Switching it Up: The Promise of Stimuli‐Responsive Polymer Systems in Biomedical Science
Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine‐tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delive...
Saved in:
Published in | Chemical record Vol. 24; no. 2; pp. e202300217 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine‐tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli‐responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.
Polymeric stimuli‐responsive systems represent a group of materials that have experienced significant advancements in recent decades. These materials exhibit a physicochemical response based on various factors, such as temperature, pH, light, magnetism, insulin, and others. The promising future of biomedical sciences lies in the rapid and continuous development of these systems. |
---|---|
AbstractList | Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine‐tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli‐responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.
Polymeric stimuli‐responsive systems represent a group of materials that have experienced significant advancements in recent decades. These materials exhibit a physicochemical response based on various factors, such as temperature, pH, light, magnetism, insulin, and others. The promising future of biomedical sciences lies in the rapid and continuous development of these systems. Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications. Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications. |
Author | Donchak, Volodymyr Raczkowska, Joanna Stetsyshyn, Yurij Shymborska, Yana Vasiichuk, Viktor Budkowski, Andrzej Melnyk, Yuriy |
Author_xml | – sequence: 1 givenname: Yana orcidid: 0000-0002-6342-6071 surname: Shymborska fullname: Shymborska, Yana organization: Jagiellonian University – sequence: 2 givenname: Andrzej surname: Budkowski fullname: Budkowski, Andrzej email: andrzej.budkowski@uj.edu.pl organization: Jagiellonian University – sequence: 3 givenname: Joanna orcidid: 0000-0002-2307-4614 surname: Raczkowska fullname: Raczkowska, Joanna organization: Jagiellonian University – sequence: 4 givenname: Volodymyr surname: Donchak fullname: Donchak, Volodymyr organization: Lviv Polytechnic National University – sequence: 5 givenname: Yuriy surname: Melnyk fullname: Melnyk, Yuriy organization: Lviv Polytechnic National University – sequence: 6 givenname: Viktor surname: Vasiichuk fullname: Vasiichuk, Viktor organization: Lviv Polytechnic National University – sequence: 7 givenname: Yurij orcidid: 0000-0002-6498-2619 surname: Stetsyshyn fullname: Stetsyshyn, Yurij email: yrstecushun@ukr.net organization: Lviv Polytechnic National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37668274$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtuFDEUhi0URC5Q0iJLNDQTji8zHtORFQSkSETZpaGxPLaXOJqxF9tDtB2PwDPmSTBsSKRIUJ0jne8_t_8Q7YUYHELPCRwTAPq6mHRMgbKaE_EIHZCW9g10kuz9yUXTSyn30WHOVwCEcCGeoH0muq6ngh-gL8trX8ylD1-xL_jz5g1eXTp8nuLks8NxjZfFT_Pob378vHB5E0P232s9jtvJJbzc5uKmjH3AJz5OznqjR7w03gXjnqLHaz1m9-w2HqHV-3erxYfm7NPpx8Xbs8Zw6EWjuWMDt51uXc-NAGbBWgFm4FTLwVEu1lwOnFgumaRgqaCaW2tBAG1byo7Qq13bTYrfZpeLqqsbN446uDhnRfuOMGAt8Iq-fIBexTmFupyikrKWCA6kUi9uqXmoJ6lN8pNOW_X3aRVodoBJMefk1ncIAfXbFFVNUXemVJ494I0vuvgYStJ-_KdK7FTXfnTb_49Qq8XFvfIXdDefNw |
CitedBy_id | crossref_primary_10_1002_pat_70093 crossref_primary_10_3390_pharmaceutics15122671 crossref_primary_10_3390_polym16091233 crossref_primary_10_3390_gels10060410 crossref_primary_10_3390_gels10030165 crossref_primary_10_1002_smtd_202301341 crossref_primary_10_1007_s00289_024_05608_z crossref_primary_10_1177_08927057241265326 crossref_primary_10_1016_j_eurpolymj_2024_113473 crossref_primary_10_1021_acsami_4c01478 crossref_primary_10_3390_polym16081031 crossref_primary_10_1016_j_ijbiomac_2025_141394 crossref_primary_10_1063_5_0216489 crossref_primary_10_3390_pharmaceutics16040538 crossref_primary_10_1039_D5TC00047E crossref_primary_10_3390_polym15244715 crossref_primary_10_3390_coatings14070845 crossref_primary_10_3390_gels10070451 crossref_primary_10_1016_j_surfcoat_2025_131855 crossref_primary_10_3390_pharmaceutics16020231 crossref_primary_10_3390_gels9120984 crossref_primary_10_3390_gels9120982 crossref_primary_10_2174_0113816128304924240527113111 crossref_primary_10_3390_polym16152138 crossref_primary_10_1039_D4PY00669K crossref_primary_10_1002_mabi_202400274 crossref_primary_10_1002_adsu_202400050 crossref_primary_10_3390_polym16091248 crossref_primary_10_1002_jbm_a_37883 crossref_primary_10_3390_polym16070907 crossref_primary_10_1016_j_colsurfa_2024_134528 crossref_primary_10_3390_gels10030183 crossref_primary_10_3390_md22010018 crossref_primary_10_1039_D4TB02217C crossref_primary_10_1016_j_molliq_2024_125328 crossref_primary_10_3390_gels9120952 crossref_primary_10_3390_jfb14110541 crossref_primary_10_3390_molecules29051039 crossref_primary_10_3390_polym15244652 crossref_primary_10_1002_tcr_202400008 crossref_primary_10_3390_polym16060830 crossref_primary_10_1016_j_eurpolymj_2023_112718 crossref_primary_10_3390_gels10040256 crossref_primary_10_1080_15421406_2024_2353552 crossref_primary_10_3390_polym16070999 crossref_primary_10_3390_ma17010151 crossref_primary_10_3390_electronics12244997 crossref_primary_10_3390_molecules28196972 crossref_primary_10_3390_gels9100802 |
Cites_doi | 10.1021/bm200576h 10.1016/j.ccr.2013.04.022 10.1002/anie.201106777 10.1016/j.colsurfb.2014.03.049 10.1039/C8TB00088C 10.1126/sciadv.aaz0330 10.1126/science.279.5359.2077 10.1002/marc.201800837 10.1002/chem.201503380 10.1021/ja053648q 10.1007/s12274-015-0759-1 10.1021/acs.langmuir.5b02285 10.1021/la903007v 10.1007/s13233-012-0059-5 10.1021/la049807l 10.1039/C3PY01192E 10.1002/mabi.201400325 10.1016/j.actbio.2018.03.018 10.1002/marc.201800699 10.23939/chcht11.04.449 10.1021/mz400227y 10.1002/adem.200700355 10.1021/ma202059t 10.1021/acs.biomac.9b00030 10.1016/j.cis.2016.12.004 10.1007/3-540-12994-4_4 10.1016/0022-2313(75)90003-4 10.1007/s10965-020-02335-7 10.1111/ics.12267 10.1039/b801110a 10.1371/journal.pone.0076196 10.1039/c0ay00627k 10.1002/marc.201400346 10.1002/anie.201006506 10.1021/ja2035909 10.1039/D2SM01621D 10.3762/bjnano.10.233 10.1016/j.jbiotec.2020.12.003 10.1007/s00396-022-04959-1 10.1016/j.vascn.2014.11.003 10.1021/acsami.7b00136 10.1002/chem.200802145 10.1016/j.ejps.2014.02.016 10.1021/ja408655n 10.1002/anie.201403147 10.1016/j.progpolymsci.2015.04.002 10.1002/anie.202114687 10.3390/pharmaceutics15041307 10.1186/1559-4106-8-19 10.1002/ejoc.200801269 10.1007/12_2010_57 10.1039/C6CC00500D 10.1016/j.colsurfa.2022.128525 10.1109/EMBC.2013.6609828 10.1002/anie.200801202 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M 10.1038/s41467-020-17698-0 10.1039/C3PY01202F 10.1016/j.matlet.2006.11.079 10.1021/la700956b 10.1002/adma.200304621 10.1021/ol048065k 10.1021/ma0255128 10.1021/ma061617p 10.1039/c2jm00032f 10.1002/pola.26735 10.1038/373049a0 10.1016/j.apsusc.2017.03.001 10.1007/978-3-662-08393-2_3 10.1007/s00396-020-04750-0 10.1016/j.progpolymsci.2021.101386 10.1038/nmat2614 10.1021/ma048620y 10.1111/j.1751-1097.1992.tb04202.x 10.1016/j.biomaterials.2009.07.020 10.1557/jmr.2014.392 10.1039/C3CS60181A 10.1002/adfm.201909047 10.1021/bm049737x 10.1021/la200160q 10.1016/j.chroma.2008.01.056 10.1039/C6PY01872F 10.1021/acsami.2c20395 10.1039/C7TB00052A 10.1016/j.apsusc.2022.154201 10.1039/C5CS00194C 10.1093/rb/rbu011 10.1016/j.polymer.2011.08.046 10.1021/acs.langmuir.6b02946 10.1016/j.dyepig.2020.109038 10.1016/j.progpolymsci.2019.101164 10.1021/acsmacrolett.5b00729 10.1039/C8BM00019K 10.1016/j.jconrel.2017.10.041 10.1021/la804197j 10.1039/C6PY01101B 10.1016/j.jcis.2012.08.007 10.1111/j.1872-034X.2008.00371.x 10.1046/j.1432-1327.2000.01606.x 10.3390/pharmaceutics10030136 10.1021/la971304a 10.1016/S0305-7372(03)00106-3 10.1016/B978-0-08-102416-4.00005-3 10.1177/0883911509353481 10.1039/B913594D 10.1021/bm060090l 10.1006/bbrc.1993.1853 10.1073/pnas.0737381100 10.1039/C9RA10874B 10.1021/ma062925q 10.1016/j.ejpb.2008.09.021 10.1002/pola.24137 10.1007/s00396-017-4052-6 10.23939/chcht12.03.318 10.1002/anie.201100708 10.1021/ed076p967 10.1039/C6PY02004F 10.1007/978-3-030-46923-8_5 10.1039/C7SM02285A 10.1021/bm501591s 10.1016/j.ijpharm.2006.05.015 10.1016/j.ijpharm.2007.01.037 10.1016/j.jconrel.2010.02.024 10.3390/pharmaceutics15020405 10.3390/app11188746 10.1016/0168-3659(92)90073-Z 10.1007/s13204-019-00987-6 10.1039/C6RA07223B 10.1002/adma.201102181 10.2174/1574888X15666200101122505 10.1295/polymj.PJ2007126 10.1002/asia.201100244 10.1016/0003-9861(77)90311-3 10.1039/C2TB00092J 10.18388/abp.2015_1007 10.1039/C4RA10631H 10.1039/c3cs35499g 10.1016/j.polymer.2012.03.011 10.3390/ma14061417 10.1038/s41929-017-0003-3 10.1016/j.msec.2005.08.026 10.1021/ja0398565 10.1021/ja00191a076 10.1088/1468-6996/16/1/014804 10.1016/j.jcis.2013.08.007 10.1016/j.envres.2023.115772 10.1039/c3cs60058k |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202300217 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 37668274 10_1002_tcr_202300217 TCR202300217 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Research University at the Jagiellonian University in Kraków funderid: RSM/29/SY – fundername: Research University at the Jagiellonian University in Kraków grantid: RSM/29/SY |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM AAESR AAHQN AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYUIH XG1 XV2 ZZTAW ~IA AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4087-a4e3b4d6a5e84c703d0dd70cb42a9be247f49b41d493920d272a4ddd07025523 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Thu Jul 10 17:20:39 EDT 2025 Sun Jul 13 05:36:40 EDT 2025 Thu Apr 03 07:06:09 EDT 2025 Tue Jul 01 02:40:11 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Sun Jul 06 04:46:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | responsive polymer systems biomedical sciences tissue engineering biosensors drug delivery |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4087-a4e3b4d6a5e84c703d0dd70cb42a9be247f49b41d493920d272a4ddd07025523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6498-2619 0000-0002-6342-6071 0000-0002-2307-4614 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/tcr.202300217 |
PMID | 37668274 |
PQID | 2923517401 |
PQPubID | 1006501 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2861303504 proquest_journals_2923517401 pubmed_primary_37668274 crossref_primary_10_1002_tcr_202300217 crossref_citationtrail_10_1002_tcr_202300217 wiley_primary_10_1002_tcr_202300217_TCR202300217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 2024-Feb 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 20 2013; 1 2013; 2 2015; 71 2008; 1191 2019; 99 2019; 10 2021; 325 2006; 39 2008; 38 1989; 111 2016; 32 2011; 52 2020; 15 2004; 5 1998; 279 2020; 11 2020; 10 1975; 10 2023; 228 1995; 373 2013; 8 2016; 38 1992; 55 2007; 334 2018; 6 2009; 11 2010; 26 2018; 2 2010; 25 2019; 20 2018; 1 2013; 51 2006; 26 1984 2007; 61 2012; 24 2010; 5 2022; 601 2012; 22 2006; 321 2010; 6 2009; 15 2012; 20 2010; 9 1998; 14 1994 2011; 3 2011; 6 2011; 133 2014; 43 2016; 5 2016; 6 2010; 48 2019; 40 2020; 30 2015; 62 2009; 71 2005; 127 2008; 47 1993; 194 2020; 27 2022; 14 2005; 7 2014; 35 2003; 29 2008; 40 2018; 10 2012; 45 2017; 268 2003; 100 2018; 14 2017; 5 2017; 8 2004; 126 2015; 31 2015; 30 2003; 15 1992; 19 2011; 12 2008; 4 2017; 9 2012; 53 2012; 51 2014; 1 2020; 6 2017; 407 1977; 182 2014; 5 2014; 4 2015; 49 2020; 1 2002; 41 2021; 116 2015; 44 2014; 58 2018; 72 2005; 38 2011; 27 2017; 244 2007; 23 2022; 641 2014; 53 2014; 118 2009; 25 2015; 15 2015; 16 2012; 387 2023; 15 2010 2002; 35 2013; 42 2023; 19 2006; 7 2016; 52 2008; 10 2021; 186 2017; 295 2015; 8 2021; 14 2009; 30 2021; 11 2000; 267 2021; 299 2022; 61 2017; 11 2011; 50 2012 2010; 20 144 2013; 411 2013; 257 2013; 135 1999; 76 2007; 40 2022; 300 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_146_1 Nakayama M. (e_1_2_7_7_1) 2010; 5 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 Nastyshyn S. (e_1_2_7_5_1) 2022; 14 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_102_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 Jain A. K. (e_1_2_7_61_1) 2020; 1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 6 start-page: 990 year: 2018 end-page: 995 publication-title: Biomater. Sci. – volume: 30 start-page: 453 year: 2015 end-page: 462 publication-title: J. Mater. Res. – volume: 51 start-page: 2132 year: 2012 end-page: 2136 publication-title: Angew. Chem. Int. Ed. – volume: 411 start-page: 247 year: 2013 end-page: 256 publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 2428 year: 2019 end-page: 2439 publication-title: Beilstein J. Nanotechnol. – volume: 1191 start-page: 157 year: 2008 end-page: 161 publication-title: J. Chromatogr. A – volume: 10 start-page: 136 year: 2018 publication-title: Pharmaceutica – volume: 15 start-page: 428 year: 2020 end-page: 440 publication-title: Curr. Stem Cell Res. Ther. – volume: 38 start-page: 139 year: 2016 end-page: 147 publication-title: Int. J. Cosmet. Sci. – volume: 71 start-page: 420 year: 2009 end-page: 430 publication-title: Eur. J. Pharm. Biopharm. – volume: 19 start-page: 1523 year: 2023 end-page: 1530 publication-title: Soft Matter – volume: 38 start-page: 3263 year: 2005 end-page: 3270 publication-title: Macromolecules – volume: 5 start-page: 1503 year: 2014 end-page: 1518 publication-title: Polym. Chem. – volume: 228 year: 2023 publication-title: Environ. Res. – volume: 325 start-page: 25 year: 2021 end-page: 34 publication-title: J. Biotechnol. – volume: 44 start-page: 3786 year: 2015 end-page: 3807 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 4926 year: 2017 end-page: 4933 publication-title: J. Mater. Chem. B – volume: 118 start-page: 270 year: 2014 end-page: 279 publication-title: Colloids Surf. B – volume: 27 start-page: 1 year: 2020 end-page: 11 publication-title: J. Polym. Res. – volume: 8 start-page: 19 year: 2013 publication-title: Biointerphases – volume: 641 year: 2022 publication-title: Colloids Surf. A: Physicochem. Eng. Asp. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 year: 2010 publication-title: Mater. Matters – volume: 52 start-page: 5058 year: 2011 end-page: 5064 publication-title: Polymer – volume: 15 start-page: 200 year: 2015 end-page: 214 publication-title: Macromol. Biosci. – volume: 4 start-page: 1024 year: 2008 end-page: 1032 publication-title: Soft Matter – volume: 2 start-page: 318 year: 2018 end-page: 325 publication-title: Chem. Chem. Technol. – volume: 99 year: 2019 publication-title: Prog. Polym. Sci. – volume: 22 start-page: 8566 year: 2012 end-page: 8573 publication-title: J. Mater. Chem. – volume: 244 start-page: 71 year: 2017 end-page: 89 publication-title: Adv. Colloid Interface Sci. – volume: 53 start-page: 2074 year: 2012 end-page: 2084 publication-title: Polymer – volume: 42 start-page: 7214 year: 2013 end-page: 7243 publication-title: Chem. Soc. Rev. – volume: 182 start-page: 305 year: 1977 end-page: 310 publication-title: Arch. Biochem. Biophys. – volume: 127 start-page: 16107 year: 2005 end-page: 16110 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 705 year: 2010 end-page: 713 publication-title: Soft Matter – start-page: 103 year: 1994 end-page: 141 – volume: 321 start-page: 86 year: 2006 end-page: 93 publication-title: Int. J. Pharm. – start-page: 173 year: 1984 end-page: 252 – volume: 133 start-page: 10966 year: 2011 end-page: 10973 publication-title: J. Am. Chem. Soc. – volume: 601 year: 2022 publication-title: Appl. Surf. Sci. – volume: 40 start-page: 2503 year: 2007 end-page: 2508 publication-title: Macromolecules – volume: 15 start-page: 1307 year: 2023 publication-title: Pharmaceutica – volume: 15 start-page: 8676 year: 2023 end-page: 8690 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 53352 year: 2014 end-page: 53364 publication-title: RSC Adv. – volume: 32 start-page: 11029 year: 2016 end-page: 11038 publication-title: Langmuir – volume: 7 start-page: 15 year: 2005 end-page: 18 publication-title: Org. Lett. – volume: 1 start-page: 91 year: 2014 end-page: 102 publication-title: Regen. Biomater. – volume: 55 start-page: 1 year: 1992 end-page: 7 publication-title: Photochem. Photobiol. – volume: 20 144 start-page: 224 259 year: 2012 2010 end-page: 233 266 publication-title: Macromol. Res. J. Controlled Release – volume: 41 start-page: 2034 year: 2002 end-page: 2057 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 9409 year: 2007 end-page: 9415 publication-title: Langmuir – volume: 48 start-page: 3573 year: 2010 end-page: 3586 publication-title: J. Polym. Sci. Part A – volume: 300 start-page: 487 year: 2022 end-page: 495 publication-title: Colloid Polym. Sci. – volume: 52 start-page: 9059 year: 2016 end-page: 9062 publication-title: Chem. Commun. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 186 year: 2021 publication-title: Dyes Pigm. – volume: 61 start-page: 3197 year: 2007 end-page: 3200 publication-title: Mater. Lett. – volume: 5 start-page: 1519 year: 2014 end-page: 1528 publication-title: Polym. Chem. – volume: 14 start-page: 1016 year: 2018 end-page: 1025 publication-title: Soft Matter – start-page: 29 year: 2010 end-page: 89 – volume: 43 start-page: 148 year: 2014 end-page: 184 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 509 year: 2011 end-page: 513 publication-title: Anal. Methods – volume: 39 start-page: 8873 year: 2006 end-page: 8881 publication-title: Macromolecules – volume: 8 start-page: 144 year: 2017 end-page: 176 publication-title: Polym. Chem. – volume: 14 start-page: 4245 year: 2022 publication-title: Polym. J. – volume: 47 start-page: 5666 year: 2008 end-page: 5668 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1613 year: 2018 end-page: 1621 publication-title: J. Mater. Chem. B – volume: 38 start-page: 1140 year: 2008 end-page: 1147 publication-title: Hepatol. Res. – volume: 29 start-page: 541 year: 2003 end-page: 549 publication-title: Cancer Treat. Rev. – volume: 50 start-page: 4923 year: 2011 end-page: 4927 publication-title: Angew. Chem. Int. Ed. – volume: 267 start-page: 5421 year: 2000 end-page: 5426 publication-title: Eur. J. Biochem. – volume: 51 start-page: 3058 year: 2013 end-page: 3070 publication-title: J. Polym. Sci. Part A – volume: 111 start-page: 3470 year: 1989 end-page: 3472 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6316 year: 2011 end-page: 6322 publication-title: Langmuir – volume: 71 start-page: 1 year: 2015 end-page: 7 publication-title: J. Pharmacol. Toxicol. Methods – volume: 5 start-page: 1770 year: 2004 end-page: 1774 publication-title: Biomacromolecules – volume: 10 start-page: 381 year: 1975 end-page: 390 publication-title: J. Lumin. – volume: 299 start-page: 363 year: 2021 end-page: 383 publication-title: Colloid Polym. Sci. – volume: 8 start-page: 2515 year: 2015 end-page: 2532 publication-title: Nano Res. – volume: 12 start-page: 2834 year: 2011 end-page: 2840 publication-title: Biomacromolecules – volume: 9 start-page: 12035 year: 2017 end-page: 12045 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2013 publication-title: PLoS One – volume: 58 start-page: 1 year: 2014 end-page: 12 publication-title: Eur. J. Pharm. Sci. – volume: 6 start-page: 2419 year: 2011 end-page: 2425 publication-title: Chem. Asian J. – volume: 26 start-page: 3462 year: 2010 end-page: 3467 publication-title: Langmuir – volume: 15 start-page: 1893 year: 2009 end-page: 1900 publication-title: Eur. J. Chem. – volume: 1 start-page: 73 year: 2018 end-page: 81 publication-title: Nat. Catal. – volume: 19 start-page: 161 year: 1992 end-page: 170 publication-title: J. Controlled Release – volume: 387 start-page: 95 year: 2012 end-page: 105 publication-title: J. Colloid Interface Sci. – volume: 15 start-page: 405 year: 2023 publication-title: Pharmaceutica – volume: 373 start-page: 49 year: 1995 end-page: 52 publication-title: Nature – volume: 194 start-page: 537 year: 1993 end-page: 543 publication-title: Biochem. Biophys. Res. Commun. – volume: 72 start-page: 55 year: 2018 end-page: 69 publication-title: Acta Biomater. – volume: 100 start-page: 5413 year: 2003 end-page: 5418 publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 967 year: 1999 publication-title: J. Chem. Educ. – volume: 295 start-page: 1327 year: 2017 end-page: 1341 publication-title: Colloid Polym. Sci. – volume: 5 start-page: 4 year: 2016 end-page: 9 publication-title: ACS Macro. Letters – volume: 1 start-page: 828 year: 2013 end-page: 834 publication-title: J. Mater. Chem. B – volume: 11 start-page: 1691 year: 2009 end-page: 1697 publication-title: Eur. J. Org. Chem. – volume: 11 start-page: 8746 year: 2021 publication-title: Appl. Sci. – volume: 14 start-page: 3873 year: 1998 end-page: 3881 publication-title: Langmuir – volume: 11 start-page: 3859 year: 2020 publication-title: Nat. Commun. – volume: 279 start-page: 2077 year: 1998 end-page: 2080 publication-title: Science – volume: 257 start-page: 2839 year: 2013 end-page: 2847 publication-title: Coord. Chem. Rev. – volume: 20 start-page: 2185 year: 2019 end-page: 2197 publication-title: Biomacromolecules – volume: 11 start-page: 449 year: 2017 end-page: 453 publication-title: Chem. Chem. Technol. – volume: 26 start-page: 1373 year: 2006 end-page: 1379 publication-title: Mater. Sci. Eng. C – volume: 25 start-page: 58 year: 2010 end-page: 74 publication-title: J. Bioact. Compat. Polym. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 311 year: 2015 end-page: 316 publication-title: Acta Biochim. Pol. – volume: 53 start-page: 7779 year: 2014 end-page: 7784 publication-title: Angew. Chem. Int. Ed. – volume: 268 start-page: 390 year: 2017 end-page: 399 publication-title: J. Control. Release – volume: 25 start-page: 5949 year: 2009 end-page: 5956 publication-title: Langmuir – volume: 8 start-page: 12 year: 2017 end-page: 23 publication-title: Polym. Chem. – volume: 126 start-page: 9024 year: 2004 end-page: 9032 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 101 year: 2010 end-page: 113 publication-title: Nat. Mater. – volume: 1 start-page: 68 year: 2020 publication-title: Liq. Cryst. Disp. Technol. – volume: 49 start-page: 3 year: 2015 end-page: 33 publication-title: Prog. Polym. Sci. – volume: 35 start-page: 1692 year: 2014 end-page: 1696 publication-title: Macromol. Rapid Commun. – volume: 7 start-page: 1637 year: 2006 end-page: 1643 publication-title: Biomacromolecules – volume: 20 start-page: 3785 year: 2004 end-page: 3790 publication-title: Langmuir – volume: 16 year: 2015 publication-title: Sci. Technol. Adv. Mater. – volume: 14 start-page: 1417 year: 2021 publication-title: Mater. – volume: 6 start-page: 87469 year: 2016 end-page: 87477 publication-title: RSC Adv. – volume: 50 start-page: 1325 year: 2011 end-page: 1327 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 5757 year: 2009 end-page: 5766 publication-title: Biomaterials – volume: 10 start-page: 2655 year: 2020 end-page: 2663 publication-title: Appl. Nanosci. – volume: 40 start-page: 90 year: 2008 end-page: 91 publication-title: Polym. J. – volume: 42 start-page: 7099 year: 2013 end-page: 7116 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 374 year: 2012 end-page: 384 publication-title: Macromolecules – volume: 16 start-page: 532 year: 2015 end-page: 540 publication-title: Biomacromolecules – volume: 15 start-page: 888 year: 2003 end-page: 892 publication-title: Adv. Mater. – volume: 10 start-page: 515 year: 2008 end-page: 527 publication-title: Adv. Eng. Mater. – volume: 24 start-page: 273 year: 2012 end-page: 278 publication-title: Adv. Mater. – volume: 8 start-page: 1163 year: 2017 end-page: 1176 publication-title: Polym. Chem. – volume: 116 year: 2021 publication-title: Prog. Polym. Sci. – volume: 135 start-page: 16300 year: 2013 end-page: 16303 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 597 year: 2013 end-page: 600 publication-title: ACS Macro Lett. – volume: 10 start-page: 10155 year: 2020 end-page: 10166 publication-title: RSC Adv. – volume: 35 start-page: 6077 year: 2002 end-page: 6079 publication-title: Macromolecules – volume: 20 start-page: 224 year: 2012 end-page: 233 publication-title: Macromol. Res. – volume: 407 start-page: 546 year: 2017 end-page: 554 publication-title: Appl. Surf. Sci. – volume: 334 start-page: 15 year: 2007 end-page: 26 publication-title: Int. J. Pharm. – volume: 31 start-page: 9675 year: 2015 end-page: 9683 publication-title: Langmuir – ident: e_1_2_7_107_1 doi: 10.1021/bm200576h – ident: e_1_2_7_128_1 doi: 10.1016/j.ccr.2013.04.022 – ident: e_1_2_7_78_1 doi: 10.1002/anie.201106777 – ident: e_1_2_7_40_1 doi: 10.1016/j.colsurfb.2014.03.049 – ident: e_1_2_7_60_1 doi: 10.1039/C8TB00088C – ident: e_1_2_7_10_1 doi: 10.1126/sciadv.aaz0330 – ident: e_1_2_7_66_1 doi: 10.1126/science.279.5359.2077 – ident: e_1_2_7_113_1 – ident: e_1_2_7_129_1 doi: 10.1002/marc.201800837 – ident: e_1_2_7_130_1 doi: 10.1002/chem.201503380 – ident: e_1_2_7_80_1 doi: 10.1021/ja053648q – ident: e_1_2_7_93_1 doi: 10.1007/s12274-015-0759-1 – ident: e_1_2_7_42_1 doi: 10.1021/acs.langmuir.5b02285 – ident: e_1_2_7_48_1 doi: 10.1021/la903007v – ident: e_1_2_7_100_1 doi: 10.1007/s13233-012-0059-5 – ident: e_1_2_7_111_1 doi: 10.1021/la049807l – ident: e_1_2_7_126_1 doi: 10.1039/C3PY01192E – ident: e_1_2_7_64_1 doi: 10.1002/mabi.201400325 – ident: e_1_2_7_97_1 doi: 10.1016/j.actbio.2018.03.018 – ident: e_1_2_7_125_1 doi: 10.1002/marc.201800699 – ident: e_1_2_7_149_1 doi: 10.23939/chcht11.04.449 – ident: e_1_2_7_28_1 doi: 10.1021/mz400227y – ident: e_1_2_7_1_1 doi: 10.1002/adem.200700355 – ident: e_1_2_7_29_1 doi: 10.1021/ma202059t – ident: e_1_2_7_59_1 doi: 10.1021/acs.biomac.9b00030 – ident: e_1_2_7_105_1 doi: 10.1016/j.cis.2016.12.004 – ident: e_1_2_7_19_1 doi: 10.1007/3-540-12994-4_4 – ident: e_1_2_7_120_1 doi: 10.1016/0022-2313(75)90003-4 – ident: e_1_2_7_112_1 doi: 10.1007/s10965-020-02335-7 – ident: e_1_2_7_50_1 doi: 10.1111/ics.12267 – ident: e_1_2_7_104_1 doi: 10.1039/b801110a – ident: e_1_2_7_91_1 doi: 10.1371/journal.pone.0076196 – ident: e_1_2_7_94_1 doi: 10.1039/c0ay00627k – ident: e_1_2_7_135_1 doi: 10.1002/marc.201400346 – ident: e_1_2_7_79_1 doi: 10.1002/anie.201006506 – ident: e_1_2_7_20_1 doi: 10.1021/ja2035909 – ident: e_1_2_7_43_1 doi: 10.1039/D2SM01621D – ident: e_1_2_7_119_1 doi: 10.3762/bjnano.10.233 – volume: 5 year: 2010 ident: e_1_2_7_7_1 publication-title: Mater. Matters – ident: e_1_2_7_92_1 doi: 10.1016/j.jbiotec.2020.12.003 – ident: e_1_2_7_26_1 doi: 10.1007/s00396-022-04959-1 – ident: e_1_2_7_142_1 doi: 10.1016/j.vascn.2014.11.003 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.7b00136 – ident: e_1_2_7_75_1 doi: 10.1002/chem.200802145 – ident: e_1_2_7_115_1 doi: 10.1016/j.ejps.2014.02.016 – ident: e_1_2_7_134_1 doi: 10.1021/ja408655n – ident: e_1_2_7_137_1 doi: 10.1002/anie.201403147 – ident: e_1_2_7_53_1 doi: 10.1016/j.progpolymsci.2015.04.002 – ident: e_1_2_7_124_1 doi: 10.1002/anie.202114687 – ident: e_1_2_7_108_1 doi: 10.3390/pharmaceutics15041307 – ident: e_1_2_7_151_1 doi: 10.1186/1559-4106-8-19 – ident: e_1_2_7_73_1 doi: 10.1002/ejoc.200801269 – ident: e_1_2_7_15_1 doi: 10.1007/12_2010_57 – ident: e_1_2_7_131_1 doi: 10.1039/C6CC00500D – ident: e_1_2_7_25_1 doi: 10.1016/j.colsurfa.2022.128525 – ident: e_1_2_7_99_1 doi: 10.1109/EMBC.2013.6609828 – ident: e_1_2_7_46_1 doi: 10.1002/anie.200801202 – ident: e_1_2_7_150_1 – ident: e_1_2_7_17_1 doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M – ident: e_1_2_7_145_1 doi: 10.1038/s41467-020-17698-0 – ident: e_1_2_7_146_1 doi: 10.1039/C3PY01202F – ident: e_1_2_7_16_1 doi: 10.1016/j.matlet.2006.11.079 – ident: e_1_2_7_32_1 doi: 10.1021/la700956b – ident: e_1_2_7_140_1 doi: 10.1002/adma.200304621 – ident: e_1_2_7_72_1 doi: 10.1021/ol048065k – ident: e_1_2_7_56_1 doi: 10.1021/ma0255128 – ident: e_1_2_7_106_1 doi: 10.1021/ma061617p – ident: e_1_2_7_96_1 doi: 10.1039/c2jm00032f – ident: e_1_2_7_77_1 doi: 10.1002/pola.26735 – ident: e_1_2_7_22_1 doi: 10.1038/373049a0 – ident: e_1_2_7_69_1 doi: 10.1016/j.apsusc.2017.03.001 – ident: e_1_2_7_76_1 doi: 10.1021/ja2035909 – ident: e_1_2_7_18_1 doi: 10.1007/978-3-662-08393-2_3 – ident: e_1_2_7_6_1 doi: 10.1007/s00396-020-04750-0 – ident: e_1_2_7_9_1 doi: 10.1016/j.progpolymsci.2021.101386 – ident: e_1_2_7_12_1 doi: 10.1038/nmat2614 – ident: e_1_2_7_58_1 doi: 10.1021/ma048620y – ident: e_1_2_7_85_1 doi: 10.1111/j.1751-1097.1992.tb04202.x – ident: e_1_2_7_116_1 doi: 10.1016/j.biomaterials.2009.07.020 – ident: e_1_2_7_63_1 doi: 10.1557/jmr.2014.392 – ident: e_1_2_7_82_1 doi: 10.1039/C3CS60181A – ident: e_1_2_7_54_1 doi: 10.1002/adfm.201909047 – ident: e_1_2_7_83_1 doi: 10.1021/bm049737x – volume: 14 start-page: 4245 year: 2022 ident: e_1_2_7_5_1 publication-title: Polym. J. – ident: e_1_2_7_98_1 doi: 10.1021/la200160q – ident: e_1_2_7_33_1 doi: 10.1016/j.chroma.2008.01.056 – ident: e_1_2_7_114_1 doi: 10.1039/C6PY01872F – ident: e_1_2_7_27_1 doi: 10.1021/acsami.2c20395 – ident: e_1_2_7_49_1 doi: 10.1039/C7TB00052A – ident: e_1_2_7_35_1 doi: 10.1016/j.apsusc.2022.154201 – ident: e_1_2_7_71_1 doi: 10.1039/C5CS00194C – ident: e_1_2_7_30_1 doi: 10.1093/rb/rbu011 – ident: e_1_2_7_121_1 doi: 10.1016/j.polymer.2011.08.046 – ident: e_1_2_7_68_1 doi: 10.1021/acs.langmuir.6b02946 – ident: e_1_2_7_144_1 doi: 10.1016/j.dyepig.2020.109038 – ident: e_1_2_7_88_1 doi: 10.1016/j.progpolymsci.2019.101164 – ident: e_1_2_7_65_1 doi: 10.1021/acsmacrolett.5b00729 – ident: e_1_2_7_81_1 doi: 10.1039/C8BM00019K – ident: e_1_2_7_11_1 doi: 10.1016/j.jconrel.2017.10.041 – ident: e_1_2_7_47_1 doi: 10.1021/la804197j – ident: e_1_2_7_132_1 doi: 10.1039/C6PY01101B – ident: e_1_2_7_34_1 doi: 10.1016/j.jcis.2012.08.007 – ident: e_1_2_7_8_1 doi: 10.1111/j.1872-034X.2008.00371.x – ident: e_1_2_7_143_1 doi: 10.1046/j.1432-1327.2000.01606.x – ident: e_1_2_7_2_1 doi: 10.3390/pharmaceutics10030136 – ident: e_1_2_7_57_1 doi: 10.1021/la971304a – ident: e_1_2_7_122_1 doi: 10.1016/S0305-7372(03)00106-3 – ident: e_1_2_7_21_1 doi: 10.1039/C5CS00194C – ident: e_1_2_7_139_1 doi: 10.1016/B978-0-08-102416-4.00005-3 – ident: e_1_2_7_152_1 doi: 10.1177/0883911509353481 – ident: e_1_2_7_31_1 doi: 10.1039/B913594D – ident: e_1_2_7_110_1 doi: 10.1021/bm060090l – ident: e_1_2_7_123_1 doi: 10.1006/bbrc.1993.1853 – ident: e_1_2_7_141_1 doi: 10.1073/pnas.0737381100 – ident: e_1_2_7_155_1 doi: 10.1039/C9RA10874B – ident: e_1_2_7_24_1 doi: 10.1021/ma062925q – ident: e_1_2_7_101_1 doi: 10.1016/j.ejpb.2008.09.021 – ident: e_1_2_7_41_1 doi: 10.1002/pola.24137 – ident: e_1_2_7_44_1 doi: 10.1007/s00396-017-4052-6 – ident: e_1_2_7_118_1 doi: 10.23939/chcht12.03.318 – ident: e_1_2_7_133_1 doi: 10.1002/anie.201100708 – ident: e_1_2_7_148_1 doi: 10.1021/ed076p967 – ident: e_1_2_7_136_1 doi: 10.1039/C6PY02004F – ident: e_1_2_7_3_1 doi: 10.1007/978-3-030-46923-8_5 – ident: e_1_2_7_36_1 doi: 10.1039/C7SM02285A – ident: e_1_2_7_45_1 doi: 10.1021/bm501591s – ident: e_1_2_7_138_1 doi: 10.1016/j.ijpharm.2006.05.015 – ident: e_1_2_7_109_1 doi: 10.1016/j.ijpharm.2007.01.037 – ident: e_1_2_7_102_2 doi: 10.1016/j.jconrel.2010.02.024 – ident: e_1_2_7_4_1 doi: 10.3390/pharmaceutics15020405 – ident: e_1_2_7_90_1 doi: 10.3390/app11188746 – ident: e_1_2_7_147_1 doi: 10.1016/0168-3659(92)90073-Z – ident: e_1_2_7_62_1 – ident: e_1_2_7_117_1 doi: 10.1007/s13204-019-00987-6 – ident: e_1_2_7_39_1 doi: 10.1039/C6RA07223B – ident: e_1_2_7_51_1 doi: 10.1002/adma.201102181 – ident: e_1_2_7_89_1 doi: 10.2174/1574888X15666200101122505 – ident: e_1_2_7_103_1 doi: 10.1295/polymj.PJ2007126 – ident: e_1_2_7_74_1 doi: 10.1002/asia.201100244 – ident: e_1_2_7_86_1 doi: 10.1016/0003-9861(77)90311-3 – ident: e_1_2_7_70_1 doi: 10.1557/jmr.2014.392 – ident: e_1_2_7_127_1 doi: 10.1039/C2TB00092J – ident: e_1_2_7_153_1 doi: 10.18388/abp.2015_1007 – ident: e_1_2_7_13_1 doi: 10.1039/C4RA10631H – ident: e_1_2_7_14_1 doi: 10.1039/c3cs35499g – ident: e_1_2_7_38_1 doi: 10.1016/j.polymer.2012.03.011 – ident: e_1_2_7_156_1 doi: 10.3390/ma14061417 – ident: e_1_2_7_95_1 doi: 10.1038/s41929-017-0003-3 – volume: 1 start-page: 68 year: 2020 ident: e_1_2_7_61_1 publication-title: Liq. Cryst. Disp. Technol. – ident: e_1_2_7_55_1 doi: 10.1016/j.msec.2005.08.026 – ident: e_1_2_7_102_1 doi: 10.1007/s13233-012-0059-5 – ident: e_1_2_7_67_1 doi: 10.1021/ja0398565 – ident: e_1_2_7_84_1 doi: 10.1021/ja00191a076 – ident: e_1_2_7_52_1 doi: 10.1088/1468-6996/16/1/014804 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcis.2013.08.007 – ident: e_1_2_7_154_1 doi: 10.1016/j.envres.2023.115772 – ident: e_1_2_7_87_1 doi: 10.1039/c3cs60058k |
SSID | ssj0011477 |
Score | 2.5771935 |
SecondaryResourceType | review_article |
Snippet | Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300217 |
SubjectTerms | Biomedical materials biomedical sciences Biomimetics Biosensing Techniques Biosensors Drug delivery Drug Delivery Systems External stimuli Polymers Precision medicine responsive polymer systems Stimuli Stimuli Responsive Polymers Tissue Engineering |
Title | Switching it Up: The Promise of Stimuli‐Responsive Polymer Systems in Biomedical Science |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300217 https://www.ncbi.nlm.nih.gov/pubmed/37668274 https://www.proquest.com/docview/2923517401 https://www.proquest.com/docview/2861303504 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToQwFL0xs9GN7we-UhPjSmaYUhhwpxONMdGYcUyMG6S0JMQRzMhodOUn-I1-ibdQMKPRxLiD0EJpb0_PhdtzAbZxScdFgDLTtYVKYcZcE-1GmlEcIT3gbkRttTn59Mw9vmQnV86VznOq9sKU-hD1Bzc1Mwq8VhM85A-tT9FQBKqmyv1dsGrEYBWvpUhRr5aPQqpfZF5UmVtN9Ct8rbGJNVpjtcfXpG9Ec5y3FgvP0QzcVE0u401um6OcN6OXL2qO_3inWZjWpJTsl1Y0BxMynYfJbpULbgGuL56SvIi6JElOLu_3CJoXOR9mWECSLCYXeaLirN5f33o66PYRr2eD5zs5JFoVnSQpOSh2-yvDIBpVFqF_dNjvHps6K4OJo4eIFDJpcybc0JEeixAwhCVEx4o4o6HPJWWdmPmctQXzkXtZgnZoyIQQiC3ovlB7CRpplsoVIB4Xjh3j7dodySSzuRt7kXCEh0ATC-4asFsNSxBpxXKVOGMQlFrLNMD-Cur-MmCnLn5fSnX8VHC9GuNAz9iHgCLTVardVtuArfoy9qL6gRKmMhthGU95W7ZjMQOWS9uon4RA7Xro4htgFSP8exOCfrdXn6z-vcoaTOExK8PH16GRD0dyA9lRzjeLKfAB7LgFMA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT4MwFD7x8jBfvF_wWhPjk2ysFMZ806mZlxkzZ2J8IZSWZHHCMplGn_wJ_kZ_iafA0Gk0MT5CWyg9l34tp98B2MIpHScBynTbFCqFGbN11Bup-4GP8IDbPjXV4eTGuV2_YifX1vWnU_wpP0S-4aYsI_HXysDVhnTpgzUUPVVRJf9OYPUojKus3oo9_6CZE0gh2E9yL6rcrTquLKoZyyY2KQ01H56VvkHNYeSaTD1HU-ANOp1GnNwW-zEv-s9f-Bz_81XTMJnhUrKXKtIMjMhwFgq1QTq4Obi5fGzHSeAlacfkqrtLUMPIRS_CCpJEAbmM2yrU6u3ltZnF3T5gedR5upM9khGjk3ZI9pMD_0o3SOZY5qF1dNiq1fUsMYOOAkSn5DFpciZsz5IO89FnCEOIiuFzRr0ql5RVAlblrCxYFeGXIWiFekwIge4FVzDUXICxMArlEhCHC8sM8HHlimSSmdwOHF9YwkFfEwhua7AzkIvrZ6TlKndGx03plqmL4-Xm46XBdl69m7J1_FRxdSBkNzPae5ci2FXE3UZZg828GEdR_UPxQhn1sY6jFlymZTANFlPlyN-Evtp2cJWvgZGI-PcuuK1aM79Y_nuTDSjUW40z9-z4_HQFJvA-S6PJV2Es7vXlGoKlmK8n9vAORTIJTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5iIG17AXbPuMyTpj0tbeqcuMneoFDBLgiVIiFeQhw7UjWWVCXdNJ74CfuN_BKOEzdTmZg08ZjEThz7-Pg7yfH3AbyjJZ0WAY6u8JWRMEPhkt1oN81SggdSpNw3m5O_Hoi9Y_x0EpxYnVOzF6bmh2g-uJmZUflrM8HHKmv_IQ0lR9Uy2t8Vqn4ASyi8yGg37Awa_ijC-pX0opFudSmwiCzJJlVpz1WfX5T-QprzwLVaeforcDZrc51w8q01LWUrvbxF53iPl1qFZYtK2VZtRk9gQedP4VFvJgb3DE6Pfo7KKu2SjUp2PP7IyL7Y4aSgApoVGTsqRybR6vrq98Bm3f6g68X5r-96wiwtOhvlbLva7m8sg1m38hyG_d1hb8-1sgwuDR-5pAS1L1GJJNAhpuQxlKdU10sl8iSSmmM3w0hiR2FE4MtTvMsTVEqRc6H4hfsvYDEvcv0KWChV4Gd0u05Xo0ZfiixMVaBC8jSZksKBD7NhiVNLWW6UM87jmmyZx9RfcdNfDrxvio9rro67Cq7Pxji2U_Yi5gR1DW2313HgbXOZetH8QUlyXUypTGjCLT_w0IGXtW00TyJPLUKK8R3wqhH-dxPiYW_QHLz-_ypv4OHhTj_-sn_weQ0e02msU8nXYbGcTPUGIaVSblaz4QYaZwf7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+it+Up%3A+The+Promise+of+Stimuli-Responsive+Polymer+Systems+in+Biomedical+Science&rft.jtitle=Chemical+record&rft.au=Shymborska%2C+Yana&rft.au=Budkowski%2C+Andrzej&rft.au=Raczkowska%2C+Joanna&rft.au=Donchak%2C+Volodymyr&rft.date=2024-02-01&rft.eissn=1528-0691&rft.volume=24&rft.issue=2&rft.spage=e202300217&rft_id=info:doi/10.1002%2Ftcr.202300217&rft_id=info%3Apmid%2F37668274&rft.externalDocID=37668274 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |