MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping
Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. Theory and Methods The ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF...
Saved in:
Published in | Magnetic resonance in medicine Vol. 79; no. 5; pp. 2795 - 2803 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.
Theory and Methods
The ventricular CSF was automatically segmented on the
R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.
Results
In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.
Conclusion
QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.PURPOSETo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.The ventricular CSF was automatically segmented on the R2* map. An L2 -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.THEORY AND METHODSThe ventricular CSF was automatically segmented on the R2* map. An L2 -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.RESULTSIn both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONQSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Purpose To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. Theory and Methods The ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. Results In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. Conclusion QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine. To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. The ventricular CSF was automatically segmented on the R2* map. An L -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine. PurposeTo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility.Theory and MethodsThe ventricular CSF was automatically segmented on the R2* map. An L2‐regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects.ResultsIn both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility.ConclusionQSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795–2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
Author | Wang, Yi Liu, Zhe Zhang, Yan Yao, Yihao Spincemaille, Pascal |
AuthorAffiliation | 1 Department of Radiology, Weill Cornell Medical College, New York, New York, USA 2 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA 3 Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China |
AuthorAffiliation_xml | – name: 1 Department of Radiology, Weill Cornell Medical College, New York, New York, USA – name: 3 Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China – name: 2 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0001-7652-5215 surname: Liu fullname: Liu, Zhe organization: Cornell University – sequence: 2 givenname: Pascal surname: Spincemaille fullname: Spincemaille, Pascal organization: Weill Cornell Medical College – sequence: 3 givenname: Yihao surname: Yao fullname: Yao, Yihao organization: Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology – sequence: 4 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology – sequence: 5 givenname: Yi surname: Wang fullname: Wang, Yi email: yiwang@med.cornell.edu organization: Cornell University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29023982$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu1DAQhi1URLeFAy-ALHGhQmltx3FiDkioFKjUFRKCs2Unk11Xjp3ayVbbd-CdcbulgkpwsQ_z_b9m_pkDtOeDB4ReUnJMCWEnQxyOmZBcPEELWjFWsEryPbQgNSdFSSXfRwcpXRJCpKz5M7TPJGGlbNgC_VyefTx_S97hZYjjOriw2mLw2jjocGfH4ABbv4GYbPD42k5rrOcpDHqyLZ697UMccAsRTAxptF473LvZdvgGYsAR-lzyLeDM4atZ-8lOWboBnObUwjhZY52dtnjQY1avnqOnvXYJXtz_h-jHp7Pvp1-Ki6-fz08_XBQtJ40oyr4xsia0YVWbHy5qauqq1FQT08lKd6bRTEtqpKEGNHDGgUgjOlZVgktWHqL3O99xNgN0LfgpaqfGaAcdtypoq_6ueLtWq7BRVcNo1ZTZ4M29QQxXM6RJDTYP5Jz2EOakqBQlq3P-NKOvH6GXYY45qaQYIUIwURGRqVd_dvTQyu9NZeBoB7Q56ZSTfUAoUbdXoPIVqLsryOzJI7a9yz3cDmPd_xTX1sH239Zq-W25U_wCcNLGog |
CitedBy_id | crossref_primary_10_1016_j_acra_2024_07_031 crossref_primary_10_1016_j_mri_2023_01_021 crossref_primary_10_1016_j_neuroimage_2023_119886 crossref_primary_10_1111_jon_12957 crossref_primary_10_1002_mrm_30266 crossref_primary_10_1016_j_neuroimage_2023_119923 crossref_primary_10_1002_nbm_4175 crossref_primary_10_1002_jmri_28847 crossref_primary_10_1016_j_jocmr_2024_101000 crossref_primary_10_1002_mrm_27410 crossref_primary_10_1016_j_mri_2024_03_023 crossref_primary_10_1126_sciadv_ads8149 crossref_primary_10_1002_mrm_28227 crossref_primary_10_1007_s12194_024_00878_8 crossref_primary_10_3389_fimmu_2018_00255 crossref_primary_10_3389_fnins_2020_535441 crossref_primary_10_1093_brain_awae013 crossref_primary_10_1097_RLI_0000000000000758 crossref_primary_10_3390_ijms24054461 crossref_primary_10_1007_s10334_020_00831_x crossref_primary_10_2463_mrms_rev_2024_0001 crossref_primary_10_1007_s10072_024_07463_2 crossref_primary_10_1038_s41531_024_00641_1 crossref_primary_10_1002_brb3_2353 crossref_primary_10_1097_RCT_0000000000001660 crossref_primary_10_3389_fnagi_2021_611891 crossref_primary_10_1111_jon_13014 crossref_primary_10_1002_acn3_52203 crossref_primary_10_1088_2057_1976_ac0501 crossref_primary_10_1016_j_compbiomed_2023_106802 crossref_primary_10_1016_j_jmr_2021_107033 crossref_primary_10_1016_j_neuroimage_2020_117611 crossref_primary_10_1038_s41598_022_08477_6 crossref_primary_10_1002_nbm_3999 crossref_primary_10_1007_s11011_024_01440_6 crossref_primary_10_1148_radiol_220941 crossref_primary_10_1155_2020_7242530 crossref_primary_10_3389_fnagi_2020_00259 crossref_primary_10_1148_radiol_2020202801 crossref_primary_10_1016_j_neuroimage_2020_117451 crossref_primary_10_1002_jmri_27064 crossref_primary_10_1038_s41398_024_02862_7 crossref_primary_10_1111_jon_12658 crossref_primary_10_1186_s40543_019_0199_8 crossref_primary_10_3233_JAD_230389 crossref_primary_10_2174_1872208313666181217112745 crossref_primary_10_1111_jon_12938 crossref_primary_10_1111_ene_15834 crossref_primary_10_1016_j_clinimag_2020_12_018 crossref_primary_10_1016_j_nbd_2024_106549 crossref_primary_10_1186_s12987_023_00464_x crossref_primary_10_1111_jon_13222 crossref_primary_10_1002_mrm_29694 crossref_primary_10_1016_j_nicl_2025_103740 crossref_primary_10_1002_mrm_29057 crossref_primary_10_1002_jmri_28624 crossref_primary_10_1016_j_neuroimage_2018_07_065 crossref_primary_10_1007_s00234_021_02846_0 crossref_primary_10_1016_j_clinimag_2023_02_001 crossref_primary_10_1016_j_isci_2020_101553 crossref_primary_10_1016_j_clinimag_2021_11_005 crossref_primary_10_3390_tomography8030127 crossref_primary_10_1016_j_mri_2019_04_003 crossref_primary_10_1007_s00330_023_10283_1 crossref_primary_10_1016_j_neuroimage_2021_118371 crossref_primary_10_1111_jon_12669 crossref_primary_10_1002_mrm_30393 crossref_primary_10_1161_STROKEAHA_123_044606 crossref_primary_10_1016_j_mri_2023_04_003 crossref_primary_10_3389_fnins_2022_794375 crossref_primary_10_1016_j_neuroimage_2023_120381 crossref_primary_10_1016_j_msard_2023_104968 crossref_primary_10_1016_j_nicl_2025_103746 crossref_primary_10_1016_j_neuroimage_2021_118429 crossref_primary_10_1002_jmri_28574 crossref_primary_10_3389_fnins_2020_573633 crossref_primary_10_1002_mrm_28875 crossref_primary_10_1002_mrm_29963 crossref_primary_10_1093_brain_awy296 crossref_primary_10_1016_j_msard_2024_105550 crossref_primary_10_1088_1361_6560_ab2623 crossref_primary_10_1016_j_neuroimage_2023_120418 crossref_primary_10_1016_j_mri_2020_08_012 crossref_primary_10_1016_j_neuroimage_2025_121128 crossref_primary_10_1016_j_neuroimage_2023_120272 crossref_primary_10_1016_j_neuroimage_2024_120676 crossref_primary_10_1002_nbm_4412 crossref_primary_10_1111_jon_12990 crossref_primary_10_1016_j_ijrobp_2019_10_009 crossref_primary_10_1002_mrm_28789 crossref_primary_10_3389_fnins_2022_938092 crossref_primary_10_1016_j_neuroimage_2020_116579 crossref_primary_10_1002_mrm_29516 crossref_primary_10_1016_j_compeleceng_2021_107091 crossref_primary_10_1137_18M1191452 crossref_primary_10_1111_jon_12923 crossref_primary_10_1186_s13195_024_01638_x crossref_primary_10_3174_ajnr_A5933 crossref_primary_10_1016_j_nicl_2022_102979 crossref_primary_10_3390_diagnostics14131362 crossref_primary_10_1002_mrm_27967 crossref_primary_10_1002_mrm_28814 crossref_primary_10_1111_jon_13054 crossref_primary_10_1177_0271678X211048031 crossref_primary_10_3389_fnins_2024_1389111 crossref_primary_10_3389_fnins_2021_716031 crossref_primary_10_3348_kjr_2022_0652 crossref_primary_10_3389_fnins_2020_606182 crossref_primary_10_1002_mds_28141 crossref_primary_10_1016_j_neuroimage_2023_120058 crossref_primary_10_1038_s41598_021_93427_x crossref_primary_10_1002_mrm_30006 crossref_primary_10_1002_mrm_30369 crossref_primary_10_1016_j_neuroimage_2025_121060 crossref_primary_10_3389_fneur_2020_595463 crossref_primary_10_1016_j_brachy_2019_06_004 crossref_primary_10_14801_jkiit_2020_18_10_15 crossref_primary_10_1016_j_brainres_2024_149263 crossref_primary_10_1002_mrm_29779 crossref_primary_10_3171_2020_5_JNS201163 crossref_primary_10_1002_mrm_28447 crossref_primary_10_1186_s12916_023_02855_1 crossref_primary_10_1002_hbm_70136 crossref_primary_10_1177_0271678X241298584 crossref_primary_10_3389_fnins_2022_801618 crossref_primary_10_1002_mds_29062 crossref_primary_10_1177_0271678X20973951 crossref_primary_10_1111_jon_12987 crossref_primary_10_1002_jmri_26632 crossref_primary_10_1007_s00234_024_03444_6 crossref_primary_10_3389_fnins_2021_736891 crossref_primary_10_1186_s12968_019_0579_7 crossref_primary_10_1002_mrm_27900 crossref_primary_10_1016_j_media_2025_103532 crossref_primary_10_1007_s00330_022_08713_7 crossref_primary_10_1002_mrm_29644 crossref_primary_10_1016_j_neurad_2019_05_002 crossref_primary_10_3389_fneur_2023_1251230 crossref_primary_10_1002_jmri_28092 |
Cites_doi | 10.1148/radiol.13122640 10.1109/TMI.2009.2023787 10.1073/pnas.0904899106 10.1016/j.neuroimage.2011.08.077 10.1002/mrm.22482 10.1007/s40134-017-0204-1 10.1016/j.neuroimage.2012.12.050 10.1002/mrm.24629 10.1109/42.906424 10.1016/j.zemedi.2015.10.002 10.1002/mrm.25919 10.1227/00006123-199209000-00006 10.1073/pnas.0610821104 10.1109/TMI.2011.2182523 10.1016/j.neuroimage.2013.07.054 10.1016/j.neuroimage.2011.10.038 10.1148/radiol.13121991 10.1002/mrm.25322 10.1002/mrm.24272 10.1002/mrm.25189 10.1002/jmri.25144 10.1002/nbm.3383 10.1002/mrm.25448 10.1007/s10439-011-0482-3 10.1002/mrm.24918 10.1109/TMI.2014.2361764 10.1002/mrm.26208 10.1002/jmri.24943 10.1002/mrm.24135 10.1016/j.neuroimage.2011.08.082 10.1002/mrm.24762 10.1002/jmri.1880040108 10.1002/nbm.3569 10.1259/bjr/66206791 10.1073/pnas.0910222107 10.3348/kjr.2004.5.2.81 10.1002/mrm.25358 10.1016/j.mri.2014.09.004 10.1002/mrm.26331 10.1016/j.neuroimage.2012.04.042 10.1002/mrm.22187 10.1089/ars.2013.5593 10.1002/mrm.24937 10.1073/pnas.1211075109 10.1002/nbm.1670 10.1148/radiol.13130353 10.1002/mrm.25420 10.1002/mrm.25463 10.1137/140957433 10.1002/mrm.26369 10.1103/PhysRevLett.72.4049 10.1016/j.mri.2010.06.011 10.1002/jmri.1880070215 |
ContentType | Journal Article |
Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.26946 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2803 |
ExternalDocumentID | PMC5821583 29023982 10_1002_mrm_26946 MRM26946 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01 NS072370 ; R01 NS090464 ; R01 NS095562 ; R01CA181566 – fundername: NINDS NIH HHS grantid: R01 NS090464 – fundername: NIH HHS grantid: S10 OD021782 – fundername: NINDS NIH HHS grantid: R01 NS095562 – fundername: NINDS NIH HHS grantid: R01 NS072370 – fundername: NCI NIH HHS grantid: R01 CA181566 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4086-3f8b9701825c1824671b753a1a0bd95adb8a2a91b9b1beae424e09b6d25564923 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 17:49:32 EDT 2025 Thu Jul 10 17:13:28 EDT 2025 Fri Jul 25 09:23:42 EDT 2025 Mon Jul 21 06:07:22 EDT 2025 Tue Jul 01 01:21:04 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Jan 22 17:10:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | zero reference CSF homogeneity QSM |
Language | English |
License | 2017 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4086-3f8b9701825c1824671b753a1a0bd95adb8a2a91b9b1beae424e09b6d25564923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7652-5215 |
PMID | 29023982 |
PQID | 2006626506 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821583 proquest_miscellaneous_1963270741 proquest_journals_2006626506 pubmed_primary_29023982 crossref_primary_10_1002_mrm_26946 crossref_citationtrail_10_1002_mrm_26946 wiley_primary_10_1002_mrm_26946_MRM26946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 104 2015; 34 2013; 69 2010; 107 2015; 73 2015; 74 2013; 83 2013; 269 2015; 33 2011; 84 2016; 76 2016; 75 2013; 70 2004; 5 2014; 271 2017; 1701 2012; 59 2014; 270 1992; 31 2010; 63 2012; 31 2012; 109 1997; 7 2014; 21 2001; 20 2015; 28 2010; 29 2010; 28 2015; 42 2017; 78 2017 2011; 24 2012; 68 2014; 72 2014; 7 1994; 72 2016; 26 2014; 71 1994; 4 2016; 44 2009; 106 2012; 62 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Zhou L (e_1_2_7_11_1) 2017; 1701 |
References_xml | – volume: 59 start-page: 2625 year: 2012 end-page: 2635 article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping publication-title: Neuroimage – volume: 7 start-page: 347 year: 1997 end-page: 352 article-title: Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5 t: preliminary results by Cine‐MR venography publication-title: J Magn Reson Imaging – volume: 42 start-page: 1592 year: 2015 end-page: 1600 article-title: Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors publication-title: J Magn Reson Imaging – volume: 40 start-page: 1328 year: 2012 end-page: 1338 article-title: Visualizing and quantifying acute inflammation using ICAM‐1 specific nanoparticles and MRI quantitative susceptibility mapping publication-title: Ann Biomed Eng – volume: 72 start-page: 149 year: 2014 end-page: 159 article-title: Quantitative oxygenation venography from MRI phase publication-title: Magn Reson Med – volume: 73 start-page: 82 year: 2015 end-page: 101 article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker publication-title: Magn Reson Med – volume: 59 start-page: 2560 year: 2012 end-page: 2568 article-title: Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map publication-title: Neuroimage – volume: 33 start-page: 1 year: 2015 end-page: 25 article-title: Quantitative susceptibility mapping: current status and future directions publication-title: Magn Reson Imaging – volume: 28 start-page: 1294 year: 2015 end-page: 1303 article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range publication-title: NMR Biomed – volume: 76 start-page: 781 year: 2016 end-page: 791 article-title: Quantitative susceptibility mapping using a superposed dipole inversion method: application to intracranial hemorrhage publication-title: Magn Reson Med – volume: 44 start-page: 426 year: 2016 end-page: 432 article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM) publication-title: J Magn Reson Imaging – volume: 271 start-page: 183 year: 2014 end-page: 192 article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages publication-title: Radiology – volume: 84 start-page: 758 year: 2011 end-page: 765 article-title: Cerebrospinal fluid flow imaging by using phase‐contrast MR technique publication-title: Br J Radiol – volume: 59 start-page: 2088 year: 2012 end-page: 2097 article-title: Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings publication-title: Neuroimage – volume: 72 start-page: 610 year: 2014 end-page: 619 article-title: Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR‐STI) for estimating orientations of white matter fibers in human brain publication-title: Magn Reson Med – volume: 31 start-page: 816 year: 2012 end-page: 824 article-title: Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI publication-title: IEEE Trans Med Imaging – volume: 104 start-page: 11796 year: 2007 end-page: 11801 article-title: High‐field MRI of brain cortical substructure based on signal phase publication-title: Proc Natl Acad Sci USA – volume: 269 start-page: 216 year: 2013 end-page: 223 article-title: Improved subthalamic nucleus depiction with quantitative susceptibility mapping publication-title: Radiology – volume: 24 start-page: 1129 year: 2011 end-page: 1136 article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF) publication-title: NMR Biomed – volume: 63 start-page: 1471 year: 2010 end-page: 1477 article-title: Susceptibility tensor imaging publication-title: Magn Reson Med – volume: 73 start-page: 1258 year: 2015 end-page: 1269 article-title: Effects of white matter microstructure on phase and susceptibility maps publication-title: Magn Reson Med – volume: 69 start-page: 467 year: 2013 end-page: 476 article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping publication-title: Magn Reson Med – volume: 4 start-page: 25 year: 1994 end-page: 28 article-title: Velocity and flow quantitation in the superior sagittal sinus with ungated and cine (gated) phase‐contrast MR imaging publication-title: J Magn Reson Imaging – volume: 75 start-page: 2455 year: 2016 end-page: 2463 article-title: B0‐orientation dependent magnetic susceptibility‐induced white matter contrast in the human brainstem at 11.7 T publication-title: Magn Reson Med – volume: 78 start-page: 204 year: 2017 end-page: 214 article-title: Suitable reference tissues for quantitative susceptibility mapping of the brain publication-title: Magn Reson Med – volume: 83 start-page: 1011 year: 2013 end-page: 1023 article-title: Gradient echo based fiber orientation mapping using R2* and frequency difference measurements publication-title: Neuroimage – volume: 5 start-page: 81 year: 2004 end-page: 86 article-title: CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging publication-title: Korean J Radiol – volume: 1701 start-page: 05457 year: 2017 article-title: Dipole incompatibility related artifacts in quantitative susceptibility mapping publication-title: arXiv preprint arXiv – volume: 68 start-page: 1563 year: 2012 end-page: 1569 article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping publication-title: Magn Reson Med – year: 2017 article-title: Overview of quantitative susceptibility mapping publication-title: NMR Biomed – volume: 34 start-page: 531 year: 2015 end-page: 540 article-title: Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 11 year: 2017 article-title: Susceptibility‐based neuroimaging: standard methods, clinical applications, and future directions publication-title: Curr Radiol Rep – volume: 109 start-page: 18559 year: 2012 end-page: 18564 article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI publication-title: Proc Natl Acad Sci USA – volume: 72 start-page: 438 year: 2014 end-page: 445 article-title: Flow compensated quantitative susceptibility mapping for venous oxygenation imaging publication-title: Magn Reson Med – volume: 31 start-page: 420 year: 1992 end-page: 428 article-title: Transcranial color‐coded real‐time sonography in the evaluation of intracranial neoplasms and arteriovenous malformations publication-title: Neurosurgery – volume: 7 start-page: 1669 year: 2014 end-page: 1689 article-title: Inverse problem in quantitative susceptibility mapping publication-title: SIAM J Imaging Sci – volume: 74 start-page: 945 year: 2015 end-page: 952 article-title: Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM) publication-title: Magn Reson Med – volume: 26 start-page: 6 year: 2016 end-page: 34 article-title: Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM) publication-title: Z Med Phys – volume: 72 start-page: 4049 year: 1994 end-page: 4052 article-title: Effects of orientational order and particle size on the NMR line positions of lipoproteins publication-title: Phys Rev Lett – volume: 28 start-page: 1383 year: 2010 end-page: 1389 article-title: Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields publication-title: Magn Reson Imaging – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Medical Imaging – volume: 63 start-page: 194 year: 2010 end-page: 206 article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging publication-title: Magn Reson Med – volume: 107 start-page: 5130 year: 2010 end-page: 5135 article-title: Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 363 year: 2013 end-page: 376 article-title: Magnetic susceptibility anisotropy: cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations publication-title: Neuroimage – volume: 74 start-page: 673 year: 2015 end-page: 683 article-title: Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload publication-title: Magn Reson Med – volume: 74 start-page: 564 year: 2015 end-page: 570 article-title: Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron publication-title: Magn Reson Med – volume: 29 start-page: 273 year: 2010 end-page: 281 article-title: Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps publication-title: IEEE Trans Med Imaging – volume: 71 start-page: 345 year: 2014 end-page: 353 article-title: On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation publication-title: Magn Reson Med – volume: 62 start-page: 314 year: 2012 end-page: 330 article-title: Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7T publication-title: Neuroimage – volume: 78 start-page: 303 year: 2017 end-page: 315 article-title: Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping publication-title: Magn Reson Med – volume: 106 start-page: 13558 year: 2009 end-page: 13563 article-title: Biophysical mechanisms of phase contrast in gradient echo MRI publication-title: Proc Natl Acad Sci USA – volume: 71 start-page: 1251 year: 2014 end-page: 1263 article-title: Magnetic susceptibility induced white matter MR signal frequency shifts—experimental comparison between Lorentzian sphere and generalized Lorentzian approaches publication-title: Magn Reson Med – volume: 270 start-page: 496 year: 2014 end-page: 505 article-title: Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping publication-title: Radiology – volume: 21 start-page: 195 year: 2014 end-page: 210 article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease publication-title: Antioxid Redox Signal – volume: 1701 start-page: 05457 year: 2017 ident: e_1_2_7_11_1 article-title: Dipole incompatibility related artifacts in quantitative susceptibility mapping publication-title: arXiv preprint arXiv – ident: e_1_2_7_46_1 doi: 10.1148/radiol.13122640 – ident: e_1_2_7_2_1 doi: 10.1109/TMI.2009.2023787 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.0904899106 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2011.08.077 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.22482 – ident: e_1_2_7_49_1 doi: 10.1007/s40134-017-0204-1 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2012.12.050 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.24629 – ident: e_1_2_7_53_1 doi: 10.1109/42.906424 – ident: e_1_2_7_15_1 doi: 10.1016/j.zemedi.2015.10.002 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.25919 – ident: e_1_2_7_41_1 doi: 10.1227/00006123-199209000-00006 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.0610821104 – ident: e_1_2_7_13_1 doi: 10.1109/TMI.2011.2182523 – ident: e_1_2_7_35_1 doi: 10.1016/j.neuroimage.2013.07.054 – ident: e_1_2_7_21_1 doi: 10.1016/j.neuroimage.2011.10.038 – ident: e_1_2_7_45_1 doi: 10.1148/radiol.13121991 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.25322 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.24272 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.25189 – ident: e_1_2_7_25_1 doi: 10.1002/jmri.25144 – ident: e_1_2_7_18_1 doi: 10.1002/nbm.3383 – ident: e_1_2_7_55_1 doi: 10.1002/mrm.25448 – ident: e_1_2_7_51_1 doi: 10.1007/s10439-011-0482-3 – ident: e_1_2_7_48_1 doi: 10.1002/mrm.24918 – ident: e_1_2_7_22_1 doi: 10.1109/TMI.2014.2361764 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.26208 – ident: e_1_2_7_26_1 doi: 10.1002/jmri.24943 – ident: e_1_2_7_4_1 doi: 10.1002/mrm.24135 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuroimage.2011.08.082 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.24762 – ident: e_1_2_7_43_1 doi: 10.1002/jmri.1880040108 – ident: e_1_2_7_16_1 doi: 10.1002/nbm.3569 – ident: e_1_2_7_40_1 doi: 10.1259/bjr/66206791 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.0910222107 – ident: e_1_2_7_39_1 doi: 10.3348/kjr.2004.5.2.81 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.25358 – ident: e_1_2_7_17_1 doi: 10.1016/j.mri.2014.09.004 – ident: e_1_2_7_54_1 doi: 10.1002/mrm.26331 – ident: e_1_2_7_31_1 doi: 10.1016/j.neuroimage.2012.04.042 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.22187 – ident: e_1_2_7_52_1 doi: 10.1089/ars.2013.5593 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.24937 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.1211075109 – ident: e_1_2_7_23_1 doi: 10.1002/nbm.1670 – ident: e_1_2_7_24_1 doi: 10.1148/radiol.13130353 – ident: e_1_2_7_47_1 doi: 10.1002/mrm.25420 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.25463 – ident: e_1_2_7_10_1 doi: 10.1137/140957433 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.26369 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevLett.72.4049 – ident: e_1_2_7_50_1 doi: 10.1016/j.mri.2010.06.011 – ident: e_1_2_7_42_1 doi: 10.1002/jmri.1880070215 |
SSID | ssj0009974 |
Score | 2.6107776 |
Snippet | Purpose
To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)... To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)... PurposeTo develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF)... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2795 |
SubjectTerms | Cerebrospinal fluid Computer simulation Corpus callosum CSF homogeneity Dipoles Globus pallidus Homogeneity Image quality In vivo methods and tests Lesions Magnetic permeability Magnetic resonance Magnetic resonance imaging Mapping Mathematical models Morphology Multiple sclerosis QSM Regularization Reproducibility Substantia nigra Variation Ventricle Ventricle (lateral) zero reference |
Title | MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26946 https://www.ncbi.nlm.nih.gov/pubmed/29023982 https://www.proquest.com/docview/2006626506 https://www.proquest.com/docview/1963270741 https://pubmed.ncbi.nlm.nih.gov/PMC5821583 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh0NBLH-kj26ZFLT0Uije2Vral5BRCQii4h9BADgUj2VK7ZNdO1-tC8x_ynzMj2U63SSH0YgwaY8meGX2SZr4h5IMG1BmnNgpkUoYBtzEPlI2jwMpEpDbRycSV6cy-JMen_PNZfLZG9vpcGM8PMWy4oWU4f40GrnSzc0MaOl_Mx5iGiXTbGKuFgOjkhjpKSs_AnHL0M5L3rEIh2xmeXJ2LbgHM23GSf-JXNwEdPSbf-q77uJPzcbvU4-LyL1bH_xzbE_KoA6Z032vSU7Jmqk2ykXVH75vkgYsVLZpn5AopIT-FuzSr4Se5bXlqXApWScvpRT0zdFr98vtwFPd5qWqXtaOGpW2FmWBzWpgFLMaxZgm-1M7aaUkvzaKmQ9kTCnL0Z6sqlwUHPpk2beNicFw47286V0gt8f05OT06_HpwHHRVHYKCw_opmFihZRrCuiYu4AKOOtKwZlKRCnUpY1VqoZiSkZY60kYZzrgJpU5KJEtDOrkXZL2qK7NFaKmMjYQw0saaI7EiZ4URkqcw8YfGsBH52P_fvOgoz7Hyxiz3ZM0shw-duw89Iu8H0QvP83GX0HavJHln6k3uTq8YAF1ofjc0g5HiyYuqTN02Obo5liJ6G5GXXqeGtzCJ-cUCOpuuaNsggATgqy3V9IcjAsck51hMYJhOmf7d8Tw7ydzNq_uLviYPARwKH9y5TdaXi9a8AQC21G-dpV0DQ1kwPw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHuW1UMAgDkgo28TrPIy4IES1QNND1Uq9oMhObFixm5TNBon-B_4zM86jLAUJcYkieaLYycx4ZjzzDcAzjVZnGNvAk1Hhe8KGwlM2DDwroyS2kY4mrk1nuh9Nj8T74_B4A171tTAtPsQQcCPJcPqaBJwC0jtnqKGL5WJMdZjRBbhIHb2dQ3VwBh4lZYvBHAvSNFL0uEI-3xkeXd-NzpmY5zMlf7Vg3Ra0ex0-9pNvM0--jJuVHuenv-E6_u_qbsC1zjZlr1tmugkbptyCy2l3-r4Fl1y6aF7fgh-ECvnCf8nSCv-Ti8wz46qwClbMTqq5YbPyWxuKYxTqZapZVQ4dljUlFYMtWG6W6I9T2xJ6qZ03s4KdmmXFhs4nDOnY10aVrhAO1TKrm9ql4biM3u9soQhd4tNtONp9e_hm6nWNHbxcoAvlTWyiZeyjaxPmeEFdHWh0m1SgfF3IUBU6UVzJQEsdaKOM4ML4UkcF4aURotwd2Cyr0twDVihjgyQx0oZaELai4LlJpIhx7_eN4SN43v_gLO9Qz6n5xjxr8Zp5hh86cx96BE8H0pMW6uNPRNs9l2SdtNeZO8DiaOvi8JNhGOWUDl9UaaqmzkjT8ZgMuBHcbZlqeAuXVGKc4GTjNXYbCAgDfH2knH12WOBU5xwmE1ym46a_TzxLD1J3c__fSR_Dlelhupftvdv_8ACuoq2YtLme27C5WjbmIdpjK_3Iid1PFCQ0Wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qxeKLH_XrtOoqPgiSa5LbJLv6JNajfqRIsdCHQthNdvXwLjkvF8H-D_7PzmwuqWcVxJcQ2AnZj5nZmd2Z3wA80Wh1RokNPBkXvsdtxD1lo8CzMhaJjXU8cmU604N4_4i_PY6ON-BFlwvT4kP0B24kGU5fk4DPC7t7Bho6W8yGlIYZX4CLPPYFsfTe4Rl2lJQtBHPCSdFI3sEK-eFu_-n6ZnTOwjwfKPmrAet2oPFVOOn63gaefBk2Sz3MT3-DdfzPwV2DKyvLlL1sWek6bJhyG7bS1d37NlxywaJ5fQN-ECbkM_85SytcJXcuz4zLwSpYMZlXU8Mm5bf2II7RQS9TzbJy2LCsKSkVbMZys0BvnIqW0E_ttJkU7NQsKtbXPWFIx742qnRpcKiUWd3ULgjHxfN-ZzNF2BKfbsLR-PXHV_veqqyDl3N0oLyRFVomPjo2UY4P1NSBRqdJBcrXhYxUoYUKlQy01IE2yvCQG1_quCC0NMKTuwWbZVWaO8AKZWwghJE20pyQFXmYGyF5gju_b0w4gKfd-mb5CvOcSm9MsxatOcxwojM30QN43JPOW6CPPxHtdEySrWS9ztz1VYiWLjY_6ptRSunqRZWmauqM9FyYkPk2gNstT_V_CSUlGAvsbLLGbT0BIYCvt5STzw4JnLKcIzHCYTpm-nvHs_QwdS93_530IWx92Btn798cvLsHl9FQFG2g5w5sLheNuY_G2FI_cEL3E34uMxI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEDI%2B0%3A+Morphology+enabled+dipole+inversion+with+automatic+uniform+cerebrospinal+fluid+zero+reference+for+quantitative+susceptibility+mapping&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Liu%2C+Zhe&rft.au=Spincemaille%2C+Pascal&rft.au=Yao%2C+Yihao&rft.au=Zhang%2C+Yan&rft.date=2018-05-01&rft.eissn=1522-2594&rft.volume=79&rft.issue=5&rft.spage=2795&rft_id=info:doi/10.1002%2Fmrm.26946&rft_id=info%3Apmid%2F29023982&rft.externalDocID=29023982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |