication-title: J. Power Sources
– volume: 44
  start-page: 7505
  year: 2019
  end-page: 7517
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 5807
  year: 2013
  end-page: 5812
  publication-title: Int. J. Hydrogen Energy
– volume: 328
  start-page: 364
  year: 2016
  end-page: 376
  publication-title: J. Power Sources
– volume: 39
  start-page: 9430
  year: 2014
  end-page: 9439
  publication-title: Int. J. Hydrogen Energy
– year: 2020
  publication-title: Arabian J. Sci. Eng.
– volume: 457
  year: 2020
  publication-title: J. Power Sources
– volume: 426
  start-page: 97
  year: 2019
  end-page: 110
  publication-title: J. Power Sources
– volume: 41
  start-page: 6885
  year: 2016
  end-page: 6893
  publication-title: Int. J. Hydrogen Energy
– volume: 2
  start-page: 155
  year: 2017
  end-page: 163
  publication-title: EJSDR
– volume: 43
  start-page: 10
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 10286
  year: 2012
  end-page: 10298
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 1052
  year: 2008
  end-page: 1066
  publication-title: Int. J. Hydrogen Energy
– volume: 178
  start-page: 103
  year: 2008
  end-page: 117
  publication-title: J. Power Sources
– volume: 43
  start-page: 21928
  year: 2018
  end-page: 21939
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 3415
  year: 2016
  end-page: 3423
  publication-title: Arabian J. Sci. Eng.
– volume: 40
  start-page: 2303
  year: 2015
  end-page: 2311
  publication-title: Int. J. Hydrogen Energy
– volume: 163
  start-page: 933
  year: 2007
  end-page: 942
  publication-title: J. Power Sources
– volume: 195
  start-page: 1122
  year: 2010
  end-page: 1129
  publication-title: J. Power Sources
– volume: 19
  start-page: 515
  year: 2019
  end-page: 529
  publication-title: Fuel Cells
– volume: 10
  start-page: 1183
  year: 2019
  end-page: 1203
  publication-title: J. Knowl. Econ.
– volume: 43
  start-page: 1225
  year: 2018
  end-page: 1234
  publication-title: Arabian J. Sci. Eng.
– volume: 178
  start-page: 174
  year: 2008
  end-page: 180
  publication-title: J. Power Sources
– volume: 44
  start-page: 24036
  year: 2019
  end-page: 24042
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 13415
  year: 2019
  end-page: 13423
  publication-title: Int. J. Hydrogen Energy
– volume: 20
  start-page: 547
  year: 2020
  end-page: 557
  publication-title: Fuel Cells
– volume: 161
  start-page: 28
  year: 2018
  end-page: 37
  publication-title: Energy
– volume: 40
  start-page: 4641
  year: 2015
  end-page: 4648
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2019
  end-page: 5
  publication-title: Int. J. Ambient Energy
– volume: 137
  start-page: 302
  year: 2017
  end-page: 313
  publication-title: Energy
– volume: 79
  start-page: 733
  year: 2015
  end-page: 745
  publication-title: Energy Procedia
– volume: 144
  start-page: 94
  year: 2005
  end-page: 106
  publication-title: J. Power Sources
– volume: 16
  start-page: 1591
  year: 2019
  end-page: 1601
  publication-title: Int. J. Green Energy
– volume: 9
  start-page: 326
  year: 2011
  end-page: 337
  publication-title: Energy Procedia
– volume: 42
  start-page: 25686
  year: 2017
  end-page: 25694
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 7719
  year: 2012
  end-page: 7729
  publication-title: Int. J. Hydrogen Energy
– volume: 20
  start-page: 33
  year: 2020
  end-page: 39
  publication-title: Fuel Cells
– volume: 38
  start-page: 16253
  year: 2013
  end-page: 16263
  publication-title: Int. J. Hydrogen Energy
– year: 2010
  publication-title: Handb. Fuel Cells
– volume: 36
  start-page: 1613
  year: 2011
  end-page: 1627
  publication-title: Int. J. Hydrogen Energy
– volume: 146
  year: 2020
  publication-title: J. Energy Eng.
– volume: 52
  start-page: 2167
  year: 2016
  end-page: 2176
  publication-title: Heat Mass Transfer
– volume: 45
  start-page: 7863
  year: 2019
  end-page: 7872
  publication-title: Int. J. Hydrogen Energy
– volume: 176
  start-page: 227
  year: 2018
  end-page: 235
  publication-title: Energy Convers. Manage.
– volume: 9
  start-page: 497
  year: 2007
  end-page: 503
  publication-title: Electrochem. Commun.
– volume: 11
  start-page: 505
  year: 2015
  end-page: 513
  publication-title: Int. J. Appl. Chem
– volume: 152
  start-page: 10
  year: 2018
  publication-title: Energy
– volume: 592–594
  start-page: 1728
  year: 2014
  end-page: 1732
  publication-title: Appl. Mech. Mater.
– volume: 142
  start-page: 667
  year: 2017
  end-page: 673
  publication-title: Energy Procedia
– volume: 90
  start-page: 363
  year: 2017
  end-page: 371
  publication-title: J. Energy Inst.
– volume: 42
  start-page: 5272
  year: 2017
  end-page: 5283
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 7144
  year: 2015
  end-page: 7158
  publication-title: Int. J. Hydrogen Energy
– volume: 302
  start-page: 305
  year: 2016
  publication-title: Int J AdvEngg Tech/Vol. VII/Issue II/April-June
– year: 2020
  publication-title: Mater. Today Proc.
– volume: 40
  start-page: 8172
  year: 2015
  end-page: 8181
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 4489
  year: 2007
  end-page: 4502
  publication-title: Int. J. Hydrogen Energy
– volume: 121
  start-page: 775
  year: 2018
  end-page: 787
  publication-title: Int. J. Heat Mass Transfer
– volume: 55
  start-page: 1540
  year: 2012
  end-page: 1557
  publication-title: Math. Comput. Model.
– volume: 160
  start-page: 116
  year: 2006
  end-page: 122
  publication-title: J. Power Sources
– volume: 40
  start-page: 15032
  year: 2015
  end-page: 15039
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 3614
  year: 2011
  end-page: 3622
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 12965
  year: 2011
  end-page: 12976
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 671
  year: 2010
  end-page: 681
  publication-title: Int. J. Hydrogen Energy
– volume: 263
  year: 2020
  publication-title: Fuel
– volume: 20
  start-page: 490
  year: 2019
  end-page: 498
  publication-title: J. Ceram. Process. Res.
– volume: 41
  start-page: 10844
  year: 2016
  end-page: 10853
  publication-title: Int. J. Hydrogen Energy
– volume: 64
  start-page: 409
  year: 2013
  end-page: 418
  publication-title: Procedia Eng.
– volume: 44
  start-page: 30644
  year: 2019
  end-page: 30662
  publication-title: Int. J. Hydrogen Energy
– volume: 442
  year: 2019
  publication-title: J. Power Sources
– year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 4819
  year: 2015
  end-page: 4829
  publication-title: Int. J. Hydrogen Energy
– volume: 219
  start-page: 52
  year: 2012
  end-page: 59
  publication-title: J. Power Sources
– volume: 45
  start-page: 10549
  year: 2020
  end-page: 10558
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 907
  year: 2006
  end-page: 919
  publication-title: J. Power Sources
– volume: 180
  start-page: 1217
  year: 2019
  end-page: 1224
  publication-title: Energy Convers. Manage.
– volume: 42
  start-page: 25619
  year: 2017
  end-page: 25629
  publication-title: Int. J. Hydrogen Energy
– volume: 152
  start-page: 31
  year: 2017
  end-page: 44
  publication-title: Energy Convers. Manage.
– volume: 214
  start-page: 738
  year: 2019
  end-page: 748
  publication-title: J. Cleaner Prod.
– volume: 125
  start-page: 40
  year: 2004
  end-page: 51
  publication-title: J. Power Sources
– volume: 12
  start-page: 10
  year: 2020
  publication-title: Sustain.
– start-page: 62
  year: 2015
  end-page: 65
  publication-title: Renew. Energy Power Qual. J.
– volume: 17
  start-page: 27
  year: 2017
  end-page: 36
  publication-title: Fuel Cells
– volume: 135
  start-page: 1823
  year: 2019
  end-page: 1833
  publication-title: J. Therm. Anal. Calorim.
– volume: 40
  start-page: 3739
  year: 2015
  end-page: 3748
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 2265
  year: 2017
  end-page: 2277
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 12469
  year: 2010
  end-page: 12479
  publication-title: Int. J. Hydrogen Energy
– volume: 145
  start-page: 572
  year: 2005
  end-page: 581
  publication-title: J. Power Sources
– volume: 187
  start-page: 407
  year: 2009
  end-page: 414
  publication-title: J. Power Sources
– volume: 45
  start-page: 17833
  year: 2020
  end-page: 17843
  publication-title: Int. J. Hydrogen Energy
– volume: 174
  start-page: 260
  year: 2018
  end-page: 275
  publication-title: Energy Convers. Manage.
– volume: 110
  start-page: 356
  year: 2016
  end-page: 366
  publication-title: Energy Convers. Manage.
– volume: 41
  start-page: 86
  year: 2012
  end-page: 95
  publication-title: Renewable Energy
– volume: 39
  start-page: 21185
  year: 2014
  end-page: 21195
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 15642
  year: 2020
  end-page: 15649
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 15778
  year: 2012
  end-page: 15786
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 104
  year: 2018
  end-page: 117
  publication-title: Energy
– volume: 88
  start-page: 4879
  year: 2011
  end-page: 4890
  publication-title: Appl. Energy
– volume: 3
  start-page: 18
  year: 2014
  end-page: 23
  publication-title: Auto Tech Rev.
– volume: 10
  start-page: 22429
  year: 2015
  end-page: 22435
  publication-title: Int. J. Appl. Eng. Res.
– volume: 57
  start-page: 3953
  year: 2018
  end-page: 3958
  publication-title: Alexandria Eng. J.
– volume: 113
  start-page: 558
  year: 2016
  end-page: 573
  publication-title: Energy
– volume: 208
  start-page: 1083
  year: 2017
  end-page: 1096
  publication-title: Appl. Energy
– start-page: 2018
  year: 2018
  end-page: 01
  publication-title: SAE [Tech. Pap.]
– volume: 42(5)
  start-page: 3185
  year: 2017
  end-page: 3196
  publication-title: Int. J. Hydrogen Energy
– volume: 16
  start-page: 777
  year: 2016
  end-page: 783
  publication-title: Fuel Cells
– year: 2020
  publication-title: AIChE J.
– volume: 30
  start-page: 71
  year: 2019
  end-page: 77
  publication-title: Renew. Energy Focus
– volume: 205
  year: 2020
  publication-title: Energy Convers. Manage.
– volume: 232
  start-page: 199
  year: 2013
  end-page: 208
  publication-title: J. Power Sources
– volume: 138
  start-page: 1
  year: 2004
  end-page: 13
  publication-title: J. Power Sources
– volume: 41
  start-page: 10060
  year: 2016
  end-page: 10070
  publication-title: Int. J. Hydrogen Energy
– volume: 26
  start-page: 286
  year: 2021
  publication-title: Molecules
– volume: 49
  start-page: 689
  year: 2010
  end-page: 696
  publication-title: Chem. Eng. Process.
– volume: 164
  year: 2020
  publication-title: Appl. Therm. Eng.
– volume: 175
  start-page: 212
  year: 2016
  end-page: 217
  publication-title: Appl. Energy
– volume: 54
  start-page: 4462
  year: 2011
  end-page: 4472
  publication-title: Int. J. Heat Mass Transfer
– volume: 39
  start-page: 11186
  year: 2014
  end-page: 11195
  publication-title: Int. J. Hydrogen Energy
– volume: 79
  start-page: 612
  year: 2015
  end-page: 619
  publication-title: Energy Procedia
– volume: 162
  start-page: 327
  year: 2006
  end-page: 339
  publication-title: J. Power Sources
– volume: 42
  start-page: 14708
  year: 2017
  end-page: 14724
  publication-title: Int. J. Hydrogen Energy
– volume: 101
  start-page: 252
  year: 2016
  end-page: 265
  publication-title: Energy
– volume: 155
  start-page: 10
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 116
  year: 2019
  publication-title: Renewable Sustainable Energy Rev.
– volume: 10
  start-page: 1205
  year: 2011
  end-page: 1210
  publication-title: World Renewable Energy Congress
– volume: 42
  start-page: 9210
  year: 2017
  end-page: 9218
  publication-title: Int. J. Hydrogen Energy
– volume: 157
  start-page: 358
  year: 2006
  end-page: 367
  publication-title: J. Power Sources
– volume: 97
  start-page: 400
  year: 2016
  end-page: 410
  publication-title: Energy
– volume: 32
  start-page: 842
  year: 2007
  end-page: 856
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 6795
  year: 2011
  end-page: 6808
  publication-title: Int. J. Hydrogen Energy
– volume: 158
  start-page: 1678
  year: 2019
  end-page: 1684
  publication-title: Energy Procedia
– volume: 45
  start-page: 7848
  year: 2020
  end-page: 7862
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  publication-title: Open Electrochem. J.
– volume: 35
  start-page: 11425
  year: 2010
  end-page: 11436
  publication-title: Int. J. Hydrogen Energy
– volume: 176
  start-page: 99
  year: 2018
  end-page: 109
  publication-title: Energy Convers. Manage.
– volume: 173
  start-page: 210
  year: 2007
  end-page: 221
  publication-title: J. Power Sources
– volume: 118
  start-page: 705
  year: 2017
  end-page: 715
  publication-title: Energy
– volume: 192
  year: 2020
  publication-title: Energy
– volume: 195
  start-page: 278
  year: 2017
  end-page: 288
  publication-title: Appl. Energy
– volume: 37
  start-page: 11904
  year: 2012
  end-page: 11911
  publication-title: Int. J. Hydrogen Energy
– volume: 143
  start-page: L103
  year: 1996
  end-page: L105
  publication-title: J. Electrochem. Soc.
– volume: 177
  start-page: 96
  year: 2008
  end-page: 103
  publication-title: J. Power Sources
– volume: 9
  start-page: 582
  year: 2018
  end-page: 592
  publication-title: Electrocatalysis
– volume: 43
  start-page: 2359
  year: 2018
  end-page: 2368
  publication-title: Int. J. Hydrogen Energy
– year: 2019
  publication-title: Int. J. Energy Res.
– volume: 6
  start-page: 1387
  year: 2016
  publication-title: Asian J. Res. Soc. Sci. Humanit.
– year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 6067
  year: 2011
  end-page: 6072
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  start-page: 134
  year: 2012
  end-page: 139
  publication-title: Energy Procedia
– volume: 166
  start-page: 149
  year: 2015
  end-page: 154
  publication-title: J. Power Sources
– volume: 42
  start-page: 9795
  year: 2017
  end-page: 9805
  publication-title: Int. J. Hydrogen Energy
– volume: 179
  start-page: 305
  year: 2008
  end-page: 309
  publication-title: J. Power Sources
– volume: 113
  start-page: 11
  year: 2003
  end-page: 18
  publication-title: J. Power Sources
– volume: 195
  start-page: 13
  year: 2017
  end-page: 22
  publication-title: Appl. Energy
– volume: 42
  start-page: 21546
  year: 2017
  end-page: 21558
  publication-title: Int. J. Hydrogen Energy
– volume: 592–594
  start-page: 1672
  year: 2014
  end-page: 1676
  publication-title: Appl. Mech. Mater.
– volume: 97
  start-page: 1534
  year: 2014
  end-page: 1542
  publication-title: Procedia Eng.
– volume: 131
  start-page: 175
  year: 2004
  end-page: 181
  publication-title: J. Power Sources
– volume: 160
  start-page: 398
  year: 2006
  end-page: 406
  publication-title: J. Power Sources
– volume: 99
  start-page: 67
  year: 2012
  end-page: 79
  publication-title: Appl. Energy
– volume: 166
  start-page: 281
  year: 2018
  end-page: 296
  publication-title: Energy Convers. Manage.
– volume: 217
  year: 2020
  publication-title: Chem. Eng. Sci.
– volume: 90
  start-page: 752
  year: 2017
  end-page: 763
  publication-title: J. Energy Inst.
– volume: 41
  start-page: 2867
  year: 2016
  end-page: 2874
  publication-title: Int. J. Hydrogen Energy
– volume: 19
  start-page: 328
  year: 2019
  publication-title: Prog. Comput. Fluid Dyn. An Int. J.
– volume: 39
  start-page: 16694
  year: 2014
  end-page: 16705
  publication-title: Int. J. Hydrogen Energy
– volume: 195
  start-page: 62
  year: 2010
  end-page: 68
  publication-title: J. Power Sources
– ident: e_1_2_13_130_1
  doi: 10.1016/j.jclepro.2018.12.293
– ident: e_1_2_13_144_1
  doi: 10.1016/j.egypro.2015.11.541
– ident: e_1_2_13_129_1
  doi: 10.1016/j.joei.2016.04.006
– ident: e_1_2_13_24_1
  doi: 10.1016/j.apenergy.2011.06.034
– ident: e_1_2_13_34_1
  doi: 10.1016/j.enconman.2015.12.036
– ident: e_1_2_13_58_1
  doi: 10.4028/www.scientific.net/AMM.592-594.1728
– ident: e_1_2_13_112_1
  doi: 10.1016/j.jpowsour.2011.05.029
– ident: e_1_2_13_160_1
  doi: 10.1016/j.ijhydene.2017.04.079
– ident: e_1_2_13_14_1
  doi: 10.24297/jac.v13i9.5739
– ident: e_1_2_13_30_1
  doi: 10.1016/j.ijhydene.2016.11.042
– ident: e_1_2_13_23_1
  doi: 10.1016/j.enconman.2019.112386
– ident: e_1_2_13_127_1
  doi: 10.1016/j.energy.2017.07.021
– ident: e_1_2_13_13_1
  doi: 10.1016/j.ijhydene.2019.03.244
– ident: e_1_2_13_29_1
  doi: 10.1016/j.jpowsour.2005.07.064
– ident: e_1_2_13_104_1
  doi: 10.1016/j.jpowsour.2013.01.020
– ident: e_1_2_13_52_1
  doi: 10.1016/j.joei.2016.07.002
– ident: e_1_2_13_110_1
  doi: 10.1016/j.ijhydene.2013.01.084
– ident: e_1_2_13_64_1
  doi: 10.1016/j.enconman.2018.04.018
– volume: 12
  start-page: 10
  year: 2020
  ident: e_1_2_13_9_1
  publication-title: Sustain.
– ident: e_1_2_13_53_1
  doi: 10.1007/s10973-018-7270-3
– ident: e_1_2_13_82_1
  doi: 10.1016/j.ref.2019.05.002
– ident: e_1_2_13_85_1
  doi: 10.1016/j.jpowsour.2007.12.017
– volume: 2
  start-page: 155
  year: 2017
  ident: e_1_2_13_61_1
  publication-title: EJSDR
– ident: e_1_2_13_89_1
  doi: 10.1002/fuce.201600096
– year: 2016
  ident: e_1_2_13_5_1
  publication-title: Ph.D Thesis
– ident: e_1_2_13_149_1
  doi: 10.1002/fuce.201600141
– ident: e_1_2_13_132_1
  doi: 10.1016/j.ijhydene.2010.07.052
– ident: e_1_2_13_152_1
  doi: 10.4028/www.scientific.net/AMM.592-594.1672
– ident: e_1_2_13_122_1
  doi: 10.1016/j.ijhydene.2014.10.069
– ident: e_1_2_13_93_1
– ident: e_1_2_13_1_1
  doi: 10.1365/s40112-014-0568-z
– ident: e_1_2_13_21_1
  doi: 10.1016/j.jpowsour.2007.11.065
– ident: e_1_2_13_175_1
  doi: 10.1016/j.jpowsour.2019.04.018
– ident: e_1_2_13_3_1
– ident: e_1_2_13_162_1
  doi: 10.1016/j.ijhydene.2020.04.023
– ident: e_1_2_13_174_1
  doi: 10.1016/j.jpowsour.2007.12.055
– ident: e_1_2_13_107_1
  doi: 10.1016/j.ijhydene.2013.09.081
– ident: e_1_2_13_165_1
  doi: 10.1016/j.egypro.2011.09.035
– ident: e_1_2_13_11_1
  doi: 10.1007/s12678-017-0450-2
– ident: e_1_2_13_43_1
  doi: 10.1016/j.energy.2018.04.005
– ident: e_1_2_13_88_1
  doi: 10.1016/j.apenergy.2017.09.044
– year: 2019
  ident: e_1_2_13_111_1
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 1205
  year: 2011
  ident: e_1_2_13_87_1
  publication-title: World Renewable Energy Congress
– ident: e_1_2_13_92_1
  doi: 10.36410/jcpr.2019.20.5.490
– ident: e_1_2_13_83_1
  doi: 10.1016/j.ijhydene.2017.04.001
– ident: e_1_2_13_41_1
  doi: 10.1061/(ASCE)EY.1943-7897.0000701
– ident: e_1_2_13_74_1
  doi: 10.1016/j.apenergy.2017.03.022
– ident: e_1_2_13_71_1
  doi: 10.1016/j.elecom.2006.10.031
– ident: e_1_2_13_114_1
  doi: 10.1016/j.ijhydene.2014.04.078
– ident: e_1_2_13_106_1
  doi: 10.1016/j.jpowsour.2008.11.047
– ident: e_1_2_13_142_1
  doi: 10.1016/j.ijhydene.2014.03.243
– ident: e_1_2_13_102_1
  doi: 10.1016/j.jpowsour.2006.01.063
– ident: e_1_2_13_145_1
  doi: 10.1016/j.egypro.2015.11.559
– ident: e_1_2_13_20_1
  doi: 10.1016/j.ijhydene.2009.10.086
– ident: e_1_2_13_155_1
  doi: 10.1016/j.ijhydene.2015.01.037
– ident: e_1_2_13_7_1
  doi: 10.1002/fuce.201800171
– ident: e_1_2_13_2_1
  doi: 10.5772/intechopen.89736
– year: 2019
  ident: e_1_2_13_159_1
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_13_119_1
  doi: 10.1007/s00231-015-1737-6
– ident: e_1_2_13_140_1
  doi: 10.1016/j.ijhydene.2011.02.099
– ident: e_1_2_13_50_1
  doi: 10.1016/j.energy.2016.07.079
– ident: e_1_2_13_56_1
  doi: 10.1016/j.mcm.2011.10.047
– ident: e_1_2_13_22_1
  doi: 10.1016/j.energy.2019.116670
– year: 2020
  ident: e_1_2_13_55_1
  publication-title: AIChE J.
– ident: e_1_2_13_168_1
  doi: 10.1016/j.jpowsour.2006.10.015
– year: 2019
  ident: e_1_2_13_78_1
  publication-title: Int. J. Energy Res.
– ident: e_1_2_13_36_1
  doi: 10.1016/j.rser.2019.109420
– ident: e_1_2_13_176_1
  doi: 10.1016/j.jpowsour.2009.06.107
– ident: e_1_2_13_133_1
  doi: 10.1016/j.ijhydene.2015.01.039
– ident: e_1_2_13_32_1
  doi: 10.1016/j.ces.2020.115499
– ident: e_1_2_13_100_1
  doi: 10.1149/1.1836666
– volume: 6
  start-page: 1387
  year: 2016
  ident: e_1_2_13_15_1
  publication-title: Asian J. Res. Soc. Sci. Humanit.
– ident: e_1_2_13_80_1
  doi: 10.1016/j.ijhydene.2019.01.266
– ident: e_1_2_13_115_1
  doi: 10.1016/j.ijhydene.2019.09.113
– ident: e_1_2_13_131_1
  doi: 10.1002/fuce.201900124
– ident: e_1_2_13_134_1
  doi: 10.1016/j.jpowsour.2005.02.066
– ident: e_1_2_13_31_1
  doi: 10.1016/j.ijhydene.2016.03.189
– ident: e_1_2_13_65_1
  doi: 10.1002/fuce.202000002
– ident: e_1_2_13_68_1
  doi: 10.1016/j.jpowsour.2007.08.037
– ident: e_1_2_13_96_1
  doi: 10.1016/j.ijhydene.2020.04.238
– ident: e_1_2_13_147_1
  doi: 10.1016/j.jpowsour.2006.06.083
– ident: e_1_2_13_18_1
  doi: 10.1007/978-1-4939-7789-5_151
– ident: e_1_2_13_39_1
  doi: 10.1016/j.ijhydene.2016.03.028
– start-page: 2018
  year: 2018
  ident: e_1_2_13_177_1
  publication-title: SAE [Tech. Pap.]
– ident: e_1_2_13_42_1
  doi: 10.1016/j.cep.2009.11.003
– volume: 43
  start-page: 10
  year: 2017
  ident: e_1_2_13_99_1
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_13_17_1
  doi: 10.1016/j.proeng.2013.09.114
– ident: e_1_2_13_67_1
  doi: 10.1007/s13369-017-2813-7
– ident: e_1_2_13_28_1
  doi: 10.1016/j.jpowsour.2004.12.018
– ident: e_1_2_13_81_1
  doi: 10.1016/j.ijhydene.2015.08.077
– ident: e_1_2_13_150_1
  doi: 10.1016/j.ijhydene.2012.04.028
– ident: e_1_2_13_137_1
  doi: 10.1016/j.ijhydene.2011.07.017
– ident: e_1_2_13_10_1
– ident: e_1_2_13_4_1
  doi: 10.1016/j.aej.2018.03.010
– ident: e_1_2_13_90_1
  doi: 10.1016/j.ijhydene.2015.01.175
– ident: e_1_2_13_97_1
  doi: 10.1149/1.2976356
– ident: e_1_2_13_164_1
  doi: 10.1016/j.enconman.2018.08.104
– ident: e_1_2_13_25_1
  doi: 10.1016/j.ijhydene.2012.03.150
– ident: e_1_2_13_91_1
  doi: 10.1016/j.ijhydene.2015.10.148
– ident: e_1_2_13_126_1
  doi: 10.1016/j.ijhydene.2016.04.228
– ident: e_1_2_13_8_1
  doi: 10.1007/s13132-018-0523-3
– year: 2020
  ident: e_1_2_13_79_1
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 22429
  year: 2015
  ident: e_1_2_13_59_1
  publication-title: Int. J. Appl. Eng. Res.
– ident: e_1_2_13_113_1
  doi: 10.1016/j.apenergy.2012.04.011
– ident: e_1_2_13_139_1
  doi: 10.1016/j.enconman.2018.08.041
– ident: e_1_2_13_86_1
  doi: 10.1016/j.egypro.2017.12.110
– ident: e_1_2_13_69_1
  doi: 10.1016/j.ijhydene.2012.05.091
– ident: e_1_2_13_173_1
  doi: 10.1016/j.ijhydene.2016.09.178
– ident: e_1_2_13_171_1
  doi: 10.1016/j.apenergy.2016.05.016
– volume: 11
  start-page: 505
  year: 2015
  ident: e_1_2_13_16_1
  publication-title: Int. J. Appl. Chem
– ident: e_1_2_13_170_1
  doi: 10.1016/j.jpowsour.2012.07.021
– ident: e_1_2_13_45_1
  doi: 10.1016/j.enconman.2018.09.024
– ident: e_1_2_13_138_1
  doi: 10.1016/j.ijhydene.2006.11.032
– ident: e_1_2_13_163_1
  doi: 10.1016/j.egypro.2019.01.392
– ident: e_1_2_13_60_1
  doi: 10.1016/j.energy.2016.02.026
– year: 2020
  ident: e_1_2_13_125_1
  publication-title: Arabian J. Sci. Eng.
– ident: e_1_2_13_172_1
  doi: 10.1016/j.jpowsour.2016.08.020
– ident: e_1_2_13_40_1
  doi: 10.1016/j.ijhydene.2016.10.076
– ident: e_1_2_13_146_1
  doi: 10.1016/j.ijhydene.2010.10.073
– ident: e_1_2_13_57_1
  doi: 10.1016/j.ijhydene.2007.11.015
– ident: e_1_2_13_95_2
  doi: 10.3390/molecules26020286
– ident: e_1_2_13_109_1
  doi: 10.1080/01430750.2019.1568911
– ident: e_1_2_13_72_1
  doi: 10.1016/j.ijhydene.2018.11.147
– year: 2020
  ident: e_1_2_13_77_1
  publication-title: Arabian J. Sci. Eng.
– ident: e_1_2_13_66_1
  doi: 10.1016/j.jpowsour.2006.01.099
– ident: e_1_2_13_105_1
  doi: 10.1016/j.ijhydene.2014.05.086
– volume: 6
  start-page: 1
  year: 2015
  ident: e_1_2_13_123_1
  publication-title: Open Electrochem. J.
– ident: e_1_2_13_98_1
  doi: 10.1016/j.ijhydene.2010.08.076
– ident: e_1_2_13_37_1
  doi: 10.1016/j.jpowsour.2020.228034
– ident: e_1_2_13_70_1
  doi: 10.24084/repqj13.236
– ident: e_1_2_13_118_1
  doi: 10.1016/j.egypro.2012.08.047
– ident: e_1_2_13_169_1
  doi: 10.1016/j.jpowsour.2007.01.015
– ident: e_1_2_13_38_1
  doi: 10.1016/j.jpowsour.2009.09.004
– ident: e_1_2_13_103_1
  doi: 10.1016/j.ijhydene.2010.12.060
– ident: e_1_2_13_156_1
  doi: 10.1016/j.jpowsour.2006.05.007
– ident: e_1_2_13_19_1
  doi: 10.1016/j.ijheatmasstransfer.2018.10.050
– ident: e_1_2_13_35_1
  doi: 10.1016/j.energy.2016.10.101
– ident: e_1_2_13_49_1
  doi: 10.1016/j.applthermaleng.2019.114464
– ident: e_1_2_13_124_1
  doi: 10.1016/j.ijhydene.2019.07.120
– ident: e_1_2_13_135_1
  doi: 10.1016/j.enconman.2019.112335
– year: 2010
  ident: e_1_2_13_101_1
  publication-title: Handb. Fuel Cells
– ident: e_1_2_13_46_1
  doi: 10.1016/j.ijhydene.2015.04.113
– ident: e_1_2_13_54_1
  doi: 10.1016/j.jpowsour.2019.227218
– ident: e_1_2_13_121_1
  doi: 10.1080/15435075.2019.1677238
– ident: e_1_2_13_116_1
  doi: 10.1016/j.ijhydene.2012.02.012
– ident: e_1_2_13_148_1
  doi: 10.1016/j.ijhydene.2007.05.044
– ident: e_1_2_13_154_1
  doi: 10.1016/j.fuel.2019.116713
– ident: e_1_2_13_62_1
  doi: 10.1016/j.ijhydene.2016.03.049
– ident: e_1_2_13_141_1
  doi: 10.1016/j.proeng.2014.12.437
– year: 2020
  ident: e_1_2_13_6_1
  publication-title: Mater. Today Proc.
– ident: e_1_2_13_12_1
  doi: 10.1016/j.ijhydene.2017.01.017
– ident: e_1_2_13_120_1
  doi: 10.1016/j.ijhydene.2017.01.007
– ident: e_1_2_13_44_1
  doi: 10.1016/j.ijhydene.2017.11.172
– ident: e_1_2_13_27_1
  doi: 10.1016/j.ijhydene.2018.10.032
– ident: e_1_2_13_128_1
  doi: 10.1016/j.ijheatmasstransfer.2018.01.053
– ident: e_1_2_13_117_1
  doi: 10.1016/j.renene.2011.10.008
– ident: e_1_2_13_158_1
  doi: 10.1016/j.enconman.2017.09.009
– ident: e_1_2_13_167_1
  doi: 10.1016/j.energy.2015.10.132
– ident: e_1_2_13_157_1
  doi: 10.1016/j.ijheatmasstransfer.2011.06.037
– ident: e_1_2_13_166_1
  doi: 10.1016/j.jpowsour.2004.06.025
– ident: e_1_2_13_75_1
  doi: 10.1016/j.enconman.2018.11.059
– ident: e_1_2_13_108_1
  doi: 10.1016/j.jpowsour.2003.07.007
– ident: e_1_2_13_143_1
  doi: 10.1504/PCFD.2019.102039
– ident: e_1_2_13_73_1
  doi: 10.1016/j.ijhydene.2017.04.212
– ident: e_1_2_13_51_1
  doi: 10.1016/j.ijhydene.2019.05.205
– ident: e_1_2_13_26_1
  doi: 10.1016/j.ijhydene.2014.11.139
– ident: e_1_2_13_151_1
  doi: 10.1016/S0378-7753(02)00475-5
– ident: e_1_2_13_76_1
  doi: 10.1016/j.ijhydene.2011.01.147
– ident: e_1_2_13_178_1
  doi: 10.1016/j.jpowsour.2007.12.068
– ident: e_1_2_13_33_1
  doi: 10.1007/s13369-015-1890-8
– volume: 302
  start-page: 305
  year: 2016
  ident: e_1_2_13_153_1
  publication-title: Int J AdvEngg Tech/Vol. VII/Issue II/April-June
– ident: e_1_2_13_161_1
  doi: 10.1016/j.energy.2018.07.143
– ident: e_1_2_13_48_1
  doi: 10.1016/j.energy.2018.07.127
– ident: e_1_2_13_63_1
  doi: 10.1016/j.ijhydene.2015.04.007
– ident: e_1_2_13_84_1
  doi: 10.1016/j.apenergy.2017.03.008
– ident: e_1_2_13_136_1
  doi: 10.1016/j.jpowsour.2003.11.078
– ident: e_1_2_13_47_1
  doi: 10.1016/j.jpowsour.2015.01.050
– ident: e_1_2_13_94_2
  doi: 10.1016/j.ijhydene.2019.08.151
SSID ssj0011477
Score 2.5653818
SecondaryResourceType review_article
Snippet Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 663
SubjectTerms Baffles
channel design
Channels
Electric power generation
Fins
Flow channels
flow field
Flow rates
Fuel cells
Fuel technology
Inserts
Mass flow rate
Material properties
Parameters
PEMFC
Performance enhancement
Physical properties
Proton exchange membrane fuel cells
Protons
Relative humidity
Tapering
Water management
Title Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000138
https://www.ncbi.nlm.nih.gov/pubmed/33543591
https://www.proquest.com/docview/2512251955
https://www.proquest.com/docview/2487150374
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ui158P-pjiSCerHaTptkeZbWIsLKIgrfapokH61b2geLJ_-A_9Jc4abqVVRTEY2lC2klm8k3yzQzAHtVBFnqau55KmOtrxd0W4gY3lMITKa4CzUy8c-ciOLv2z2_4TVXn1MTC2PwQ9YGb0YzSXhsFT9LB0WfSUDRU6N5Re9eGNtjwtQwouqzTRyHULysvmsqtLvoVYZVjE_sfTfSe3JO-Ac1J3FpuPNEC3I4_2fJN7g9Hw_RQvnzJ5viPf1qE-QqUkmO7ipZgSvWWYbY9rgW3Anfdz_gCUlEPSaFJt18gdiSnzzZ-mHTUAw7fUyQaqZy0VZ4PiDnpJSdVHZYhifLiiUSGN0dOSvbIgLy_vhF7R7EK19HpVfvMrUo0uNJH--QmiCZoFiYCHXRBFfUyxIsZYpRWGGRlmLZWjCeBpxSaXY8rlQqdoc_DEi_lLcHWYKZX9NQGkCaV3HBaA50xXzdlS_qKByJIhERpSOHAwXiSYlnlLzdlNPLYZl6mMUovrqXnwH7d_NEm7vip4fZ4xuNKfwexQX0mppdzB3br1yh0c52CYixG2AZ9PYTTTPgOrNuVUo_EGEccGjYd8Mr5_v0T4qv2Zf2w-fcuWzBHDdWmJBRtw8ywP1I7iJWGaQOmqd9tlGrxAWJyCck
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLefQVHq2Rqp4aNhvH8eaIFqJtu7tCaFfaW5Q4NoemSbUPgTjxH_iH_BLGdjawrahU9RjFjp2xx_7GnvkG4JOvwjzyFHM9mVI3UJK5HcQNbiS4xzOcBYrqeOfBMOyNg28TNnkSxW_5IZoDN60ZZr3WCq4PpFuPrKG4UqF959vLthewobN6G6PqoiGQQrBvci_q3K0uWhZRzbKJH2itVF_dlf6AmqvI1Ww98Raky05bj5Mfx4t5dixufuNz_J-_2oZXNS4lJ3Yi7cCaLHdhs7tMB_caLs8fQwxI7X1IKkXOpxXCR3J2bUOIyUD-xPZLSeKFLEhXFsWM6MNeclqnYpmTuKiuSKxd58ipcSCZkfvbO2KvKd7AOD4bdXtunaXBFQEuUW6KgMLPo5Sjjc596Xs5QsYcYUonCnMTqa0kZWnoSYkrr8ekzLjK0eyhqZexDqdvYb2sSvkeSNsXTLu1hiqngWqLjggkC3mYcoHSENyBL8tRSkRNYa4zaRSJJV_2E5Re0kjPgc9N8V-Wu-O5ggfLIU9qFZ4lGvjpsF7GHDhqXqPQ9Y0KirFaYBk09xBRUx448M5OlaYlShlC0ajtgGcG_O9dSEbdi-Zh79-rfITN3mjQT_pfh9_34aWvPW-Mf9EBrM-nC3mI0GmefTDa8QDAAw0N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhUulLY8UqB1paonAt44jpNjlRBtH7taIVbiFhLH7qFhg9hdUfXU_9B_2F_COM4GbSsqIY5R7NgZz4y_secB8N7TQRlRzV2qcub6WnE3RNzgRlJQUSAXaGbinQfDoD_2P5_z87bOqYmFsfkhugM3IxmNvjYCflXq47ukoaio0Lzz7F3bCjz1Axoatk5Ou_xRiPWb0oumdKuLhkXUJtnEDxwvdV_elP5BmsvAtdl50udwsZizdTj5fjSfFUfy51_pHB_xU5uw0aJS8tGy0Qt4oiYvYS1eFIN7Bd9GdwEGpPU9JLUmo-sawSM5-WEDiMlAXeLwE0XSuapIrKpqSsxRL0naQiwzklb1DUmN4xxJGveRKfnz6zexlxRbME5PzuK-29ZocKWPCsrNEU54ZZQLtNCFpzxaImAsEaSEUVA2cdpaMZ4HVCnUu5QrVQhdotHDclrwULBtWJ3UE7ULpOdJbpxaA10yX_dkKH3FAxHkQiI1pHDgcLFImWwTmJs6GlVmUy97GVIv66jnwIeu-ZXN3HFfw_3FimetAE8zA_tMUC_nDrzrXiPRzX0KkrGeYxs09hBPM-E7sGM5pRuJMY5ANOo5QJv1_v8UsrP4tHt4_fAub-HZKEmzr5-GX_Zg3TNuN41z0T6szq7n6gBx06x408jGLZ8lC8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Studies+of+Proton+Exchange+Membrane+Fuel+Cells+with+Different+Flow+Field+Designs+-+Review&rft.jtitle=Chemical+record&rft.au=Marappan%2C+Muthukumar&rft.au=Palaniswamy%2C+Karthikeyan&rft.au=Velumani%2C+Thiagarajan&rft.au=Chul%2C+Kim+Byung&rft.date=2021-04-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=21&rft.issue=4&rft.spage=663&rft_id=info:doi/10.1002%2Ftcr.202000138&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon