The phobic brain: Morphometric features correctly classify individuals with small animal phobia
Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studie...
Saved in:
Published in | Psychophysiology Vol. 62; no. 1; pp. e14716 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.01.2025
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.
Small animal phobia (SAP) is under‐researched, with previous studies using limited, unbalanced samples and univariate analyses. This study employs for the first time a machine learning method to classify 32 SAP individuals based on structural MRI versus 90 matched controls. Key brain structures included frontal and temporal regions, as well as the amygdala and thalamus. In further analyses we showed that The default mode and the affective networks were among the most predictive networks. |
---|---|
AbstractList | Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.
Small animal phobia (SAP) is under‐researched, with previous studies using limited, unbalanced samples and univariate analyses. This study employs for the first time a machine learning method to classify 32 SAP individuals based on structural MRI versus 90 matched controls. Key brain structures included frontal and temporal regions, as well as the amygdala and thalamus. In further analyses we showed that The default mode and the affective networks were among the most predictive networks. Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro-networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty-two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole-brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro-networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro-networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty-two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole-brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro-networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies. Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro‐networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty‐two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole‐brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro‐networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies. |
Author | Marrero, Rosario J. Rivero, Francisco Scarano, Alessandro Fumero, Ascensión Baggio, Teresa Peñate, Wenceslao Olivares, Teresa Bethencourt, Juan Manuel Álvarez‐Pérez, Yolanda Grecucci, Alessandro |
AuthorAffiliation | 4 Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Las Palmas Spain 2 Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología Universidad de La Laguna La Laguna Tenerife Spain 3 Departamento de Psicología, Facultad de Ciencias de la Salud Universidad Europea de Canarias La Orotava Tenerife Spain 5 Center for Medical Sciences University of Trento Trento Italy 1 Department of Psychology and Cognitive Science University of Trento Trento Italy |
AuthorAffiliation_xml | – name: 2 Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología Universidad de La Laguna La Laguna Tenerife Spain – name: 5 Center for Medical Sciences University of Trento Trento Italy – name: 1 Department of Psychology and Cognitive Science University of Trento Trento Italy – name: 4 Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Las Palmas Spain – name: 3 Departamento de Psicología, Facultad de Ciencias de la Salud Universidad Europea de Canarias La Orotava Tenerife Spain |
Author_xml | – sequence: 1 givenname: Alessandro surname: Scarano fullname: Scarano, Alessandro organization: University of Trento – sequence: 2 givenname: Ascensión surname: Fumero fullname: Fumero, Ascensión organization: Universidad Europea de Canarias – sequence: 3 givenname: Teresa surname: Baggio fullname: Baggio, Teresa organization: University of Trento – sequence: 4 givenname: Francisco surname: Rivero fullname: Rivero, Francisco organization: Universidad Europea de Canarias – sequence: 5 givenname: Rosario J. surname: Marrero fullname: Marrero, Rosario J. organization: Universidad de La Laguna – sequence: 6 givenname: Teresa surname: Olivares fullname: Olivares, Teresa organization: Universidad de La Laguna – sequence: 7 givenname: Wenceslao surname: Peñate fullname: Peñate, Wenceslao organization: Universidad de La Laguna – sequence: 8 givenname: Yolanda surname: Álvarez‐Pérez fullname: Álvarez‐Pérez, Yolanda organization: Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) – sequence: 9 givenname: Juan Manuel surname: Bethencourt fullname: Bethencourt, Juan Manuel organization: Universidad de La Laguna – sequence: 10 givenname: Alessandro orcidid: 0000-0001-6043-2196 surname: Grecucci fullname: Grecucci, Alessandro email: alessandro.grecucci@unitn.it organization: University of Trento |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39467845$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFTEUxYO02Nfqxg8gA25EmDbJZDIZNyLFf9BiwbpwFZLMjS8lL5kmMy3z7U2dWqwL7-bCvb97OMk5RHshBkDoBcHHpNTJmJfxmLCO8CdoQxjva9ELvoc2GDNRt11HD9BhzlcY455Q-hQdND3jnWDtBsnLLVTjNmpnKp2UC2-r85jKYAdTKjMLapoT5MrElMBMfqmMVzk7u1QuDO7GDbPyubp107bKO-V9pYIrfRVVz9C-LXt4ft-P0PePHy5PP9dnXz99OX1_VhuGBa8FgU713JgBd2DF0HHLFRiKWys0DJRg1QhMNbFEa2xagbkVhKpBW22sZc0RerfqjrPewWAgTEl5OabiJS0yKicfb4Lbyp_xRhLSibZlpCi8vldI8XqGPMmdywa8VwHinGVDKGl7jBte0Ff_oFdxTqG8r1CccsZYSwv18m9LD17-fH4B3qyASTHnBPYBIVjeJSvvkpW_ky0wWeFb52H5Dykvvv24WG9-ASsQqHY |
Cites_doi | 10.1016/j.biopsych.2006.03.042 10.1093/brain/awm052 10.1016/j.neuroimage.2008.09.016 10.1073/pnas.98.2.676 10.1016/j.conb.2012.12.012 10.1016/j.pscychresns.2011.10.009 10.20944/preprints202302.0089.v1 10.3389/fnins.2016.00388 10.1001/archpsyc.58.3.257 10.1016/j.ejpsy.2016.12.003 10.1016/j.nicl.2019.101854 10.1016/j.drugalcdep.2012.02.020 10.1016/S0006‐3223(03)00548‐1 10.12688/f1000research.11964.2 10.1016/j.cortex.2014.06.018 10.1007/s10548‐019‐00744‐6 10.1016/S0006‐3223(98)00274‐1 10.1523/JNEUROSCI.5587‐06.2007 10.1523/JNEUROSCI.19‐13‐05473.1999 10.1002/da.23191 10.1016/j.bbr.2013.11.003 10.1038/nrn3945 10.1038/npp.2009.129 10.1152/jn.00338.2011 10.1111/j.1399‐5618.2012.01019.x 10.1097/YCO.0000000000000223 10.1111/j.1749‐6632.2003.tb07096.x 10.1016/j.biopsych.2005.06.013 10.3758/cabn.3.3.207 10.1176/foc.9.3.foc369 10.1371/journal.pone.0178089 10.1016/j.pneurobio.2008.09.004 10.1038/nrn3524 10.1093/brain/aws084 10.1162/jocn.2009.21366 10.1111/ejn.16345 10.3758/s13415‐019‐00757‐5 10.3390/life13010119 10.3390/s23020610 10.1016/j.biopsych.2003.12.022 10.1016/j.neulet.2018.07.005 10.1038/s42003‐021‐01832‐9 10.1016/j.neuroimage.2018.05.065 10.1038/npp.2009.83 10.1093/cercor/bhaa127 10.1007/s00406‐010‐0147‐5 10.1007/s12021‐013‐9178‐1 10.1016/j.nicl.2017.10.026 10.1080/14734220500348584 10.1002/hbm.24492 10.1016/j.jad.2014.01.022 10.1016/j.neuron.2004.08.042 10.1016/j.neuroimage.2008.10.057 10.3389/fnhum.2013.00727 10.1007/s00702‐014‐1272‐5 10.1016/j.janxdis.2015.03.004 10.1196/annals.1440.011 10.1111/ejn.13704 10.1016/j.nicl.2023.103530 10.1146/annurev.neuro.27.070203.144130 10.1016/S0140‐6736(21)02143‐7 10.1196/annals.1401.006 10.1016/j.tics.2006.07.005 10.1016/j.euroneuro.2020.03.008 10.1007/978-0-387-84858-7 10.1176/appi.ajp.2007.07030504 10.1186/1471‐244X‐13‐70 10.1038/s41598‐024‐68490‐9 10.1002/hbm.24722 10.1016/j.pscychresns.2014.12.003 10.1089/brain.2015.0408 10.21203/rs.3.rs‐3416641/v1 10.1073/pnas.0601417103 10.1080/17470919.2023.2242094 10.1214/009053607000000677 10.1002/da.20765 10.1146/annurev.neuro.23.1.155 10.1016/j.conb.2007.07.003 10.1002/mpr.168 10.3389/fpsyt.2022.804440 10.3389/fnbeh.2020.00128 10.1002/hipo.22178 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. 2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. 2024. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. – notice: 2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. – notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
DOI | 10.1111/psyp.14716 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Scarano et al |
EISSN | 1469-8986 1540-5958 |
EndPage | n/a |
ExternalDocumentID | PMC11785541 39467845 10_1111_psyp_14716 PSYP14716 |
Genre | researchArticle Journal Article |
GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAHQN AAIPD AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABVKB ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACRPL ACSCC ACUHS ACWUS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K VQA W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WRC WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAMMB AAYXX ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4086-81e7a96ccd07ef8d76f6aec205f8bed210a3802b1f1bb0c5806f812adbfbcff43 |
IEDL.DBID | DR2 |
ISSN | 0048-5772 1469-8986 |
IngestDate | Thu Aug 21 18:39:04 EDT 2025 Fri Jul 11 15:29:26 EDT 2025 Sat Aug 23 12:54:13 EDT 2025 Mon Jul 21 05:59:32 EDT 2025 Sun Jul 06 05:04:49 EDT 2025 Mon Feb 03 09:41:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | anxiety affective neuroscience animal phobia support vector machine machine learning |
Language | English |
License | Attribution-NonCommercial 2024 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4086-81e7a96ccd07ef8d76f6aec205f8bed210a3802b1f1bb0c5806f812adbfbcff43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6043-2196 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14716 |
PMID | 39467845 |
PQID | 3162644452 |
PQPubID | 41359 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11785541 proquest_miscellaneous_3121590036 proquest_journals_3162644452 pubmed_primary_39467845 crossref_primary_10_1111_psyp_14716 wiley_primary_10_1111_psyp_14716_PSYP14716 |
PublicationCentury | 2000 |
PublicationDate | January 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Psychophysiology |
PublicationTitleAlternate | Psychophysiology |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2009; 45 2017; 6 2009; 44 2014; 259 2004; 27 2013; 23 1997; 275 2015; 32 2008; 36 2019; 688 2020; 14 2012; 202 2013; 7 2012; 125 2012; 14 1998; 44 2003; 54 2018; 47 2006; 60 2010; 22 2021; 38 2017; 31 2010; 27 2013; 14 2023; 23 2008; 1124 2012; 135 2019; 20 2013; 11 2021; 398 1999; 19 2013; 13 2018; 178 2019; 23 2007; 130 2003; 3 4 2001; 58 2001; 98 2007; 27 2004; 43 2007; 17 2023; 13 2015; 16 2010; 35 2023; 18 2000; 23 2007; 1121 2006; 10 2019; 32 2015; 122 2007; 164 2006; 59 2016; 10 2009 2020; 34 2024; 14 2024; 59 2014; 158 2011; 9 2004; 55 2023; 40 2016; 6 2018; 17 2019; 40 2020; 2020 2003; 985 2011; 106 2023 2020; 30 2015; 62 2015; 231 2004; 13 2017; 12 2022; 13 2019 2005; 4 2015 2008; 86 2016; 29 2011; 261 2006; 103 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Pisner A. (e_1_2_9_61_1) 2020; 2020 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Bechara A. (e_1_2_9_7_1) 1997 e_1_2_9_30_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 Olatunji B. O. (e_1_2_9_53_1) 2019 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – year: 2023 article-title: Fronto‐parietal and cerebellar circuits characterise individuals with high trait anxiety: A parallel ICA and Random Forest approach publication-title: Research Square – volume: 14 start-page: 488 issue: 7 year: 2013 end-page: 501 article-title: Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective publication-title: Nature Review Neuroscience – volume: 13 start-page: 804440 year: 2022 article-title: Structural features related to affective instability correctly classify patients with borderline personality disorder. A supervised machine learning approach publication-title: Frontiers in Psychiatry – year: 2009 – volume: 32 start-page: 926 issue: 6 year: 2019 end-page: 942 article-title: Towards a universal taxonomy of macro‐scale functional human brain networks publication-title: Brain Topography – volume: 9 start-page: 369 issue: 3 year: 2011 end-page: 388 article-title: What is an anxiety disorder? publication-title: Focus – volume: 23 start-page: 1044 issue: 11 year: 2013 end-page: 1052 article-title: Factors that influence the relative use of multiple memory systems publication-title: Hippocampus – volume: 44 start-page: 319 year: 2009 end-page: 327 article-title: A quantitative evaluation of cross‐participant registration techniques for MRI studies of the medial temporal lobe publication-title: NeuroImage – volume: 36 start-page: 1171 issue: 3 year: 2008 end-page: 1220 article-title: Kernel methods in machine learning publication-title: Annals of Statistics – volume: 261 start-page: 303 issue: 4 year: 2011 end-page: 307 article-title: Localized gray matter volume abnormalities in generalized anxiety disorder publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 23 start-page: 2826 year: 2023 – volume: 35 start-page: 4 issue: 1 year: 2010 end-page: 26 article-title: The reward circuit: Linking primate anatomy and human imaging publication-title: Neuropsychopharmacology – volume: 62 start-page: 20 year: 2015 end-page: 33 article-title: Connections of the limbic network: A corticocortical evoked potentials study publication-title: Cortex – volume: 14 start-page: 19232 year: 2024 article-title: Decoding acceptance and reappraisal strategies from resting state macro networks publication-title: Scientific Reports – volume: 11 start-page: 319 issue: 3 year: 2013 end-page: 337 article-title: PRoNTo: Pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics – volume: 6 year: 2017 article-title: Preprocessed consortium for neuropsychiatric Phenomics dataset publication-title: F1000Research – volume: 985 start-page: 389 year: 2003 end-page: 410 article-title: Neuroimaging studies of amygdala function in anxiety disorders publication-title: Annals of the New York Academy of Sciences – volume: 1124 start-page: 1 year: 2008 end-page: 38 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Annals of the New York Academy of Sciences – volume: 22 start-page: 2864 issue: 12 year: 2010 end-page: 2885 article-title: Neuroimaging support for discrete neural correlates of basic emotions: A voxel‐based meta‐analysis publication-title: Journal of Cognitive Neuroscience – volume: 54 start-page: 1067 issue: 10 year: 2003 end-page: 1076 article-title: Amygdala and insular responses to emotionally valenced human faces in small animal specific phobia publication-title: Biological Psychiatry – volume: 2020 start-page: 101 year: 2020 end-page: 121 article-title: Support vector machine publication-title: Machine Learning – volume: 27 start-page: 2349 issue: 9 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 98 start-page: 676 issue: 2 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proceedings of the National Academy of Sciences – volume: 135 start-page: 1508 year: 2012 end-page: 1521 article-title: Multi‐centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain: A Journal of Neurology – volume: 398 start-page: 1700 issue: 10312 year: 2021 end-page: 1712 article-title: Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID‐19 pandemic publication-title: The Lancet – volume: 275 start-page: 1293 year: 1997 end-page: 1295 – volume: 259 start-page: 330 year: 2014 end-page: 335 article-title: Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure publication-title: Behavioural Brain Research – volume: 47 year: 2018 article-title: Three shades of grey: Detecting brain abnormalities in children with autism using source‐, voxel‐ and surface‐based morphometry publication-title: The European Journal of Neuroscience – volume: 55 start-page: 946 issue: 9 year: 2004 end-page: 952 article-title: A magnetic resonance imaging study of cortical thickness in animal phobia publication-title: Biological Psychiatry – volume: 17 start-page: 628 year: 2018 end-page: 641 article-title: Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases publication-title: NeuroImage: Clinical – volume: 4 start-page: 301 issue: 1 article-title: Brain pathology recapitulates physiology: A network meta‐analysis publication-title: Communications Biology – volume: 4 start-page: 290 issue: 4 year: 2005 end-page: 294 article-title: The cerebellum on the rise in human emotion publication-title: Cerebellum (London, England) – volume: 130 start-page: 1718 issue: Pt 7 year: 2007 end-page: 1731 article-title: The enigmatic temporal pole: A review of findings on social and emotional processing publication-title: Brain: A Journal of Neurology – volume: 23 year: 2019 article-title: Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms publication-title: NeuroImage – volume: 58 start-page: 257 issue: 3 year: 2001 end-page: 265 article-title: The genetic epidemiology of irrational fears and phobias in men publication-title: Archives of General Psychiatry – volume: 23 start-page: 155 year: 2000 end-page: 184 article-title: Emotion circuits in the brain publication-title: Annual Review of Neuroscience – volume: 38 start-page: 846 issue: 8 year: 2021 end-page: 859 article-title: Neural processing of emotional facial stimuli in specific phobia: An fMRI study publication-title: Depression and Anxiety – volume: 59 start-page: 3273 issue: 12 year: 2024 end-page: 3291 article-title: (2024). Narcissus reflected: Grey and white matter features joint contribution to the default mode network in predicting narcissistic personality traits publication-title: The European Journal of Neuroscience – volume: 202 start-page: 181 issue: 3 year: 2012 end-page: 197 article-title: Functional neuroimaging in specific phobia publication-title: Psychiatry Research: Neuroimaging – volume: 14 start-page: 451 year: 2012 end-page: 460 article-title: Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression publication-title: Bipolar Disorders – volume: 20 start-page: 128 year: 2019 end-page: 140 article-title: Less is more: Psychological and morphometric differences between low vs. high reappraisers publication-title: Cognitive, Affective & Behavioral Neuroscience – year: 2019 – volume: 122 start-page: 123 issue: 1 year: 2015 end-page: 134 article-title: Diagnostic classification of specific phobia subtypes using structural MRI data: A machine‐learning approach publication-title: Journal of Neural Transmission – year: 2015 – volume: 86 start-page: 141 issue: 3 year: 2008 end-page: 155 article-title: The cognitive functions of the caudate nucleus publication-title: Progress in Neurobiology – volume: 10 start-page: 424 issue: 9 year: 2006 end-page: 430 article-title: Beyond mind‐reading: Multivoxel pattern analysis of fMRI data publication-title: Trends in Cognitive Sciences – volume: 40 start-page: 1814 issue: 6 year: 2019 end-page: 1828 article-title: ROI and phobias: The effect of ROI approach on an ALE meta‐analysis of specific phobias publication-title: Human Brain Mapping – volume: 40 year: 2023 article-title: Borderline shades: Morphometric features predict borderline personality traits but not histrionic traits publication-title: NeuroImage: Clinical – volume: 32 start-page: 81 year: 2015 end-page: 88 article-title: Neurostructural abnormalities in pediatric anxiety disorders publication-title: Journal of Anxiety Disorders – volume: 6 start-page: 298 issue: 4 year: 2016 end-page: 311 article-title: A mapping between structural and functional brain networks publication-title: Brain Connectivity – volume: 17 start-page: 417 issue: 4 year: 2007 end-page: 422 article-title: The thalamus is more than just a relay publication-title: Current Opinion in Neurobiology – volume: 34 start-page: 28 year: 2020 end-page: 38 article-title: Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging publication-title: European Neuropsychopharmacology – volume: 19 start-page: 5473 issue: 13 year: 1999 end-page: 5481 article-title: Different contributions of the human amygdala and ventromedial prefrontal cortex to decision‐making publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 44 start-page: 1295 issue: 12 year: 1998 end-page: 1304 article-title: Current approaches to etiology and pathophysiology of specific phobia publication-title: Biological Psychiatry – volume: 18 start-page: 257 issue: 5 year: 2023 end-page: 270 article-title: Predicting narcissistic personality traits from brain and psychological features: A supervised machine learning approach publication-title: Social Neuroscience – volume: 60 start-page: 383 issue: 4 year: 2006 end-page: 387 article-title: An insular view of anxiety publication-title: Biological Psychiatry – volume: 231 start-page: 168 year: 2015 end-page: 175 article-title: Neurostructural correlates of two subtypes of specific phobia: A voxel‐based morphometry study publication-title: Psychiatry Research: Neuroimaging – volume: 1121 start-page: 546 year: 2007 end-page: 561 article-title: The role of the orbitofrontal cortex in anxiety disorders publication-title: Annals of the New York Academy of Sciences – volume: 23 start-page: 610 issue: 2 year: 2023 article-title: Anxious brains: A combined data fusion machine learning approach to predict trait anxiety from morphometric features publication-title: Sensors – volume: 14 year: 2020 article-title: Resting state cortico‐limbic functional connectivity and dispositional use of emotion regulation strategies: A replication and extension study publication-title: Frontiers in Behavioral Neuroscience – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 103 start-page: 13848 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 361 issue: 3 year: 2013 end-page: 372 article-title: Large‐scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain publication-title: Current Opinion in Neurobiology – volume: 35 start-page: 169 issue: 1 year: 2010 end-page: 191 article-title: The neurocircuitry of fear, stress, and anxiety disorders publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology – volume: 125 start-page: 252 issue: 3 year: 2012 end-page: 259 article-title: Prefrontal and limbic resting state brain network functional connectivity differs between nicotine‐dependent smokers and non‐smoking controls publication-title: Drug and Alcohol Dependence – volume: 12 year: 2017 article-title: Similar white matter changes in schizophrenia and bipolar disorder: A tract‐based spatial statistics study publication-title: PLoS One – volume: 27 start-page: 279 year: 2004 end-page: 306 article-title: The medial temporal lobe publication-title: Annual Review of Neuroscience – volume: 3 start-page: 207 issue: 3 year: 2003 end-page: 233 article-title: Functional neuroanatomy of emotions: A meta‐analysis publication-title: Cognitive, Affective, & Behavioral Neuroscience – volume: 688 start-page: 62 year: 2019 end-page: 75 article-title: The cerebellum and cognition publication-title: Neuroscience Letters – volume: 59 start-page: 162 issue: 2 year: 2006 end-page: 170 article-title: Neural mechanisms of automatic and direct processing of Phobogenic stimuli in specific phobia publication-title: Biological Psychiatry – volume: 13 start-page: 119 issue: 1 year: 2023 article-title: A voxel‐based morphometric study of gray matter in specific phobia publication-title: Lifestyles – volume: 27 start-page: 1104 issue: 12 year: 2010 end-page: 1110 article-title: Anxiety sensitivity correlates with two indices of right anterior insula structure in specific animal phobia publication-title: Depression and Anxiety – volume: 164 start-page: 1476 issue: 10 year: 2007 end-page: 1488 article-title: Functional neuroimaging of anxiety: A meta‐analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia publication-title: The American Journal of Psychiatry – volume: 178 start-page: 753 year: 2018 end-page: 768 article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods publication-title: NeuroImage – volume: 7 start-page: 727 year: 2013 article-title: Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder publication-title: Frontiers in Human Neuroscience – volume: 13 issue: 1 year: 2013 article-title: Spider phobia is associated with decreased left amygdala volume: A cross‐sectional study publication-title: BMC Psychiatry – volume: 45 start-page: S163 issue: 1 Suppl year: 2009 end-page: S172 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – volume: 10 year: 2016 article-title: Uncovering the social deficits in the autistic brain. A source‐based morphometric study publication-title: Frontiers in Neuroscience – volume: 40 start-page: 4577 issue: 15 year: 2019 end-page: 4587 article-title: Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases publication-title: Human Brain Mapping – volume: 31 start-page: 23 issue: 1 year: 2017 end-page: 36 article-title: A meta‐analytic review of neuroimaging studies of specific phobia to small animals publication-title: The European Journal of Psychiatry – volume: 30 start-page: 5460 issue: 10 year: 2020 end-page: 5470 article-title: Structural brain architectures match intrinsic functional networks and vary across domains: A study from 15 000+ individuals publication-title: Cerebral Cortex – volume: 16 start-page: 317 issue: 6 year: 2015 end-page: 331 article-title: Neuronal circuits for fear and anxiety publication-title: Nature Reviews Neuroscience – volume: 29 start-page: 56 year: 2016 end-page: 63 article-title: Can anxiety damage the brain? publication-title: Current Opinion in Psychiatry – volume: 43 start-page: 897 issue: 6 year: 2004 end-page: 905 article-title: Extinction learning in humans: Role of the amygdala and vmPFC publication-title: Neuron – volume: 158 start-page: 114 year: 2014 end-page: 126 article-title: Neural structures, functioning and connectivity in generalized anxiety disorder and interaction with neuroendocrine systems: A systematic review publication-title: Journal of Affective Disorders – volume: 13 start-page: 93 year: 2004 end-page: 121 article-title: The world mental health (WMH) survey initiative version of the world health organization (WHO) composite international diagnostic interview (CIDI) publication-title: International Journal of Methods in Psychiatric Research – volume: 2020 start-page: 101 year: 2020 ident: e_1_2_9_61_1 article-title: Support vector machine publication-title: Machine Learning – ident: e_1_2_9_58_1 doi: 10.1016/j.biopsych.2006.03.042 – ident: e_1_2_9_54_1 doi: 10.1093/brain/awm052 – ident: e_1_2_9_86_1 doi: 10.1016/j.neuroimage.2008.09.016 – start-page: 1293 volume-title: Deciding advantageously before knowing the advantageous strategy year: 1997 ident: e_1_2_9_7_1 – ident: e_1_2_9_62_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_9_5_1 doi: 10.1016/j.conb.2012.12.012 – ident: e_1_2_9_15_1 doi: 10.1016/j.pscychresns.2011.10.009 – ident: e_1_2_9_27_1 doi: 10.20944/preprints202302.0089.v1 – ident: e_1_2_9_29_1 doi: 10.3389/fnins.2016.00388 – ident: e_1_2_9_39_1 doi: 10.1001/archpsyc.58.3.257 – ident: e_1_2_9_59_1 doi: 10.1016/j.ejpsy.2016.12.003 – ident: e_1_2_9_75_1 doi: 10.1016/j.nicl.2019.101854 – ident: e_1_2_9_36_1 doi: 10.1016/j.drugalcdep.2012.02.020 – volume-title: The Cambridge handbook of anxiety and related disorders year: 2019 ident: e_1_2_9_53_1 – ident: e_1_2_9_85_1 doi: 10.1016/S0006‐3223(03)00548‐1 – ident: e_1_2_9_25_1 doi: 10.12688/f1000research.11964.2 – ident: e_1_2_9_19_1 doi: 10.1016/j.cortex.2014.06.018 – ident: e_1_2_9_81_1 doi: 10.1007/s10548‐019‐00744‐6 – ident: e_1_2_9_23_1 doi: 10.1016/S0006‐3223(98)00274‐1 – ident: e_1_2_9_72_1 doi: 10.1523/JNEUROSCI.5587‐06.2007 – ident: e_1_2_9_6_1 doi: 10.1523/JNEUROSCI.19‐13‐05473.1999 – ident: e_1_2_9_8_1 doi: 10.1002/da.23191 – ident: e_1_2_9_22_1 doi: 10.1016/j.bbr.2013.11.003 – ident: e_1_2_9_80_1 doi: 10.1038/nrn3945 – ident: e_1_2_9_31_1 doi: 10.1038/npp.2009.129 – ident: e_1_2_9_87_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_9_49_1 doi: 10.1111/j.1399‐5618.2012.01019.x – ident: e_1_2_9_45_1 doi: 10.1097/YCO.0000000000000223 – ident: e_1_2_9_63_1 doi: 10.1111/j.1749‐6632.2003.tb07096.x – ident: e_1_2_9_78_1 doi: 10.1016/j.biopsych.2005.06.013 – ident: e_1_2_9_11_1 – ident: e_1_2_9_50_1 doi: 10.3758/cabn.3.3.207 – ident: e_1_2_9_13_1 doi: 10.1176/foc.9.3.foc369 – ident: e_1_2_9_76_1 doi: 10.1371/journal.pone.0178089 – ident: e_1_2_9_26_1 doi: 10.1016/j.pneurobio.2008.09.004 – ident: e_1_2_9_30_1 doi: 10.1038/nrn3524 – ident: e_1_2_9_51_1 doi: 10.1093/brain/aws084 – ident: e_1_2_9_84_1 doi: 10.1162/jocn.2009.21366 – ident: e_1_2_9_37_1 doi: 10.1111/ejn.16345 – ident: e_1_2_9_56_1 doi: 10.3758/s13415‐019‐00757‐5 – ident: e_1_2_9_65_1 doi: 10.3390/life13010119 – ident: e_1_2_9_4_1 doi: 10.3390/s23020610 – ident: e_1_2_9_64_1 doi: 10.1016/j.biopsych.2003.12.022 – ident: e_1_2_9_69_1 doi: 10.1016/j.neulet.2018.07.005 – ident: e_1_2_9_83_1 doi: 10.1038/s42003‐021‐01832‐9 – ident: e_1_2_9_48_1 doi: 10.1016/j.neuroimage.2018.05.065 – ident: e_1_2_9_74_1 doi: 10.1038/npp.2009.83 – ident: e_1_2_9_44_1 doi: 10.1093/cercor/bhaa127 – ident: e_1_2_9_68_1 doi: 10.1007/s00406‐010‐0147‐5 – ident: e_1_2_9_70_1 doi: 10.1007/s12021‐013‐9178‐1 – ident: e_1_2_9_66_1 doi: 10.1016/j.nicl.2017.10.026 – ident: e_1_2_9_71_1 doi: 10.1080/14734220500348584 – ident: e_1_2_9_24_1 doi: 10.1002/hbm.24492 – ident: e_1_2_9_34_1 doi: 10.1016/j.jad.2014.01.022 – ident: e_1_2_9_60_1 doi: 10.1016/j.neuron.2004.08.042 – ident: e_1_2_9_10_1 doi: 10.1016/j.neuroimage.2008.10.057 – ident: e_1_2_9_16_1 doi: 10.3389/fnhum.2013.00727 – ident: e_1_2_9_43_1 doi: 10.1007/s00702‐014‐1272‐5 – ident: e_1_2_9_79_1 doi: 10.1016/j.janxdis.2015.03.004 – ident: e_1_2_9_9_1 doi: 10.1196/annals.1440.011 – ident: e_1_2_9_57_1 doi: 10.1111/ejn.13704 – ident: e_1_2_9_41_1 doi: 10.1016/j.nicl.2023.103530 – ident: e_1_2_9_77_1 doi: 10.1146/annurev.neuro.27.070203.144130 – ident: e_1_2_9_12_1 doi: 10.1016/S0140‐6736(21)02143‐7 – ident: e_1_2_9_47_1 doi: 10.1196/annals.1401.006 – ident: e_1_2_9_52_1 doi: 10.1016/j.tics.2006.07.005 – ident: e_1_2_9_82_1 doi: 10.1016/j.euroneuro.2020.03.008 – ident: e_1_2_9_32_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_9_20_1 doi: 10.1176/appi.ajp.2007.07030504 – ident: e_1_2_9_21_1 doi: 10.1186/1471‐244X‐13‐70 – ident: e_1_2_9_2_1 doi: 10.1038/s41598‐024‐68490‐9 – ident: e_1_2_9_18_1 doi: 10.1002/hbm.24722 – ident: e_1_2_9_33_1 doi: 10.1016/j.pscychresns.2014.12.003 – ident: e_1_2_9_46_1 doi: 10.1089/brain.2015.0408 – ident: e_1_2_9_3_1 doi: 10.21203/rs.3.rs‐3416641/v1 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.0601417103 – ident: e_1_2_9_38_1 doi: 10.1080/17470919.2023.2242094 – ident: e_1_2_9_35_1 doi: 10.1214/009053607000000677 – ident: e_1_2_9_67_1 doi: 10.1002/da.20765 – ident: e_1_2_9_42_1 doi: 10.1146/annurev.neuro.23.1.155 – ident: e_1_2_9_73_1 doi: 10.1016/j.conb.2007.07.003 – ident: e_1_2_9_40_1 doi: 10.1002/mpr.168 – ident: e_1_2_9_28_1 doi: 10.3389/fpsyt.2022.804440 – ident: e_1_2_9_17_1 doi: 10.3389/fnbeh.2020.00128 – ident: e_1_2_9_55_1 doi: 10.1002/hipo.22178 |
SSID | ssj0009122 |
Score | 2.45673 |
Snippet | Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e14716 |
SubjectTerms | Adult affective neuroscience Amygdala animal phobia Animals anxiety Anxiety disorders Brain - diagnostic imaging Brain - pathology Cerebellum Cortex (frontal) Fear & phobias Female Gray Matter - diagnostic imaging Gray Matter - pathology Humans machine learning Magnetic Resonance Imaging Male Nerve Net - diagnostic imaging Original Phobic Disorders - classification Phobic Disorders - diagnostic imaging Phobic Disorders - pathology Phobic Disorders - physiopathology Prediction models Sensorimotor system Sensory integration Somatosensory cortex Substantia grisea Support Vector Machine Temporal lobe Young Adult |
Title | The phobic brain: Morphometric features correctly classify individuals with small animal phobia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.14716 https://www.ncbi.nlm.nih.gov/pubmed/39467845 https://www.proquest.com/docview/3162644452 https://www.proquest.com/docview/3121590036 https://pubmed.ncbi.nlm.nih.gov/PMC11785541 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SnHrpK324SYNKSw8FB8uWZW3pJZSGUGhZ2gbSQzGSLBGTXXuJdw_bX98Z2d5kGyi0Jxsky7JGI30zHn0D8Fobq6ROqthxNFGEt1WsE5vGKA8nVSUoKSNFW3yRp2fi03l-vgPvx7MwPT_ExuFGmhHWa1JwbbobSr7o1gvUc8T7uABTsBYhoq_X3FETPlCFCxXniCEHblIK47l-dHs3ugUxb0dK3kSwYQs6uQ8_x873kSeXR6ulObK__uB1_N-vewD3BmzKjvvJ9BB2XPMI9o4btMvna_aGhWjR4IbfgxLnF1tctKa2zFCaiXfsc4sya-eUossy7wJjaMcspf-wy9maWQLqtV-zenMIrGPkB2bdXM9mTDc1XvtG9WM4O_n4_cNpPCRriK1AsyhW3BV6Iq2tksJ5VRXSS-1smuReGVehZakzlaSGe25MYnOVSI_gQlfGG-u9yJ7AbtM27hmwieTOc2nSzOciU0bbvNBc66IwRAgmIng1Cq1c9Jwc5WjL0LiVYdwiOBjlWQ562ZUZl4QARZ5G8HJTjBpFv0l049oV1UEYRA5ebOJpL_7Na7IJbixK5BGorYmxqUBs3dslTX0RWLs5KgNiNx7B2yD4v3S9nH77MQ13z_-l8j7cTSk7cXAQHcDu8mrlXiBkWppDuJOK6WFQkN9wtReV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOcCFV3ksFDACcUBKFSeO4-VWAdUCbVVBK5VTZDu2GrGbrMjuYfn1zDjZtEslJDglkh3nMf7ibyaTbwBea2OV1HEZOY4uivC2jHRskwjt4aQqBRVlpGyLIzk5FZ_PsrM-N4f-hen0IYaAGyEjvK8J4BSQvoTyebuaI9CR8F-HG1TSm6TzP3y9UI8a814sXKgoQxbZq5NSIs_FsZvr0RWSeTVX8jKHDYvQ_p2u0mobtAsp9-TH7nJhdu2vP5Qd__v-7sLtnp6yvW4-3YNrrr4P23s1uuazFXvDQsJoiMRvQ4FTjM3PG1NZZqjSxDt22KDZmhlV6bLMuyAa2jJLFUDsYrpilrh65VesGv4DaxmFglk709Mp03WF225Q_QBO9z-evJ9Efb2GyAr0jCLFXa7H0toyzp1XZS691M4mceaVcSU6lzpVcWK458bENlOx9MgvdGm8sd6L9CFs1U3tHgMbS-48lyZJfSZSZbTNcs21znNDmmBiBK_WVivmnSxHsXZn6LkV4bmNYGdt0KKHZlukXBIJFFkygpdDM4KKvpTo2jVL6oNMiGK8OMSjzv7DadIxri1KZCNQGzNj6ECC3ZstdXUehLs54gHpGx_B22D5v1x6cfzt-3HYe_IvnV_AzcnJ4UFx8Onoy1O4lVCx4hAv2oGtxc-le4YMamGeB5z8Bi23Gto |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OE8QXUU-96qkRxQeh0LRpmhVfDnU5fx0LenA-lSRNuMJuW-zew_73zqTd3i0Hgk8tNE3LTCb5ZjL5BuCNNlZJnVSx4-iiCG-rWCc2jVEfTqpKUFFGyrY4lSdn4ut5fr4HH7ZnYQZ-iCngRpYR5msy8K7y14y86zcd2jni_Vtwm3b7KKErFYsryl0-coULFecIIkdyUsrjuXp3dzm6gTFvpkpeh7BhDZrfh3sjeGTHg7YfwJ5rHsLBcYOO82rD3rKQzhni5AdQ4gBg3UVrassM1YF4z360KNR2RTW0LPMuUHr2zFJ9DrtebpglJF37DaunU1o9o0At61d6uWS6qfE6dKofwdn886-PJ_FYTSG2Av2WWHFX6Jm0tkoK51VVSC-1s2mSe2Vcha6fzlSSGu65MYnNVSI9rv66Mt5Y70X2GPabtnGHwGaSO8-lSTOfi0wZbfNCc62LwhBjl4jg9VaoZTeQZpRbZ4NEXwbRR3C0lXc5Gk5fZlwSRBN5GsGr6TEOedrH0I1rL6kN4hSKwGIXTwb1TJ_JZjjzK5FHoHYUNzUgOu3dJ019EWi1OY5WBFc8gndBx__49XLx8_ci3D39n8Yv4c7i07z8_uX02zO4m1Il4RDMOYL99Z9L9xzhzdq8CKP4L-ZZ-Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+phobic+brain%3A+Morphometric+features+correctly+classify+individuals+with+small+animal+phobia&rft.jtitle=Psychophysiology&rft.au=Scarano%2C+Alessandro&rft.au=Fumero%2C+Ascensi%C3%B3n&rft.au=Baggio%2C+Teresa&rft.au=Rivero%2C+Francisco&rft.date=2025-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=62&rft.issue=1&rft_id=info:doi/10.1111%2Fpsyp.14716&rft_id=info%3Apmid%2F39467845&rft.externalDocID=PMC11785541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |