The phobic brain: Morphometric features correctly classify individuals with small animal phobia

Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studie...

Full description

Saved in:
Bibliographic Details
Published inPsychophysiology Vol. 62; no. 1; pp. e14716 - n/a
Main Authors Scarano, Alessandro, Fumero, Ascensión, Baggio, Teresa, Rivero, Francisco, Marrero, Rosario J., Olivares, Teresa, Peñate, Wenceslao, Álvarez‐Pérez, Yolanda, Bethencourt, Juan Manuel, Grecucci, Alessandro
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies. Small animal phobia (SAP) is under‐researched, with previous studies using limited, unbalanced samples and univariate analyses. This study employs for the first time a machine learning method to classify 32 SAP individuals based on structural MRI versus 90 matched controls. Key brain structures included frontal and temporal regions, as well as the amygdala and thalamus. In further analyses we showed that The default mode and the affective networks were among the most predictive networks.
AbstractList Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies. Small animal phobia (SAP) is under‐researched, with previous studies using limited, unbalanced samples and univariate analyses. This study employs for the first time a machine learning method to classify 32 SAP individuals based on structural MRI versus 90 matched controls. Key brain structures included frontal and temporal regions, as well as the amygdala and thalamus. In further analyses we showed that The default mode and the affective networks were among the most predictive networks.
Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro-networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty-two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole-brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro-networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro-networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty-two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole-brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro-networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.
Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.
Author Marrero, Rosario J.
Rivero, Francisco
Scarano, Alessandro
Fumero, Ascensión
Baggio, Teresa
Peñate, Wenceslao
Olivares, Teresa
Bethencourt, Juan Manuel
Álvarez‐Pérez, Yolanda
Grecucci, Alessandro
AuthorAffiliation 4 Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Las Palmas Spain
2 Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología Universidad de La Laguna La Laguna Tenerife Spain
3 Departamento de Psicología, Facultad de Ciencias de la Salud Universidad Europea de Canarias La Orotava Tenerife Spain
5 Center for Medical Sciences University of Trento Trento Italy
1 Department of Psychology and Cognitive Science University of Trento Trento Italy
AuthorAffiliation_xml – name: 2 Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología Universidad de La Laguna La Laguna Tenerife Spain
– name: 5 Center for Medical Sciences University of Trento Trento Italy
– name: 1 Department of Psychology and Cognitive Science University of Trento Trento Italy
– name: 4 Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Las Palmas Spain
– name: 3 Departamento de Psicología, Facultad de Ciencias de la Salud Universidad Europea de Canarias La Orotava Tenerife Spain
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Scarano
  fullname: Scarano, Alessandro
  organization: University of Trento
– sequence: 2
  givenname: Ascensión
  surname: Fumero
  fullname: Fumero, Ascensión
  organization: Universidad Europea de Canarias
– sequence: 3
  givenname: Teresa
  surname: Baggio
  fullname: Baggio, Teresa
  organization: University of Trento
– sequence: 4
  givenname: Francisco
  surname: Rivero
  fullname: Rivero, Francisco
  organization: Universidad Europea de Canarias
– sequence: 5
  givenname: Rosario J.
  surname: Marrero
  fullname: Marrero, Rosario J.
  organization: Universidad de La Laguna
– sequence: 6
  givenname: Teresa
  surname: Olivares
  fullname: Olivares, Teresa
  organization: Universidad de La Laguna
– sequence: 7
  givenname: Wenceslao
  surname: Peñate
  fullname: Peñate, Wenceslao
  organization: Universidad de La Laguna
– sequence: 8
  givenname: Yolanda
  surname: Álvarez‐Pérez
  fullname: Álvarez‐Pérez, Yolanda
  organization: Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC)
– sequence: 9
  givenname: Juan Manuel
  surname: Bethencourt
  fullname: Bethencourt, Juan Manuel
  organization: Universidad de La Laguna
– sequence: 10
  givenname: Alessandro
  orcidid: 0000-0001-6043-2196
  surname: Grecucci
  fullname: Grecucci, Alessandro
  email: alessandro.grecucci@unitn.it
  organization: University of Trento
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39467845$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYO02Nfqxg8gA25EmDbJZDIZNyLFf9BiwbpwFZLMjS8lL5kmMy3z7U2dWqwL7-bCvb97OMk5RHshBkDoBcHHpNTJmJfxmLCO8CdoQxjva9ELvoc2GDNRt11HD9BhzlcY455Q-hQdND3jnWDtBsnLLVTjNmpnKp2UC2-r85jKYAdTKjMLapoT5MrElMBMfqmMVzk7u1QuDO7GDbPyubp107bKO-V9pYIrfRVVz9C-LXt4ft-P0PePHy5PP9dnXz99OX1_VhuGBa8FgU713JgBd2DF0HHLFRiKWys0DJRg1QhMNbFEa2xagbkVhKpBW22sZc0RerfqjrPewWAgTEl5OabiJS0yKicfb4Lbyp_xRhLSibZlpCi8vldI8XqGPMmdywa8VwHinGVDKGl7jBte0Ff_oFdxTqG8r1CccsZYSwv18m9LD17-fH4B3qyASTHnBPYBIVjeJSvvkpW_ky0wWeFb52H5Dykvvv24WG9-ASsQqHY
Cites_doi 10.1016/j.biopsych.2006.03.042
10.1093/brain/awm052
10.1016/j.neuroimage.2008.09.016
10.1073/pnas.98.2.676
10.1016/j.conb.2012.12.012
10.1016/j.pscychresns.2011.10.009
10.20944/preprints202302.0089.v1
10.3389/fnins.2016.00388
10.1001/archpsyc.58.3.257
10.1016/j.ejpsy.2016.12.003
10.1016/j.nicl.2019.101854
10.1016/j.drugalcdep.2012.02.020
10.1016/S0006‐3223(03)00548‐1
10.12688/f1000research.11964.2
10.1016/j.cortex.2014.06.018
10.1007/s10548‐019‐00744‐6
10.1016/S0006‐3223(98)00274‐1
10.1523/JNEUROSCI.5587‐06.2007
10.1523/JNEUROSCI.19‐13‐05473.1999
10.1002/da.23191
10.1016/j.bbr.2013.11.003
10.1038/nrn3945
10.1038/npp.2009.129
10.1152/jn.00338.2011
10.1111/j.1399‐5618.2012.01019.x
10.1097/YCO.0000000000000223
10.1111/j.1749‐6632.2003.tb07096.x
10.1016/j.biopsych.2005.06.013
10.3758/cabn.3.3.207
10.1176/foc.9.3.foc369
10.1371/journal.pone.0178089
10.1016/j.pneurobio.2008.09.004
10.1038/nrn3524
10.1093/brain/aws084
10.1162/jocn.2009.21366
10.1111/ejn.16345
10.3758/s13415‐019‐00757‐5
10.3390/life13010119
10.3390/s23020610
10.1016/j.biopsych.2003.12.022
10.1016/j.neulet.2018.07.005
10.1038/s42003‐021‐01832‐9
10.1016/j.neuroimage.2018.05.065
10.1038/npp.2009.83
10.1093/cercor/bhaa127
10.1007/s00406‐010‐0147‐5
10.1007/s12021‐013‐9178‐1
10.1016/j.nicl.2017.10.026
10.1080/14734220500348584
10.1002/hbm.24492
10.1016/j.jad.2014.01.022
10.1016/j.neuron.2004.08.042
10.1016/j.neuroimage.2008.10.057
10.3389/fnhum.2013.00727
10.1007/s00702‐014‐1272‐5
10.1016/j.janxdis.2015.03.004
10.1196/annals.1440.011
10.1111/ejn.13704
10.1016/j.nicl.2023.103530
10.1146/annurev.neuro.27.070203.144130
10.1016/S0140‐6736(21)02143‐7
10.1196/annals.1401.006
10.1016/j.tics.2006.07.005
10.1016/j.euroneuro.2020.03.008
10.1007/978-0-387-84858-7
10.1176/appi.ajp.2007.07030504
10.1186/1471‐244X‐13‐70
10.1038/s41598‐024‐68490‐9
10.1002/hbm.24722
10.1016/j.pscychresns.2014.12.003
10.1089/brain.2015.0408
10.21203/rs.3.rs‐3416641/v1
10.1073/pnas.0601417103
10.1080/17470919.2023.2242094
10.1214/009053607000000677
10.1002/da.20765
10.1146/annurev.neuro.23.1.155
10.1016/j.conb.2007.07.003
10.1002/mpr.168
10.3389/fpsyt.2022.804440
10.3389/fnbeh.2020.00128
10.1002/hipo.22178
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
2024. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
– notice: 2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
– notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1111/psyp.14716
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Scarano et al
EISSN 1469-8986
1540-5958
EndPage n/a
ExternalDocumentID PMC11785541
39467845
10_1111_psyp_14716
PSYP14716
Genre researchArticle
Journal Article
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABVKB
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACUHS
ACWUS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c4086-81e7a96ccd07ef8d76f6aec205f8bed210a3802b1f1bb0c5806f812adbfbcff43
IEDL.DBID DR2
ISSN 0048-5772
1469-8986
IngestDate Thu Aug 21 18:39:04 EDT 2025
Fri Jul 11 15:29:26 EDT 2025
Sat Aug 23 12:54:13 EDT 2025
Mon Jul 21 05:59:32 EDT 2025
Sun Jul 06 05:04:49 EDT 2025
Mon Feb 03 09:41:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords anxiety
affective neuroscience
animal phobia
support vector machine
machine learning
Language English
License Attribution-NonCommercial
2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4086-81e7a96ccd07ef8d76f6aec205f8bed210a3802b1f1bb0c5806f812adbfbcff43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6043-2196
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14716
PMID 39467845
PQID 3162644452
PQPubID 41359
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11785541
proquest_miscellaneous_3121590036
proquest_journals_3162644452
pubmed_primary_39467845
crossref_primary_10_1111_psyp_14716
wiley_primary_10_1111_psyp_14716_PSYP14716
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2025
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2009; 45
2017; 6
2009; 44
2014; 259
2004; 27
2013; 23
1997; 275
2015; 32
2008; 36
2019; 688
2020; 14
2012; 202
2013; 7
2012; 125
2012; 14
1998; 44
2003; 54
2018; 47
2006; 60
2010; 22
2021; 38
2017; 31
2010; 27
2013; 14
2023; 23
2008; 1124
2012; 135
2019; 20
2013; 11
2021; 398
1999; 19
2013; 13
2018; 178
2019; 23
2007; 130
2003; 3
4
2001; 58
2001; 98
2007; 27
2004; 43
2007; 17
2023; 13
2015; 16
2010; 35
2023; 18
2000; 23
2007; 1121
2006; 10
2019; 32
2015; 122
2007; 164
2006; 59
2016; 10
2009
2020; 34
2024; 14
2024; 59
2014; 158
2011; 9
2004; 55
2023; 40
2016; 6
2018; 17
2019; 40
2020; 2020
2003; 985
2011; 106
2023
2020; 30
2015; 62
2015; 231
2004; 13
2017; 12
2022; 13
2019
2005; 4
2015
2008; 86
2016; 29
2011; 261
2006; 103
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Pisner A. (e_1_2_9_61_1) 2020; 2020
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Bechara A. (e_1_2_9_7_1) 1997
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
Olatunji B. O. (e_1_2_9_53_1) 2019
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2023
  article-title: Fronto‐parietal and cerebellar circuits characterise individuals with high trait anxiety: A parallel ICA and Random Forest approach
  publication-title: Research Square
– volume: 14
  start-page: 488
  issue: 7
  year: 2013
  end-page: 501
  article-title: Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective
  publication-title: Nature Review Neuroscience
– volume: 13
  start-page: 804440
  year: 2022
  article-title: Structural features related to affective instability correctly classify patients with borderline personality disorder. A supervised machine learning approach
  publication-title: Frontiers in Psychiatry
– year: 2009
– volume: 32
  start-page: 926
  issue: 6
  year: 2019
  end-page: 942
  article-title: Towards a universal taxonomy of macro‐scale functional human brain networks
  publication-title: Brain Topography
– volume: 9
  start-page: 369
  issue: 3
  year: 2011
  end-page: 388
  article-title: What is an anxiety disorder?
  publication-title: Focus
– volume: 23
  start-page: 1044
  issue: 11
  year: 2013
  end-page: 1052
  article-title: Factors that influence the relative use of multiple memory systems
  publication-title: Hippocampus
– volume: 44
  start-page: 319
  year: 2009
  end-page: 327
  article-title: A quantitative evaluation of cross‐participant registration techniques for MRI studies of the medial temporal lobe
  publication-title: NeuroImage
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  end-page: 1220
  article-title: Kernel methods in machine learning
  publication-title: Annals of Statistics
– volume: 261
  start-page: 303
  issue: 4
  year: 2011
  end-page: 307
  article-title: Localized gray matter volume abnormalities in generalized anxiety disorder
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
– volume: 23
  start-page: 2826
  year: 2023
– volume: 35
  start-page: 4
  issue: 1
  year: 2010
  end-page: 26
  article-title: The reward circuit: Linking primate anatomy and human imaging
  publication-title: Neuropsychopharmacology
– volume: 62
  start-page: 20
  year: 2015
  end-page: 33
  article-title: Connections of the limbic network: A corticocortical evoked potentials study
  publication-title: Cortex
– volume: 14
  start-page: 19232
  year: 2024
  article-title: Decoding acceptance and reappraisal strategies from resting state macro networks
  publication-title: Scientific Reports
– volume: 11
  start-page: 319
  issue: 3
  year: 2013
  end-page: 337
  article-title: PRoNTo: Pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
– volume: 6
  year: 2017
  article-title: Preprocessed consortium for neuropsychiatric Phenomics dataset
  publication-title: F1000Research
– volume: 985
  start-page: 389
  year: 2003
  end-page: 410
  article-title: Neuroimaging studies of amygdala function in anxiety disorders
  publication-title: Annals of the New York Academy of Sciences
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  article-title: The brain's default network: Anatomy, function, and relevance to disease
  publication-title: Annals of the New York Academy of Sciences
– volume: 22
  start-page: 2864
  issue: 12
  year: 2010
  end-page: 2885
  article-title: Neuroimaging support for discrete neural correlates of basic emotions: A voxel‐based meta‐analysis
  publication-title: Journal of Cognitive Neuroscience
– volume: 54
  start-page: 1067
  issue: 10
  year: 2003
  end-page: 1076
  article-title: Amygdala and insular responses to emotionally valenced human faces in small animal specific phobia
  publication-title: Biological Psychiatry
– volume: 2020
  start-page: 101
  year: 2020
  end-page: 121
  article-title: Support vector machine
  publication-title: Machine Learning
– volume: 27
  start-page: 2349
  issue: 9
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences
– volume: 135
  start-page: 1508
  year: 2012
  end-page: 1521
  article-title: Multi‐centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain: A Journal of Neurology
– volume: 398
  start-page: 1700
  issue: 10312
  year: 2021
  end-page: 1712
  article-title: Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID‐19 pandemic
  publication-title: The Lancet
– volume: 275
  start-page: 1293
  year: 1997
  end-page: 1295
– volume: 259
  start-page: 330
  year: 2014
  end-page: 335
  article-title: Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure
  publication-title: Behavioural Brain Research
– volume: 47
  year: 2018
  article-title: Three shades of grey: Detecting brain abnormalities in children with autism using source‐, voxel‐ and surface‐based morphometry
  publication-title: The European Journal of Neuroscience
– volume: 55
  start-page: 946
  issue: 9
  year: 2004
  end-page: 952
  article-title: A magnetic resonance imaging study of cortical thickness in animal phobia
  publication-title: Biological Psychiatry
– volume: 17
  start-page: 628
  year: 2018
  end-page: 641
  article-title: Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases
  publication-title: NeuroImage: Clinical
– volume: 4
  start-page: 301
  issue: 1
  article-title: Brain pathology recapitulates physiology: A network meta‐analysis
  publication-title: Communications Biology
– volume: 4
  start-page: 290
  issue: 4
  year: 2005
  end-page: 294
  article-title: The cerebellum on the rise in human emotion
  publication-title: Cerebellum (London, England)
– volume: 130
  start-page: 1718
  issue: Pt 7
  year: 2007
  end-page: 1731
  article-title: The enigmatic temporal pole: A review of findings on social and emotional processing
  publication-title: Brain: A Journal of Neurology
– volume: 23
  year: 2019
  article-title: Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms
  publication-title: NeuroImage
– volume: 58
  start-page: 257
  issue: 3
  year: 2001
  end-page: 265
  article-title: The genetic epidemiology of irrational fears and phobias in men
  publication-title: Archives of General Psychiatry
– volume: 23
  start-page: 155
  year: 2000
  end-page: 184
  article-title: Emotion circuits in the brain
  publication-title: Annual Review of Neuroscience
– volume: 38
  start-page: 846
  issue: 8
  year: 2021
  end-page: 859
  article-title: Neural processing of emotional facial stimuli in specific phobia: An fMRI study
  publication-title: Depression and Anxiety
– volume: 59
  start-page: 3273
  issue: 12
  year: 2024
  end-page: 3291
  article-title: (2024). Narcissus reflected: Grey and white matter features joint contribution to the default mode network in predicting narcissistic personality traits
  publication-title: The European Journal of Neuroscience
– volume: 202
  start-page: 181
  issue: 3
  year: 2012
  end-page: 197
  article-title: Functional neuroimaging in specific phobia
  publication-title: Psychiatry Research: Neuroimaging
– volume: 14
  start-page: 451
  year: 2012
  end-page: 460
  article-title: Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression
  publication-title: Bipolar Disorders
– volume: 20
  start-page: 128
  year: 2019
  end-page: 140
  article-title: Less is more: Psychological and morphometric differences between low vs. high reappraisers
  publication-title: Cognitive, Affective & Behavioral Neuroscience
– year: 2019
– volume: 122
  start-page: 123
  issue: 1
  year: 2015
  end-page: 134
  article-title: Diagnostic classification of specific phobia subtypes using structural MRI data: A machine‐learning approach
  publication-title: Journal of Neural Transmission
– year: 2015
– volume: 86
  start-page: 141
  issue: 3
  year: 2008
  end-page: 155
  article-title: The cognitive functions of the caudate nucleus
  publication-title: Progress in Neurobiology
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  end-page: 430
  article-title: Beyond mind‐reading: Multivoxel pattern analysis of fMRI data
  publication-title: Trends in Cognitive Sciences
– volume: 40
  start-page: 1814
  issue: 6
  year: 2019
  end-page: 1828
  article-title: ROI and phobias: The effect of ROI approach on an ALE meta‐analysis of specific phobias
  publication-title: Human Brain Mapping
– volume: 40
  year: 2023
  article-title: Borderline shades: Morphometric features predict borderline personality traits but not histrionic traits
  publication-title: NeuroImage: Clinical
– volume: 32
  start-page: 81
  year: 2015
  end-page: 88
  article-title: Neurostructural abnormalities in pediatric anxiety disorders
  publication-title: Journal of Anxiety Disorders
– volume: 6
  start-page: 298
  issue: 4
  year: 2016
  end-page: 311
  article-title: A mapping between structural and functional brain networks
  publication-title: Brain Connectivity
– volume: 17
  start-page: 417
  issue: 4
  year: 2007
  end-page: 422
  article-title: The thalamus is more than just a relay
  publication-title: Current Opinion in Neurobiology
– volume: 34
  start-page: 28
  year: 2020
  end-page: 38
  article-title: Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging
  publication-title: European Neuropsychopharmacology
– volume: 19
  start-page: 5473
  issue: 13
  year: 1999
  end-page: 5481
  article-title: Different contributions of the human amygdala and ventromedial prefrontal cortex to decision‐making
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 44
  start-page: 1295
  issue: 12
  year: 1998
  end-page: 1304
  article-title: Current approaches to etiology and pathophysiology of specific phobia
  publication-title: Biological Psychiatry
– volume: 18
  start-page: 257
  issue: 5
  year: 2023
  end-page: 270
  article-title: Predicting narcissistic personality traits from brain and psychological features: A supervised machine learning approach
  publication-title: Social Neuroscience
– volume: 60
  start-page: 383
  issue: 4
  year: 2006
  end-page: 387
  article-title: An insular view of anxiety
  publication-title: Biological Psychiatry
– volume: 231
  start-page: 168
  year: 2015
  end-page: 175
  article-title: Neurostructural correlates of two subtypes of specific phobia: A voxel‐based morphometry study
  publication-title: Psychiatry Research: Neuroimaging
– volume: 1121
  start-page: 546
  year: 2007
  end-page: 561
  article-title: The role of the orbitofrontal cortex in anxiety disorders
  publication-title: Annals of the New York Academy of Sciences
– volume: 23
  start-page: 610
  issue: 2
  year: 2023
  article-title: Anxious brains: A combined data fusion machine learning approach to predict trait anxiety from morphometric features
  publication-title: Sensors
– volume: 14
  year: 2020
  article-title: Resting state cortico‐limbic functional connectivity and dispositional use of emotion regulation strategies: A replication and extension study
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 23
  start-page: 361
  issue: 3
  year: 2013
  end-page: 372
  article-title: Large‐scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain
  publication-title: Current Opinion in Neurobiology
– volume: 35
  start-page: 169
  issue: 1
  year: 2010
  end-page: 191
  article-title: The neurocircuitry of fear, stress, and anxiety disorders
  publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
– volume: 125
  start-page: 252
  issue: 3
  year: 2012
  end-page: 259
  article-title: Prefrontal and limbic resting state brain network functional connectivity differs between nicotine‐dependent smokers and non‐smoking controls
  publication-title: Drug and Alcohol Dependence
– volume: 12
  year: 2017
  article-title: Similar white matter changes in schizophrenia and bipolar disorder: A tract‐based spatial statistics study
  publication-title: PLoS One
– volume: 27
  start-page: 279
  year: 2004
  end-page: 306
  article-title: The medial temporal lobe
  publication-title: Annual Review of Neuroscience
– volume: 3
  start-page: 207
  issue: 3
  year: 2003
  end-page: 233
  article-title: Functional neuroanatomy of emotions: A meta‐analysis
  publication-title: Cognitive, Affective, & Behavioral Neuroscience
– volume: 688
  start-page: 62
  year: 2019
  end-page: 75
  article-title: The cerebellum and cognition
  publication-title: Neuroscience Letters
– volume: 59
  start-page: 162
  issue: 2
  year: 2006
  end-page: 170
  article-title: Neural mechanisms of automatic and direct processing of Phobogenic stimuli in specific phobia
  publication-title: Biological Psychiatry
– volume: 13
  start-page: 119
  issue: 1
  year: 2023
  article-title: A voxel‐based morphometric study of gray matter in specific phobia
  publication-title: Lifestyles
– volume: 27
  start-page: 1104
  issue: 12
  year: 2010
  end-page: 1110
  article-title: Anxiety sensitivity correlates with two indices of right anterior insula structure in specific animal phobia
  publication-title: Depression and Anxiety
– volume: 164
  start-page: 1476
  issue: 10
  year: 2007
  end-page: 1488
  article-title: Functional neuroimaging of anxiety: A meta‐analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia
  publication-title: The American Journal of Psychiatry
– volume: 178
  start-page: 753
  year: 2018
  end-page: 768
  article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods
  publication-title: NeuroImage
– volume: 7
  start-page: 727
  year: 2013
  article-title: Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder
  publication-title: Frontiers in Human Neuroscience
– volume: 13
  issue: 1
  year: 2013
  article-title: Spider phobia is associated with decreased left amygdala volume: A cross‐sectional study
  publication-title: BMC Psychiatry
– volume: 45
  start-page: S163
  issue: 1 Suppl
  year: 2009
  end-page: S172
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
– volume: 10
  year: 2016
  article-title: Uncovering the social deficits in the autistic brain. A source‐based morphometric study
  publication-title: Frontiers in Neuroscience
– volume: 40
  start-page: 4577
  issue: 15
  year: 2019
  end-page: 4587
  article-title: Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases
  publication-title: Human Brain Mapping
– volume: 31
  start-page: 23
  issue: 1
  year: 2017
  end-page: 36
  article-title: A meta‐analytic review of neuroimaging studies of specific phobia to small animals
  publication-title: The European Journal of Psychiatry
– volume: 30
  start-page: 5460
  issue: 10
  year: 2020
  end-page: 5470
  article-title: Structural brain architectures match intrinsic functional networks and vary across domains: A study from 15 000+ individuals
  publication-title: Cerebral Cortex
– volume: 16
  start-page: 317
  issue: 6
  year: 2015
  end-page: 331
  article-title: Neuronal circuits for fear and anxiety
  publication-title: Nature Reviews Neuroscience
– volume: 29
  start-page: 56
  year: 2016
  end-page: 63
  article-title: Can anxiety damage the brain?
  publication-title: Current Opinion in Psychiatry
– volume: 43
  start-page: 897
  issue: 6
  year: 2004
  end-page: 905
  article-title: Extinction learning in humans: Role of the amygdala and vmPFC
  publication-title: Neuron
– volume: 158
  start-page: 114
  year: 2014
  end-page: 126
  article-title: Neural structures, functioning and connectivity in generalized anxiety disorder and interaction with neuroendocrine systems: A systematic review
  publication-title: Journal of Affective Disorders
– volume: 13
  start-page: 93
  year: 2004
  end-page: 121
  article-title: The world mental health (WMH) survey initiative version of the world health organization (WHO) composite international diagnostic interview (CIDI)
  publication-title: International Journal of Methods in Psychiatric Research
– volume: 2020
  start-page: 101
  year: 2020
  ident: e_1_2_9_61_1
  article-title: Support vector machine
  publication-title: Machine Learning
– ident: e_1_2_9_58_1
  doi: 10.1016/j.biopsych.2006.03.042
– ident: e_1_2_9_54_1
  doi: 10.1093/brain/awm052
– ident: e_1_2_9_86_1
  doi: 10.1016/j.neuroimage.2008.09.016
– start-page: 1293
  volume-title: Deciding advantageously before knowing the advantageous strategy
  year: 1997
  ident: e_1_2_9_7_1
– ident: e_1_2_9_62_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_9_5_1
  doi: 10.1016/j.conb.2012.12.012
– ident: e_1_2_9_15_1
  doi: 10.1016/j.pscychresns.2011.10.009
– ident: e_1_2_9_27_1
  doi: 10.20944/preprints202302.0089.v1
– ident: e_1_2_9_29_1
  doi: 10.3389/fnins.2016.00388
– ident: e_1_2_9_39_1
  doi: 10.1001/archpsyc.58.3.257
– ident: e_1_2_9_59_1
  doi: 10.1016/j.ejpsy.2016.12.003
– ident: e_1_2_9_75_1
  doi: 10.1016/j.nicl.2019.101854
– ident: e_1_2_9_36_1
  doi: 10.1016/j.drugalcdep.2012.02.020
– volume-title: The Cambridge handbook of anxiety and related disorders
  year: 2019
  ident: e_1_2_9_53_1
– ident: e_1_2_9_85_1
  doi: 10.1016/S0006‐3223(03)00548‐1
– ident: e_1_2_9_25_1
  doi: 10.12688/f1000research.11964.2
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cortex.2014.06.018
– ident: e_1_2_9_81_1
  doi: 10.1007/s10548‐019‐00744‐6
– ident: e_1_2_9_23_1
  doi: 10.1016/S0006‐3223(98)00274‐1
– ident: e_1_2_9_72_1
  doi: 10.1523/JNEUROSCI.5587‐06.2007
– ident: e_1_2_9_6_1
  doi: 10.1523/JNEUROSCI.19‐13‐05473.1999
– ident: e_1_2_9_8_1
  doi: 10.1002/da.23191
– ident: e_1_2_9_22_1
  doi: 10.1016/j.bbr.2013.11.003
– ident: e_1_2_9_80_1
  doi: 10.1038/nrn3945
– ident: e_1_2_9_31_1
  doi: 10.1038/npp.2009.129
– ident: e_1_2_9_87_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1399‐5618.2012.01019.x
– ident: e_1_2_9_45_1
  doi: 10.1097/YCO.0000000000000223
– ident: e_1_2_9_63_1
  doi: 10.1111/j.1749‐6632.2003.tb07096.x
– ident: e_1_2_9_78_1
  doi: 10.1016/j.biopsych.2005.06.013
– ident: e_1_2_9_11_1
– ident: e_1_2_9_50_1
  doi: 10.3758/cabn.3.3.207
– ident: e_1_2_9_13_1
  doi: 10.1176/foc.9.3.foc369
– ident: e_1_2_9_76_1
  doi: 10.1371/journal.pone.0178089
– ident: e_1_2_9_26_1
  doi: 10.1016/j.pneurobio.2008.09.004
– ident: e_1_2_9_30_1
  doi: 10.1038/nrn3524
– ident: e_1_2_9_51_1
  doi: 10.1093/brain/aws084
– ident: e_1_2_9_84_1
  doi: 10.1162/jocn.2009.21366
– ident: e_1_2_9_37_1
  doi: 10.1111/ejn.16345
– ident: e_1_2_9_56_1
  doi: 10.3758/s13415‐019‐00757‐5
– ident: e_1_2_9_65_1
  doi: 10.3390/life13010119
– ident: e_1_2_9_4_1
  doi: 10.3390/s23020610
– ident: e_1_2_9_64_1
  doi: 10.1016/j.biopsych.2003.12.022
– ident: e_1_2_9_69_1
  doi: 10.1016/j.neulet.2018.07.005
– ident: e_1_2_9_83_1
  doi: 10.1038/s42003‐021‐01832‐9
– ident: e_1_2_9_48_1
  doi: 10.1016/j.neuroimage.2018.05.065
– ident: e_1_2_9_74_1
  doi: 10.1038/npp.2009.83
– ident: e_1_2_9_44_1
  doi: 10.1093/cercor/bhaa127
– ident: e_1_2_9_68_1
  doi: 10.1007/s00406‐010‐0147‐5
– ident: e_1_2_9_70_1
  doi: 10.1007/s12021‐013‐9178‐1
– ident: e_1_2_9_66_1
  doi: 10.1016/j.nicl.2017.10.026
– ident: e_1_2_9_71_1
  doi: 10.1080/14734220500348584
– ident: e_1_2_9_24_1
  doi: 10.1002/hbm.24492
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jad.2014.01.022
– ident: e_1_2_9_60_1
  doi: 10.1016/j.neuron.2004.08.042
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: e_1_2_9_16_1
  doi: 10.3389/fnhum.2013.00727
– ident: e_1_2_9_43_1
  doi: 10.1007/s00702‐014‐1272‐5
– ident: e_1_2_9_79_1
  doi: 10.1016/j.janxdis.2015.03.004
– ident: e_1_2_9_9_1
  doi: 10.1196/annals.1440.011
– ident: e_1_2_9_57_1
  doi: 10.1111/ejn.13704
– ident: e_1_2_9_41_1
  doi: 10.1016/j.nicl.2023.103530
– ident: e_1_2_9_77_1
  doi: 10.1146/annurev.neuro.27.070203.144130
– ident: e_1_2_9_12_1
  doi: 10.1016/S0140‐6736(21)02143‐7
– ident: e_1_2_9_47_1
  doi: 10.1196/annals.1401.006
– ident: e_1_2_9_52_1
  doi: 10.1016/j.tics.2006.07.005
– ident: e_1_2_9_82_1
  doi: 10.1016/j.euroneuro.2020.03.008
– ident: e_1_2_9_32_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_9_20_1
  doi: 10.1176/appi.ajp.2007.07030504
– ident: e_1_2_9_21_1
  doi: 10.1186/1471‐244X‐13‐70
– ident: e_1_2_9_2_1
  doi: 10.1038/s41598‐024‐68490‐9
– ident: e_1_2_9_18_1
  doi: 10.1002/hbm.24722
– ident: e_1_2_9_33_1
  doi: 10.1016/j.pscychresns.2014.12.003
– ident: e_1_2_9_46_1
  doi: 10.1089/brain.2015.0408
– ident: e_1_2_9_3_1
  doi: 10.21203/rs.3.rs‐3416641/v1
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.0601417103
– ident: e_1_2_9_38_1
  doi: 10.1080/17470919.2023.2242094
– ident: e_1_2_9_35_1
  doi: 10.1214/009053607000000677
– ident: e_1_2_9_67_1
  doi: 10.1002/da.20765
– ident: e_1_2_9_42_1
  doi: 10.1146/annurev.neuro.23.1.155
– ident: e_1_2_9_73_1
  doi: 10.1016/j.conb.2007.07.003
– ident: e_1_2_9_40_1
  doi: 10.1002/mpr.168
– ident: e_1_2_9_28_1
  doi: 10.3389/fpsyt.2022.804440
– ident: e_1_2_9_17_1
  doi: 10.3389/fnbeh.2020.00128
– ident: e_1_2_9_55_1
  doi: 10.1002/hipo.22178
SSID ssj0009122
Score 2.45673
Snippet Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e14716
SubjectTerms Adult
affective neuroscience
Amygdala
animal phobia
Animals
anxiety
Anxiety disorders
Brain - diagnostic imaging
Brain - pathology
Cerebellum
Cortex (frontal)
Fear & phobias
Female
Gray Matter - diagnostic imaging
Gray Matter - pathology
Humans
machine learning
Magnetic Resonance Imaging
Male
Nerve Net - diagnostic imaging
Original
Phobic Disorders - classification
Phobic Disorders - diagnostic imaging
Phobic Disorders - pathology
Phobic Disorders - physiopathology
Prediction models
Sensorimotor system
Sensory integration
Somatosensory cortex
Substantia grisea
Support Vector Machine
Temporal lobe
Young Adult
Title The phobic brain: Morphometric features correctly classify individuals with small animal phobia
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14716
https://www.ncbi.nlm.nih.gov/pubmed/39467845
https://www.proquest.com/docview/3162644452
https://www.proquest.com/docview/3121590036
https://pubmed.ncbi.nlm.nih.gov/PMC11785541
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SnHrpK324SYNKSw8FB8uWZW3pJZSGUGhZ2gbSQzGSLBGTXXuJdw_bX98Z2d5kGyi0Jxsky7JGI30zHn0D8Fobq6ROqthxNFGEt1WsE5vGKA8nVSUoKSNFW3yRp2fi03l-vgPvx7MwPT_ExuFGmhHWa1JwbbobSr7o1gvUc8T7uABTsBYhoq_X3FETPlCFCxXniCEHblIK47l-dHs3ugUxb0dK3kSwYQs6uQ8_x873kSeXR6ulObK__uB1_N-vewD3BmzKjvvJ9BB2XPMI9o4btMvna_aGhWjR4IbfgxLnF1tctKa2zFCaiXfsc4sya-eUossy7wJjaMcspf-wy9maWQLqtV-zenMIrGPkB2bdXM9mTDc1XvtG9WM4O_n4_cNpPCRriK1AsyhW3BV6Iq2tksJ5VRXSS-1smuReGVehZakzlaSGe25MYnOVSI_gQlfGG-u9yJ7AbtM27hmwieTOc2nSzOciU0bbvNBc66IwRAgmIng1Cq1c9Jwc5WjL0LiVYdwiOBjlWQ562ZUZl4QARZ5G8HJTjBpFv0l049oV1UEYRA5ebOJpL_7Na7IJbixK5BGorYmxqUBs3dslTX0RWLs5KgNiNx7B2yD4v3S9nH77MQ13z_-l8j7cTSk7cXAQHcDu8mrlXiBkWppDuJOK6WFQkN9wtReV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOcCFV3ksFDACcUBKFSeO4-VWAdUCbVVBK5VTZDu2GrGbrMjuYfn1zDjZtEslJDglkh3nMf7ibyaTbwBea2OV1HEZOY4uivC2jHRskwjt4aQqBRVlpGyLIzk5FZ_PsrM-N4f-hen0IYaAGyEjvK8J4BSQvoTyebuaI9CR8F-HG1TSm6TzP3y9UI8a814sXKgoQxbZq5NSIs_FsZvr0RWSeTVX8jKHDYvQ_p2u0mobtAsp9-TH7nJhdu2vP5Qd__v-7sLtnp6yvW4-3YNrrr4P23s1uuazFXvDQsJoiMRvQ4FTjM3PG1NZZqjSxDt22KDZmhlV6bLMuyAa2jJLFUDsYrpilrh65VesGv4DaxmFglk709Mp03WF225Q_QBO9z-evJ9Efb2GyAr0jCLFXa7H0toyzp1XZS691M4mceaVcSU6lzpVcWK458bENlOx9MgvdGm8sd6L9CFs1U3tHgMbS-48lyZJfSZSZbTNcs21znNDmmBiBK_WVivmnSxHsXZn6LkV4bmNYGdt0KKHZlukXBIJFFkygpdDM4KKvpTo2jVL6oNMiGK8OMSjzv7DadIxri1KZCNQGzNj6ECC3ZstdXUehLs54gHpGx_B22D5v1x6cfzt-3HYe_IvnV_AzcnJ4UFx8Onoy1O4lVCx4hAv2oGtxc-le4YMamGeB5z8Bi23Gto
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OE8QXUU-96qkRxQeh0LRpmhVfDnU5fx0LenA-lSRNuMJuW-zew_73zqTd3i0Hgk8tNE3LTCb5ZjL5BuCNNlZJnVSx4-iiCG-rWCc2jVEfTqpKUFFGyrY4lSdn4ut5fr4HH7ZnYQZ-iCngRpYR5msy8K7y14y86zcd2jni_Vtwm3b7KKErFYsryl0-coULFecIIkdyUsrjuXp3dzm6gTFvpkpeh7BhDZrfh3sjeGTHg7YfwJ5rHsLBcYOO82rD3rKQzhni5AdQ4gBg3UVrassM1YF4z360KNR2RTW0LPMuUHr2zFJ9DrtebpglJF37DaunU1o9o0At61d6uWS6qfE6dKofwdn886-PJ_FYTSG2Av2WWHFX6Jm0tkoK51VVSC-1s2mSe2Vcha6fzlSSGu65MYnNVSI9rv66Mt5Y70X2GPabtnGHwGaSO8-lSTOfi0wZbfNCc62LwhBjl4jg9VaoZTeQZpRbZ4NEXwbRR3C0lXc5Gk5fZlwSRBN5GsGr6TEOedrH0I1rL6kN4hSKwGIXTwb1TJ_JZjjzK5FHoHYUNzUgOu3dJ019EWi1OY5WBFc8gndBx__49XLx8_ci3D39n8Yv4c7i07z8_uX02zO4m1Il4RDMOYL99Z9L9xzhzdq8CKP4L-ZZ-Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+phobic+brain%3A+Morphometric+features+correctly+classify+individuals+with+small+animal+phobia&rft.jtitle=Psychophysiology&rft.au=Scarano%2C+Alessandro&rft.au=Fumero%2C+Ascensi%C3%B3n&rft.au=Baggio%2C+Teresa&rft.au=Rivero%2C+Francisco&rft.date=2025-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=62&rft.issue=1&rft_id=info:doi/10.1111%2Fpsyp.14716&rft_id=info%3Apmid%2F39467845&rft.externalDocID=PMC11785541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon