MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping

Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. Theory and Methods The ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 79; no. 5; pp. 2795 - 2803
Main Authors Liu, Zhe, Spincemaille, Pascal, Yao, Yihao, Zhang, Yan, Wang, Yi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. Theory and Methods The ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. Results In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. Conclusion QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
AbstractList To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.PURPOSETo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.The ventricular CSF was automatically segmented on the R2* map. An L2 -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.THEORY AND METHODSThe ventricular CSF was automatically segmented on the R2* map. An L2 -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.RESULTSIn both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONQSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. Theory and Methods The ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. Results In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. Conclusion QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. The ventricular CSF was automatically segmented on the R2* map. An L -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
PurposeTo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.Theory and MethodsThe ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.ResultsIn both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.ConclusionQSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Author Wang, Yi
Liu, Zhe
Zhang, Yan
Yao, Yihao
Spincemaille, Pascal
AuthorAffiliation 1 Department of Radiology, Weill Cornell Medical College, New York, New York, USA
2 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
3 Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
AuthorAffiliation_xml – name: 1 Department of Radiology, Weill Cornell Medical College, New York, New York, USA
– name: 3 Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
– name: 2 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0001-7652-5215
  surname: Liu
  fullname: Liu, Zhe
  organization: Cornell University
– sequence: 2
  givenname: Pascal
  surname: Spincemaille
  fullname: Spincemaille, Pascal
  organization: Weill Cornell Medical College
– sequence: 3
  givenname: Yihao
  surname: Yao
  fullname: Yao, Yihao
  organization: Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology
– sequence: 4
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology
– sequence: 5
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: yiwang@med.cornell.edu
  organization: Cornell University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29023982$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi1URLeFAy-ALHGhQmltx3FiDkioFKjUFRKCs2Unk11Xjp3ayVbbd-CdcbulgkpwsQ_z_b9m_pkDtOeDB4ReUnJMCWEnQxyOmZBcPEELWjFWsEryPbQgNSdFSSXfRwcpXRJCpKz5M7TPJGGlbNgC_VyefTx_S97hZYjjOriw2mLw2jjocGfH4ABbv4GYbPD42k5rrOcpDHqyLZ697UMccAsRTAxptF473LvZdvgGYsAR-lzyLeDM4atZ-8lOWboBnObUwjhZY52dtnjQY1avnqOnvXYJXtz_h-jHp7Pvp1-Ki6-fz08_XBQtJ40oyr4xsia0YVWbHy5qauqq1FQT08lKd6bRTEtqpKEGNHDGgUgjOlZVgktWHqL3O99xNgN0LfgpaqfGaAcdtypoq_6ueLtWq7BRVcNo1ZTZ4M29QQxXM6RJDTYP5Jz2EOakqBQlq3P-NKOvH6GXYY45qaQYIUIwURGRqVd_dvTQyu9NZeBoB7Q56ZSTfUAoUbdXoPIVqLsryOzJI7a9yz3cDmPd_xTX1sH239Zq-W25U_wCcNLGog
CitedBy_id crossref_primary_10_1016_j_acra_2024_07_031
crossref_primary_10_1016_j_mri_2023_01_021
crossref_primary_10_1016_j_neuroimage_2023_119886
crossref_primary_10_1111_jon_12957
crossref_primary_10_1002_mrm_30266
crossref_primary_10_1016_j_neuroimage_2023_119923
crossref_primary_10_1002_nbm_4175
crossref_primary_10_1002_jmri_28847
crossref_primary_10_1016_j_jocmr_2024_101000
crossref_primary_10_1002_mrm_27410
crossref_primary_10_1016_j_mri_2024_03_023
crossref_primary_10_1126_sciadv_ads8149
crossref_primary_10_1002_mrm_28227
crossref_primary_10_1007_s12194_024_00878_8
crossref_primary_10_3389_fimmu_2018_00255
crossref_primary_10_3389_fnins_2020_535441
crossref_primary_10_1093_brain_awae013
crossref_primary_10_1097_RLI_0000000000000758
crossref_primary_10_3390_ijms24054461
crossref_primary_10_1007_s10334_020_00831_x
crossref_primary_10_2463_mrms_rev_2024_0001
crossref_primary_10_1007_s10072_024_07463_2
crossref_primary_10_1038_s41531_024_00641_1
crossref_primary_10_1002_brb3_2353
crossref_primary_10_1097_RCT_0000000000001660
crossref_primary_10_3389_fnagi_2021_611891
crossref_primary_10_1111_jon_13014
crossref_primary_10_1002_acn3_52203
crossref_primary_10_1088_2057_1976_ac0501
crossref_primary_10_1016_j_compbiomed_2023_106802
crossref_primary_10_1016_j_jmr_2021_107033
crossref_primary_10_1016_j_neuroimage_2020_117611
crossref_primary_10_1038_s41598_022_08477_6
crossref_primary_10_1002_nbm_3999
crossref_primary_10_1007_s11011_024_01440_6
crossref_primary_10_1148_radiol_220941
crossref_primary_10_1155_2020_7242530
crossref_primary_10_3389_fnagi_2020_00259
crossref_primary_10_1148_radiol_2020202801
crossref_primary_10_1016_j_neuroimage_2020_117451
crossref_primary_10_1002_jmri_27064
crossref_primary_10_1038_s41398_024_02862_7
crossref_primary_10_1111_jon_12658
crossref_primary_10_1186_s40543_019_0199_8
crossref_primary_10_3233_JAD_230389
crossref_primary_10_2174_1872208313666181217112745
crossref_primary_10_1111_jon_12938
crossref_primary_10_1111_ene_15834
crossref_primary_10_1016_j_clinimag_2020_12_018
crossref_primary_10_1016_j_nbd_2024_106549
crossref_primary_10_1186_s12987_023_00464_x
crossref_primary_10_1111_jon_13222
crossref_primary_10_1002_mrm_29694
crossref_primary_10_1016_j_nicl_2025_103740
crossref_primary_10_1002_mrm_29057
crossref_primary_10_1002_jmri_28624
crossref_primary_10_1016_j_neuroimage_2018_07_065
crossref_primary_10_1007_s00234_021_02846_0
crossref_primary_10_1016_j_clinimag_2023_02_001
crossref_primary_10_1016_j_isci_2020_101553
crossref_primary_10_1016_j_clinimag_2021_11_005
crossref_primary_10_3390_tomography8030127
crossref_primary_10_1016_j_mri_2019_04_003
crossref_primary_10_1007_s00330_023_10283_1
crossref_primary_10_1016_j_neuroimage_2021_118371
crossref_primary_10_1111_jon_12669
crossref_primary_10_1002_mrm_30393
crossref_primary_10_1161_STROKEAHA_123_044606
crossref_primary_10_1016_j_mri_2023_04_003
crossref_primary_10_3389_fnins_2022_794375
crossref_primary_10_1016_j_neuroimage_2023_120381
crossref_primary_10_1016_j_msard_2023_104968
crossref_primary_10_1016_j_nicl_2025_103746
crossref_primary_10_1016_j_neuroimage_2021_118429
crossref_primary_10_1002_jmri_28574
crossref_primary_10_3389_fnins_2020_573633
crossref_primary_10_1002_mrm_28875
crossref_primary_10_1002_mrm_29963
crossref_primary_10_1093_brain_awy296
crossref_primary_10_1016_j_msard_2024_105550
crossref_primary_10_1088_1361_6560_ab2623
crossref_primary_10_1016_j_neuroimage_2023_120418
crossref_primary_10_1016_j_mri_2020_08_012
crossref_primary_10_1016_j_neuroimage_2025_121128
crossref_primary_10_1016_j_neuroimage_2023_120272
crossref_primary_10_1016_j_neuroimage_2024_120676
crossref_primary_10_1002_nbm_4412
crossref_primary_10_1111_jon_12990
crossref_primary_10_1016_j_ijrobp_2019_10_009
crossref_primary_10_1002_mrm_28789
crossref_primary_10_3389_fnins_2022_938092
crossref_primary_10_1016_j_neuroimage_2020_116579
crossref_primary_10_1002_mrm_29516
crossref_primary_10_1016_j_compeleceng_2021_107091
crossref_primary_10_1137_18M1191452
crossref_primary_10_1111_jon_12923
crossref_primary_10_1186_s13195_024_01638_x
crossref_primary_10_3174_ajnr_A5933
crossref_primary_10_1016_j_nicl_2022_102979
crossref_primary_10_3390_diagnostics14131362
crossref_primary_10_1002_mrm_27967
crossref_primary_10_1002_mrm_28814
crossref_primary_10_1111_jon_13054
crossref_primary_10_1177_0271678X211048031
crossref_primary_10_3389_fnins_2024_1389111
crossref_primary_10_3389_fnins_2021_716031
crossref_primary_10_3348_kjr_2022_0652
crossref_primary_10_3389_fnins_2020_606182
crossref_primary_10_1002_mds_28141
crossref_primary_10_1016_j_neuroimage_2023_120058
crossref_primary_10_1038_s41598_021_93427_x
crossref_primary_10_1002_mrm_30006
crossref_primary_10_1002_mrm_30369
crossref_primary_10_1016_j_neuroimage_2025_121060
crossref_primary_10_3389_fneur_2020_595463
crossref_primary_10_1016_j_brachy_2019_06_004
crossref_primary_10_14801_jkiit_2020_18_10_15
crossref_primary_10_1016_j_brainres_2024_149263
crossref_primary_10_1002_mrm_29779
crossref_primary_10_3171_2020_5_JNS201163
crossref_primary_10_1002_mrm_28447
crossref_primary_10_1186_s12916_023_02855_1
crossref_primary_10_1002_hbm_70136
crossref_primary_10_1177_0271678X241298584
crossref_primary_10_3389_fnins_2022_801618
crossref_primary_10_1002_mds_29062
crossref_primary_10_1177_0271678X20973951
crossref_primary_10_1111_jon_12987
crossref_primary_10_1002_jmri_26632
crossref_primary_10_1007_s00234_024_03444_6
crossref_primary_10_3389_fnins_2021_736891
crossref_primary_10_1186_s12968_019_0579_7
crossref_primary_10_1002_mrm_27900
crossref_primary_10_1016_j_media_2025_103532
crossref_primary_10_1007_s00330_022_08713_7
crossref_primary_10_1002_mrm_29644
crossref_primary_10_1016_j_neurad_2019_05_002
crossref_primary_10_3389_fneur_2023_1251230
crossref_primary_10_1002_jmri_28092
Cites_doi 10.1148/radiol.13122640
10.1109/TMI.2009.2023787
10.1073/pnas.0904899106
10.1016/j.neuroimage.2011.08.077
10.1002/mrm.22482
10.1007/s40134-017-0204-1
10.1016/j.neuroimage.2012.12.050
10.1002/mrm.24629
10.1109/42.906424
10.1016/j.zemedi.2015.10.002
10.1002/mrm.25919
10.1227/00006123-199209000-00006
10.1073/pnas.0610821104
10.1109/TMI.2011.2182523
10.1016/j.neuroimage.2013.07.054
10.1016/j.neuroimage.2011.10.038
10.1148/radiol.13121991
10.1002/mrm.25322
10.1002/mrm.24272
10.1002/mrm.25189
10.1002/jmri.25144
10.1002/nbm.3383
10.1002/mrm.25448
10.1007/s10439-011-0482-3
10.1002/mrm.24918
10.1109/TMI.2014.2361764
10.1002/mrm.26208
10.1002/jmri.24943
10.1002/mrm.24135
10.1016/j.neuroimage.2011.08.082
10.1002/mrm.24762
10.1002/jmri.1880040108
10.1002/nbm.3569
10.1259/bjr/66206791
10.1073/pnas.0910222107
10.3348/kjr.2004.5.2.81
10.1002/mrm.25358
10.1016/j.mri.2014.09.004
10.1002/mrm.26331
10.1016/j.neuroimage.2012.04.042
10.1002/mrm.22187
10.1089/ars.2013.5593
10.1002/mrm.24937
10.1073/pnas.1211075109
10.1002/nbm.1670
10.1148/radiol.13130353
10.1002/mrm.25420
10.1002/mrm.25463
10.1137/140957433
10.1002/mrm.26369
10.1103/PhysRevLett.72.4049
10.1016/j.mri.2010.06.011
10.1002/jmri.1880070215
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.26946
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2803
ExternalDocumentID PMC5821583
29023982
10_1002_mrm_26946
MRM26946
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 NS072370 ; R01 NS090464 ; R01 NS095562 ; R01CA181566
– fundername: NINDS NIH HHS
  grantid: R01 NS090464
– fundername: NIH HHS
  grantid: S10 OD021782
– fundername: NINDS NIH HHS
  grantid: R01 NS095562
– fundername: NINDS NIH HHS
  grantid: R01 NS072370
– fundername: NCI NIH HHS
  grantid: R01 CA181566
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4086-3f8b9701825c1824671b753a1a0bd95adb8a2a91b9b1beae424e09b6d25564923
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 17:49:32 EDT 2025
Thu Jul 10 17:13:28 EDT 2025
Fri Jul 25 09:23:42 EDT 2025
Mon Jul 21 06:07:22 EDT 2025
Tue Jul 01 01:21:04 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Jan 22 17:10:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords zero reference
CSF homogeneity
QSM
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4086-3f8b9701825c1824671b753a1a0bd95adb8a2a91b9b1beae424e09b6d25564923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7652-5215
PMID 29023982
PQID 2006626506
PQPubID 1016391
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821583
proquest_miscellaneous_1963270741
proquest_journals_2006626506
pubmed_primary_29023982
crossref_primary_10_1002_mrm_26946
crossref_citationtrail_10_1002_mrm_26946
wiley_primary_10_1002_mrm_26946_MRM26946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2007; 104
2015; 34
2013; 69
2010; 107
2015; 73
2015; 74
2013; 83
2013; 269
2015; 33
2011; 84
2016; 76
2016; 75
2013; 70
2004; 5
2014; 271
2017; 1701
2012; 59
2014; 270
1992; 31
2010; 63
2012; 31
2012; 109
1997; 7
2014; 21
2001; 20
2015; 28
2010; 29
2010; 28
2015; 42
2017; 78
2017
2011; 24
2012; 68
2014; 72
2014; 7
1994; 72
2016; 26
2014; 71
1994; 4
2016; 44
2009; 106
2012; 62
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Zhou L (e_1_2_7_11_1) 2017; 1701
References_xml – volume: 59
  start-page: 2625
  year: 2012
  end-page: 2635
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 7
  start-page: 347
  year: 1997
  end-page: 352
  article-title: Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5 t: preliminary results by Cine‐MR venography
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 1592
  year: 2015
  end-page: 1600
  article-title: Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors
  publication-title: J Magn Reson Imaging
– volume: 40
  start-page: 1328
  year: 2012
  end-page: 1338
  article-title: Visualizing and quantifying acute inflammation using ICAM‐1 specific nanoparticles and MRI quantitative susceptibility mapping
  publication-title: Ann Biomed Eng
– volume: 72
  start-page: 149
  year: 2014
  end-page: 159
  article-title: Quantitative oxygenation venography from MRI phase
  publication-title: Magn Reson Med
– volume: 73
  start-page: 82
  year: 2015
  end-page: 101
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn Reson Med
– volume: 59
  start-page: 2560
  year: 2012
  end-page: 2568
  article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map
  publication-title: Neuroimage
– volume: 33
  start-page: 1
  year: 2015
  end-page: 25
  article-title: Quantitative susceptibility mapping: current status and future directions
  publication-title: Magn Reson Imaging
– volume: 28
  start-page: 1294
  year: 2015
  end-page: 1303
  article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range
  publication-title: NMR Biomed
– volume: 76
  start-page: 781
  year: 2016
  end-page: 791
  article-title: Quantitative susceptibility mapping using a superposed dipole inversion method: application to intracranial hemorrhage
  publication-title: Magn Reson Med
– volume: 44
  start-page: 426
  year: 2016
  end-page: 432
  article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)
  publication-title: J Magn Reson Imaging
– volume: 271
  start-page: 183
  year: 2014
  end-page: 192
  article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages
  publication-title: Radiology
– volume: 84
  start-page: 758
  year: 2011
  end-page: 765
  article-title: Cerebrospinal fluid flow imaging by using phase‐contrast MR technique
  publication-title: Br J Radiol
– volume: 59
  start-page: 2088
  year: 2012
  end-page: 2097
  article-title: Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings
  publication-title: Neuroimage
– volume: 72
  start-page: 610
  year: 2014
  end-page: 619
  article-title: Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR‐STI) for estimating orientations of white matter fibers in human brain
  publication-title: Magn Reson Med
– volume: 31
  start-page: 816
  year: 2012
  end-page: 824
  article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 104
  start-page: 11796
  year: 2007
  end-page: 11801
  article-title: High‐field MRI of brain cortical substructure based on signal phase
  publication-title: Proc Natl Acad Sci USA
– volume: 269
  start-page: 216
  year: 2013
  end-page: 223
  article-title: Improved subthalamic nucleus depiction with quantitative susceptibility mapping
  publication-title: Radiology
– volume: 24
  start-page: 1129
  year: 2011
  end-page: 1136
  article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF)
  publication-title: NMR Biomed
– volume: 63
  start-page: 1471
  year: 2010
  end-page: 1477
  article-title: Susceptibility tensor imaging
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1258
  year: 2015
  end-page: 1269
  article-title: Effects of white matter microstructure on phase and susceptibility maps
  publication-title: Magn Reson Med
– volume: 69
  start-page: 467
  year: 2013
  end-page: 476
  article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping
  publication-title: Magn Reson Med
– volume: 4
  start-page: 25
  year: 1994
  end-page: 28
  article-title: Velocity and flow quantitation in the superior sagittal sinus with ungated and cine (gated) phase‐contrast MR imaging
  publication-title: J Magn Reson Imaging
– volume: 75
  start-page: 2455
  year: 2016
  end-page: 2463
  article-title: B0‐orientation dependent magnetic susceptibility‐induced white matter contrast in the human brainstem at 11.7 T
  publication-title: Magn Reson Med
– volume: 78
  start-page: 204
  year: 2017
  end-page: 214
  article-title: Suitable reference tissues for quantitative susceptibility mapping of the brain
  publication-title: Magn Reson Med
– volume: 83
  start-page: 1011
  year: 2013
  end-page: 1023
  article-title: Gradient echo based fiber orientation mapping using R2* and frequency difference measurements
  publication-title: Neuroimage
– volume: 5
  start-page: 81
  year: 2004
  end-page: 86
  article-title: CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging
  publication-title: Korean J Radiol
– volume: 1701
  start-page: 05457
  year: 2017
  article-title: Dipole incompatibility related artifacts in quantitative susceptibility mapping
  publication-title: arXiv preprint arXiv
– volume: 68
  start-page: 1563
  year: 2012
  end-page: 1569
  article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping
  publication-title: Magn Reson Med
– year: 2017
  article-title: Overview of quantitative susceptibility mapping
  publication-title: NMR Biomed
– volume: 34
  start-page: 531
  year: 2015
  end-page: 540
  article-title: Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 11
  year: 2017
  article-title: Susceptibility‐based neuroimaging: standard methods, clinical applications, and future directions
  publication-title: Curr Radiol Rep
– volume: 109
  start-page: 18559
  year: 2012
  end-page: 18564
  article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 438
  year: 2014
  end-page: 445
  article-title: Flow compensated quantitative susceptibility mapping for venous oxygenation imaging
  publication-title: Magn Reson Med
– volume: 31
  start-page: 420
  year: 1992
  end-page: 428
  article-title: Transcranial color‐coded real‐time sonography in the evaluation of intracranial neoplasms and arteriovenous malformations
  publication-title: Neurosurgery
– volume: 7
  start-page: 1669
  year: 2014
  end-page: 1689
  article-title: Inverse problem in quantitative susceptibility mapping
  publication-title: SIAM J Imaging Sci
– volume: 74
  start-page: 945
  year: 2015
  end-page: 952
  article-title: Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM)
  publication-title: Magn Reson Med
– volume: 26
  start-page: 6
  year: 2016
  end-page: 34
  article-title: Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM)
  publication-title: Z Med Phys
– volume: 72
  start-page: 4049
  year: 1994
  end-page: 4052
  article-title: Effects of orientational order and particle size on the NMR line positions of lipoproteins
  publication-title: Phys Rev Lett
– volume: 28
  start-page: 1383
  year: 2010
  end-page: 1389
  article-title: Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields
  publication-title: Magn Reson Imaging
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Medical Imaging
– volume: 63
  start-page: 194
  year: 2010
  end-page: 206
  article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging
  publication-title: Magn Reson Med
– volume: 107
  start-page: 5130
  year: 2010
  end-page: 5135
  article-title: Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure
  publication-title: Proc Natl Acad Sci USA
– volume: 70
  start-page: 363
  year: 2013
  end-page: 376
  article-title: Magnetic susceptibility anisotropy: cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations
  publication-title: Neuroimage
– volume: 74
  start-page: 673
  year: 2015
  end-page: 683
  article-title: Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload
  publication-title: Magn Reson Med
– volume: 74
  start-page: 564
  year: 2015
  end-page: 570
  article-title: Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron
  publication-title: Magn Reson Med
– volume: 29
  start-page: 273
  year: 2010
  end-page: 281
  article-title: Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps
  publication-title: IEEE Trans Med Imaging
– volume: 71
  start-page: 345
  year: 2014
  end-page: 353
  article-title: On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation
  publication-title: Magn Reson Med
– volume: 62
  start-page: 314
  year: 2012
  end-page: 330
  article-title: Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7T
  publication-title: Neuroimage
– volume: 78
  start-page: 303
  year: 2017
  end-page: 315
  article-title: Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping
  publication-title: Magn Reson Med
– volume: 106
  start-page: 13558
  year: 2009
  end-page: 13563
  article-title: Biophysical mechanisms of phase contrast in gradient echo MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 1251
  year: 2014
  end-page: 1263
  article-title: Magnetic susceptibility induced white matter MR signal frequency shifts—experimental comparison between Lorentzian sphere and generalized Lorentzian approaches
  publication-title: Magn Reson Med
– volume: 270
  start-page: 496
  year: 2014
  end-page: 505
  article-title: Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping
  publication-title: Radiology
– volume: 21
  start-page: 195
  year: 2014
  end-page: 210
  article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease
  publication-title: Antioxid Redox Signal
– volume: 1701
  start-page: 05457
  year: 2017
  ident: e_1_2_7_11_1
  article-title: Dipole incompatibility related artifacts in quantitative susceptibility mapping
  publication-title: arXiv preprint arXiv
– ident: e_1_2_7_46_1
  doi: 10.1148/radiol.13122640
– ident: e_1_2_7_2_1
  doi: 10.1109/TMI.2009.2023787
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.0904899106
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2011.08.077
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.22482
– ident: e_1_2_7_49_1
  doi: 10.1007/s40134-017-0204-1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2012.12.050
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.24629
– ident: e_1_2_7_53_1
  doi: 10.1109/42.906424
– ident: e_1_2_7_15_1
  doi: 10.1016/j.zemedi.2015.10.002
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.25919
– ident: e_1_2_7_41_1
  doi: 10.1227/00006123-199209000-00006
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.0610821104
– ident: e_1_2_7_13_1
  doi: 10.1109/TMI.2011.2182523
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroimage.2013.07.054
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neuroimage.2011.10.038
– ident: e_1_2_7_45_1
  doi: 10.1148/radiol.13121991
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.25322
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.24272
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.25189
– ident: e_1_2_7_25_1
  doi: 10.1002/jmri.25144
– ident: e_1_2_7_18_1
  doi: 10.1002/nbm.3383
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.25448
– ident: e_1_2_7_51_1
  doi: 10.1007/s10439-011-0482-3
– ident: e_1_2_7_48_1
  doi: 10.1002/mrm.24918
– ident: e_1_2_7_22_1
  doi: 10.1109/TMI.2014.2361764
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.26208
– ident: e_1_2_7_26_1
  doi: 10.1002/jmri.24943
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.24135
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2011.08.082
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.24762
– ident: e_1_2_7_43_1
  doi: 10.1002/jmri.1880040108
– ident: e_1_2_7_16_1
  doi: 10.1002/nbm.3569
– ident: e_1_2_7_40_1
  doi: 10.1259/bjr/66206791
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.0910222107
– ident: e_1_2_7_39_1
  doi: 10.3348/kjr.2004.5.2.81
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.25358
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mri.2014.09.004
– ident: e_1_2_7_54_1
  doi: 10.1002/mrm.26331
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroimage.2012.04.042
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.22187
– ident: e_1_2_7_52_1
  doi: 10.1089/ars.2013.5593
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.24937
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.1211075109
– ident: e_1_2_7_23_1
  doi: 10.1002/nbm.1670
– ident: e_1_2_7_24_1
  doi: 10.1148/radiol.13130353
– ident: e_1_2_7_47_1
  doi: 10.1002/mrm.25420
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.25463
– ident: e_1_2_7_10_1
  doi: 10.1137/140957433
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.26369
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevLett.72.4049
– ident: e_1_2_7_50_1
  doi: 10.1016/j.mri.2010.06.011
– ident: e_1_2_7_42_1
  doi: 10.1002/jmri.1880070215
SSID ssj0009974
Score 2.6107776
Snippet Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)...
To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)...
PurposeTo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2795
SubjectTerms Cerebrospinal fluid
Computer simulation
Corpus callosum
CSF homogeneity
Dipoles
Globus pallidus
Homogeneity
Image quality
In vivo methods and tests
Lesions
Magnetic permeability
Magnetic resonance
Magnetic resonance imaging
Mapping
Mathematical models
Morphology
Multiple sclerosis
QSM
Regularization
Reproducibility
Substantia nigra
Variation
Ventricle
Ventricle (lateral)
zero reference
Title MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26946
https://www.ncbi.nlm.nih.gov/pubmed/29023982
https://www.proquest.com/docview/2006626506
https://www.proquest.com/docview/1963270741
https://pubmed.ncbi.nlm.nih.gov/PMC5821583
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh0NBLH-kj26ZFLT0Uije2Vral5BRCQii4h9BADgUj2VK7ZNdO1-tC8x_ynzMj2U63SSH0YgwaY8meGX2SZr4h5IMG1BmnNgpkUoYBtzEPlI2jwMpEpDbRycSV6cy-JMen_PNZfLZG9vpcGM8PMWy4oWU4f40GrnSzc0MaOl_Mx5iGiXTbGKuFgOjkhjpKSs_AnHL0M5L3rEIh2xmeXJ2LbgHM23GSf-JXNwEdPSbf-q77uJPzcbvU4-LyL1bH_xzbE_KoA6Z032vSU7Jmqk2ykXVH75vkgYsVLZpn5AopIT-FuzSr4Se5bXlqXApWScvpRT0zdFr98vtwFPd5qWqXtaOGpW2FmWBzWpgFLMaxZgm-1M7aaUkvzaKmQ9kTCnL0Z6sqlwUHPpk2beNicFw47286V0gt8f05OT06_HpwHHRVHYKCw_opmFihZRrCuiYu4AKOOtKwZlKRCnUpY1VqoZiSkZY60kYZzrgJpU5KJEtDOrkXZL2qK7NFaKmMjYQw0saaI7EiZ4URkqcw8YfGsBH52P_fvOgoz7Hyxiz3ZM0shw-duw89Iu8H0QvP83GX0HavJHln6k3uTq8YAF1ofjc0g5HiyYuqTN02Obo5liJ6G5GXXqeGtzCJ-cUCOpuuaNsggATgqy3V9IcjAsck51hMYJhOmf7d8Tw7ydzNq_uLviYPARwKH9y5TdaXi9a8AQC21G-dpV0DQ1kwPw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHuW1UMAgDkgo28TrPIy4IES1QNND1Uq9oMhObFixm5TNBon-B_4zM86jLAUJcYkieaLYycx4ZjzzDcAzjVZnGNvAk1Hhe8KGwlM2DDwroyS2kY4mrk1nuh9Nj8T74_B4A171tTAtPsQQcCPJcPqaBJwC0jtnqKGL5WJMdZjRBbhIHb2dQ3VwBh4lZYvBHAvSNFL0uEI-3xkeXd-NzpmY5zMlf7Vg3Ra0ex0-9pNvM0--jJuVHuenv-E6_u_qbsC1zjZlr1tmugkbptyCy2l3-r4Fl1y6aF7fgh-ECvnCf8nSCv-Ti8wz46qwClbMTqq5YbPyWxuKYxTqZapZVQ4dljUlFYMtWG6W6I9T2xJ6qZ03s4KdmmXFhs4nDOnY10aVrhAO1TKrm9ql4biM3u9soQhd4tNtONp9e_hm6nWNHbxcoAvlTWyiZeyjaxPmeEFdHWh0m1SgfF3IUBU6UVzJQEsdaKOM4ML4UkcF4aURotwd2Cyr0twDVihjgyQx0oZaELai4LlJpIhx7_eN4SN43v_gLO9Qz6n5xjxr8Zp5hh86cx96BE8H0pMW6uNPRNs9l2SdtNeZO8DiaOvi8JNhGOWUDl9UaaqmzkjT8ZgMuBHcbZlqeAuXVGKc4GTjNXYbCAgDfH2knH12WOBU5xwmE1ym46a_TzxLD1J3c__fSR_Dlelhupftvdv_8ACuoq2YtLme27C5WjbmIdpjK_3Iid1PFCQ0Wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qxeKLH_XrtOoqPgiSa5LbJLv6JNajfqRIsdCHQthNdvXwLjkvF8H-D_7PzmwuqWcVxJcQ2AnZj5nZmd2Z3wA80Wh1RokNPBkXvsdtxD1lo8CzMhaJjXU8cmU604N4_4i_PY6ON-BFlwvT4kP0B24kGU5fk4DPC7t7Bho6W8yGlIYZX4CLPPYFsfTe4Rl2lJQtBHPCSdFI3sEK-eFu_-n6ZnTOwjwfKPmrAet2oPFVOOn63gaefBk2Sz3MT3-DdfzPwV2DKyvLlL1sWek6bJhyG7bS1d37NlxywaJ5fQN-ECbkM_85SytcJXcuz4zLwSpYMZlXU8Mm5bf2II7RQS9TzbJy2LCsKSkVbMZys0BvnIqW0E_ttJkU7NQsKtbXPWFIx742qnRpcKiUWd3ULgjHxfN-ZzNF2BKfbsLR-PXHV_veqqyDl3N0oLyRFVomPjo2UY4P1NSBRqdJBcrXhYxUoYUKlQy01IE2yvCQG1_quCC0NMKTuwWbZVWaO8AKZWwghJE20pyQFXmYGyF5gju_b0w4gKfd-mb5CvOcSm9MsxatOcxwojM30QN43JPOW6CPPxHtdEySrWS9ztz1VYiWLjY_6ptRSunqRZWmauqM9FyYkPk2gNstT_V_CSUlGAvsbLLGbT0BIYCvt5STzw4JnLKcIzHCYTpm-nvHs_QwdS93_530IWx92Btn798cvLsHl9FQFG2g5w5sLheNuY_G2FI_cEL3E34uMxI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEDI%2B0%3A+Morphology+enabled+dipole+inversion+with+automatic+uniform+cerebrospinal+fluid+zero+reference+for+quantitative+susceptibility+mapping&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Liu%2C+Zhe&rft.au=Spincemaille%2C+Pascal&rft.au=Yao%2C+Yihao&rft.au=Zhang%2C+Yan&rft.date=2018-05-01&rft.eissn=1522-2594&rft.volume=79&rft.issue=5&rft.spage=2795&rft_id=info:doi/10.1002%2Fmrm.26946&rft_id=info%3Apmid%2F29023982&rft.externalDocID=29023982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon