In silico toxicology: comprehensive benchmarking of multi‐label classification methods applied to chemical toxicity data
One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to...
Saved in:
Published in | Wiley interdisciplinary reviews. Computational molecular science Vol. 8; no. 3; pp. e1352 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.05.2018
|
Online Access | Get full text |
ISSN | 1759-0876 1759-0884 |
DOI | 10.1002/wcms.1352 |
Cover
Abstract | One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi‐label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi‐label classification models generated using combinations of the state‐of‐the‐art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Computer and Information Science > Computer Algorithms and Programming
Comprehensive assessment of multi‐label classification methods applied to compounds that may cause several toxicity effects. |
---|---|
AbstractList | One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi‐label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi‐label classification models generated using combinations of the state‐of‐the‐art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Computer and Information Science > Computer Algorithms and Programming
Comprehensive assessment of multi‐label classification methods applied to compounds that may cause several toxicity effects. One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area. This article is categorized under: 1Computer and Information Science > Chemoinformatics2Computer and Information Science > Computer Algorithms and Programming. |
Author | Raies, Arwa B. Bajic, Vladimir B. |
Author_xml | – sequence: 1 givenname: Arwa B. orcidid: 0000-0003-3952-7363 surname: Raies fullname: Raies, Arwa B. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Vladimir B. orcidid: 0000-0001-5435-4750 surname: Bajic fullname: Bajic, Vladimir B. email: vladimir.bajic@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29780432$$D View this record in MEDLINE/PubMed |
BookMark | eNo9UEtOwzAUtFARLaULLoB8gbT-JLXDDlV8KhWxAMQycmynMdhxVKeUsOIInJGTkKjQpyfNSDOapzenYFD5SgNwjtEUI0RmO-nCFNOEHIERZkkaIc7jwYGz-RBMQnhF3cQpJhSfgCFJGUcxJSPwuaxgMNZIDxv_0YH16_YSSu_qjS51Fcy7hrmuZOnE5s1Ua-gL6La2MT9f31bk2kJpRQimMFI0xlfQ6ab0KkBR19Zo1cVCWWrXyXZ_wjQtVKIRZ-C4EDboyR-OwfPN9dPiLlo93C4XV6tIxoiTiMkCiUQRxtJ5IihRqeQcMVbQJE77RXlRCCJixTUiiiuGEE1jrBIpE4oEHYOLfW69zZ1WWb0x3S9t9l9CZ5jtDTtjdXvQMcr6grO-4KwvOHtZ3D_2hP4Cd49ytQ |
CitedBy_id | crossref_primary_10_1021_acs_jcim_9b00611 crossref_primary_10_1038_s41598_023_31169_8 crossref_primary_10_1021_acs_jcim_8b00551 crossref_primary_10_1021_acs_jcim_9b00749 crossref_primary_10_1093_bib_bbaa034 crossref_primary_10_3389_fchem_2019_00782 crossref_primary_10_1021_acs_jcim_2c00258 crossref_primary_10_1080_10590501_2018_1537148 crossref_primary_10_1080_10408398_2021_1895060 crossref_primary_10_1002_admt_202201274 crossref_primary_10_1016_j_toxlet_2019_05_016 crossref_primary_10_1155_2018_6179427 crossref_primary_10_1088_2632_2153_ad652c crossref_primary_10_1021_acs_chemrestox_0c00316 crossref_primary_10_1080_10590501_2018_1537563 |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 The Authors. published by Wiley Periodicals, Inc. |
DBID | 24P NPM |
DOI | 10.1002/wcms.1352 |
DatabaseName | Wiley Open Access Collection PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-0884 |
EndPage | n/a |
ExternalDocumentID | 29780432 WCMS1352 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 AAESR AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR ZZTAW ~S- A00 AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE NPM WYJ |
ID | FETCH-LOGICAL-c4082-7cf0a5d277965a32d9c88077f354954950bffa2a4d8e02d8d7003941d5cc530a3 |
IEDL.DBID | 24P |
ISSN | 1759-0876 |
IngestDate | Wed Feb 19 02:41:33 EST 2025 Tue Sep 09 05:09:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4082-7cf0a5d277965a32d9c88077f354954950bffa2a4d8e02d8d7003941d5cc530a3 |
ORCID | 0000-0001-5435-4750 0000-0003-3952-7363 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1352 |
PMID | 29780432 |
PageCount | 26 |
ParticipantIDs | pubmed_primary_29780432 wiley_primary_10_1002_wcms_1352_WCMS1352 |
PublicationCentury | 2000 |
PublicationDate | May/June 2018 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May/June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
PublicationTitleAlternate | Wiley Interdiscip Rev Comput Mol Sci |
PublicationYear | 2018 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 3839589 - Regul Toxicol Pharmacol. 1985 Jun;5(2):152-74 18853299 - SAR QSAR Environ Res. 2008;19(5-6):495-524 8419153 - Environ Mol Mutagen. 1993;21(1):38-45; discussion 46-57 17813446 - Science. 1934 Jan 12;79(2037):38-9 23114987 - J Comput Chem. 2013 Mar 15;34(7):604-10 24417026 - Int J Data Min Bioinform. 2013;8(3):338-48 21690016 - IEEE Trans Syst Man Cybern B Cybern. 2011 Dec;41(6):1471-82 21772764 - J Pharmacol Pharmacother. 2011 Apr;2(2):74-9 26258538 - Nat Biotechnol. 2015 Sep;33(9):933-40 20708096 - Drug Discov Today. 2010 Dec;15(23-24):997-1007 16386343 - Regul Toxicol Pharmacol. 2006 Mar;44(2):83-96 26811972 - Nat Commun. 2016 Jan 26;7:10425 26508991 - Comput Math Methods Med. 2015;2015:246374 23457578 - PLoS One. 2013;8(2):e56517 26017442 - Nature. 2015 May 28;521(7553):436-44 26855674 - J Cheminform. 2016 Feb 04;8:7 16352383 - Regul Toxicol Pharmacol. 2006 Mar;44(2):97-110 27708580 - Front Pharmacol. 2016 Sep 21;7:321 17514565 - SAR QSAR Environ Res. 2007 May-Jun;18(3-4):195-207 21488656 - J Chem Inf Model. 2011 May 23;51(5):975-85 27066112 - Wiley Interdiscip Rev Comput Mol Sci. 2016 Mar;6(2):147-172 |
References_xml | – reference: 21690016 - IEEE Trans Syst Man Cybern B Cybern. 2011 Dec;41(6):1471-82 – reference: 16386343 - Regul Toxicol Pharmacol. 2006 Mar;44(2):83-96 – reference: 17514565 - SAR QSAR Environ Res. 2007 May-Jun;18(3-4):195-207 – reference: 26811972 - Nat Commun. 2016 Jan 26;7:10425 – reference: 27708580 - Front Pharmacol. 2016 Sep 21;7:321 – reference: 27066112 - Wiley Interdiscip Rev Comput Mol Sci. 2016 Mar;6(2):147-172 – reference: 26855674 - J Cheminform. 2016 Feb 04;8:7 – reference: 21488656 - J Chem Inf Model. 2011 May 23;51(5):975-85 – reference: 3839589 - Regul Toxicol Pharmacol. 1985 Jun;5(2):152-74 – reference: 21772764 - J Pharmacol Pharmacother. 2011 Apr;2(2):74-9 – reference: 23457578 - PLoS One. 2013;8(2):e56517 – reference: 23114987 - J Comput Chem. 2013 Mar 15;34(7):604-10 – reference: 17813446 - Science. 1934 Jan 12;79(2037):38-9 – reference: 24417026 - Int J Data Min Bioinform. 2013;8(3):338-48 – reference: 16352383 - Regul Toxicol Pharmacol. 2006 Mar;44(2):97-110 – reference: 26508991 - Comput Math Methods Med. 2015;2015:246374 – reference: 18853299 - SAR QSAR Environ Res. 2008;19(5-6):495-524 – reference: 26258538 - Nat Biotechnol. 2015 Sep;33(9):933-40 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 8419153 - Environ Mol Mutagen. 1993;21(1):38-45; discussion 46-57 – reference: 20708096 - Drug Discov Today. 2010 Dec;15(23-24):997-1007 |
SSID | ssj0000491231 |
Score | 2.299648 |
SecondaryResourceType | review_article |
Snippet | One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e1352 |
Title | In silico toxicology: comprehensive benchmarking of multi‐label classification methods applied to chemical toxicity data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1352 https://www.ncbi.nlm.nih.gov/pubmed/29780432 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6lHvQivq0vcvDgZWk2mzRZPUmxVKGloMXelmw2oYU-pK34OPkT_I3-EjNJW3sUlmVhd3ZhZmfyZZj5BqHL2GhiY6KiJJUqYqnMI0kZj3RNMh6b2OQCGpxb7Vqzyx56vFdCN8temMAPsUq4gWf4eA0OrvJZ9Y809E2PZjC1wcXfDWithbkNlHVWCRYHfV1U9hsuwdMIqNeWzEKEVlfSayvPOjr1y0tjB20vcCG-DYbcRSUz3kOb9eU4tn30eT_Gs8HQGQ7PJ-8DTzb9cY2hJHxq-qEMHefun-uPlM9_44nFvlzw5-vbmdoMsQakDKVB3ho4DI-eYRWAqHst1gv6gPAJB9AxVJAeoG7j7qnejBaDEyIN86MjoS1RvKBCpDWuElqk2rmpEDZxu0E4SG6toooV0hBayEJAiy6LC641T4hKDlF5PBmbY4SNVQW3RmqpJHMyknBOCXfCRlvB8go6CurLXgI7RkY9p1FCK-jK63N1IxAk0wxUn4Hqs-d66xEuTv7_6CnacpBFhpLDM1SeT1_NuYMF8_zCm9-d253WL11VuAA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6lHupFfFufOXjwspjNJk1WvEix1EdF0KK3JZtNaEFbaSs-Tv4Ef6O_xEzSrj0Ke1jYzS7MZCZfhi_fIHQYG01sTFSUpFJFLJV5JCnjkW5IxmMTm1zAAefOTaPdZZeP_LGCTmdnYYI-RFlwg8jw-RoCHArSx3-qoW_6eQxtG1wCXmAOlwOhj7LbssLisK9Ly37HJXgagfbaTFqI0ONy9NzSMw9P_frSWkZLU2CIz4InV1DFDFZRrTnrx7aGPi8GeNx_cp7Dk-F736tNf5xg4ISPTC_w0HHuJl3vWfkCOB5a7PmCP1_fztfmCWuAysAN8u7AoXv0GKuARN1nsZ7qB4RfOISOgUK6jrqt8_tmO5p2Tog0NJCOhLZE8YIKkTa4SmiRahenQtjEbQfhIrm1iipWSENoIQsBZ3RZXHCteUJUsoGqg-HAbCFsrCq4NVJLJZkbIwnnlHA32GgrWF5Hm8F82UuQx8ioFzVKaB0deXuWD4JCMs3A9BmYPntodu7gZvv_rx6gWvu-c51dX9xc7aBFh19k4B_uoupk9Gr2HEaY5Pt-KvwCDJa6Zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6ioF7E91tz8OBlaTabNFk9SbVYH6Wgxd6WbDahgralrfg4-RP8jf4SM0m7ehT2sLA7uzCTSb5MZr5B6Cg2mtiYqChJpYpYKvNIUsYjXZWMxyY2uYAC59tm9bLNrjq8M4NOp7UwgR-iDLiBZ_j5Ghx8UNjKL2noq34eQdcGN__OwWEfeCVlrTLA4qCvm5X9hkvwNALqtSmzEKGVUvrPyvMXnfrlpb6Mlia4EJ8FQ66gGdNbRQu1aTu2NfTR6OHR45MzHB733x492fT7CYaU8KHphjR0nLsx131WPv6N-xb7dMHvzy9navOENSBlSA3y1sChefQIqwBE3WexntAHhF84gI4hg3QdtesX97XLaNI4IdLQPzoS2hLFCypEWuUqoUWqnZsKYRO3G4SL5NYqqlghDaGFLASU6LK44FrzhKhkA832-j2zhbCxquDWSC2VZE5GEs4p4U7YaCtYvo02g_qyQWDHyKjnNEroNjr2-iwfBIJkmoHqM1B99lC7vYObnf-_eojmW-f17KbRvN5Fiw69yJB9uIdmx8MXs-8Qwjg_8CPhByVeuZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+toxicology%3A+comprehensive+benchmarking+of+multi%E2%80%90label+classification+methods+applied+to+chemical+toxicity+data&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Raies%2C+Arwa+B.&rft.au=Bajic%2C+Vladimir+B.&rft.date=2018-05-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=8&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1352&rft.externalDBID=10.1002%252Fwcms.1352&rft.externalDocID=WCMS1352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |