Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae

• Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 1; pp. 304 - 315
Main Authors Jiang, Feiyan, Zhang, Lin, Zhou, Jiachao, George, Timothy S., Feng, Gu
Format Journal Article
LanguageEnglish
Published England Wiley 01.04.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. • We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. • The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. • Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.
AbstractList Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.
Summary Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. See also the Commentary on this article by Jansa & Hodge, 230: 14–16.
Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. See also the Commentary on this article by Jansa & Hodge, 230 : 14–16 .
• Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. • We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. • The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. • Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.
Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant-microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant-microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.
Author Zhou, Jiachao
Jiang, Feiyan
Zhang, Lin
George, Timothy S.
Feng, Gu
Author_xml – sequence: 1
  givenname: Feiyan
  surname: Jiang
  fullname: Jiang, Feiyan
– sequence: 2
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
– sequence: 3
  givenname: Jiachao
  surname: Zhou
  fullname: Zhou, Jiachao
– sequence: 4
  givenname: Timothy S.
  surname: George
  fullname: George, Timothy S.
– sequence: 5
  givenname: Gu
  surname: Feng
  fullname: Feng, Gu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33205416$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFAz8AZIkLHNLaju0kx6oCilQBhx64WWPH2XiV2MFOBOHAb8d0dzlUIEayRpa-90Yz7wyd-OAtQs8puaC5Lv3UX9CK1PQR2lAum6KmZXWCNoSwupBcfjlFZyntCCGNkOwJOi1LRgSncoN-XkW9JLMMEPG4mhBj737AgLvFbx22vgdvLB6dtxEGl2B2wePQ4RC34J3BUx9SfnFJWK_YQIyr81uswcw2OsAwhPyde-sitt_nCBFaZ_KAfp16sE_R4w6GZJ8d-jm6e_f27vqmuP30_sP11W1heF6rMK2QujRaGl0JUYPVAspSU6tLIq3WgnSSCNHStrXAuBFdBrSuKYDm2pbn6PXedorh62LTrEaXjB0G8DYsSTHBCW8IY_X_US5pLUtZkYy-eoDuwhJ93iNTDa8aWlUsUy8P1KJH26opuhHiqo4ZZOByD5gYUoq2U8bN94fO53KDokT9TlnllNV9ylnx5oHiaPo39uD-zQ12_TeoPn6-OSpe7BW7NIf4R8EqQijjdfkLZT3DDQ
CitedBy_id crossref_primary_10_1016_j_envres_2024_120714
crossref_primary_10_3389_fpls_2024_1450829
crossref_primary_10_3390_jof10120811
crossref_primary_10_1016_j_copbio_2021_06_008
crossref_primary_10_1016_j_jplph_2021_153591
crossref_primary_10_3390_microorganisms10122399
crossref_primary_10_3390_microorganisms9081566
crossref_primary_10_1016_j_geoderma_2021_115662
crossref_primary_10_1146_annurev_arplant_102820_124504
crossref_primary_10_1111_1758_2229_13007
crossref_primary_10_3390_agriculture14030358
crossref_primary_10_1186_s13213_022_01692_6
crossref_primary_10_1007_s11104_024_07132_5
crossref_primary_10_1111_ppl_13715
crossref_primary_10_3390_microorganisms13010151
crossref_primary_10_1007_s00572_023_01132_6
crossref_primary_10_1007_s42729_022_00970_1
crossref_primary_10_1080_03650340_2024_2439297
crossref_primary_10_3389_fmicb_2024_1383813
crossref_primary_10_3390_agronomy13020550
crossref_primary_10_1016_j_pedsph_2024_01_003
crossref_primary_10_1016_j_envres_2024_120148
crossref_primary_10_1080_01904167_2023_2192780
crossref_primary_10_3389_fpls_2023_1278990
crossref_primary_10_1111_tpj_15568
crossref_primary_10_1128_spectrum_01546_24
crossref_primary_10_1146_annurev_arplant_061722_090342
crossref_primary_10_3389_fpls_2024_1333505
crossref_primary_10_1111_nph_18772
crossref_primary_10_3389_fmicb_2024_1280848
crossref_primary_10_3390_d13090408
crossref_primary_10_1146_annurev_micro_041522_105143
crossref_primary_10_1128_spectrum_02260_22
crossref_primary_10_1038_s41579_024_01073_7
crossref_primary_10_3389_fmicb_2023_1083319
crossref_primary_10_1016_j_tplants_2021_10_008
crossref_primary_10_1111_nph_19178
crossref_primary_10_1016_j_tim_2021_08_002
crossref_primary_10_1007_s11104_024_07018_6
crossref_primary_10_1016_j_geoderma_2021_115672
crossref_primary_10_3389_fmicb_2024_1504444
crossref_primary_10_1007_s00253_022_11996_x
crossref_primary_10_3389_fmicb_2021_669784
crossref_primary_10_1007_s40726_023_00282_7
crossref_primary_10_1016_j_scitotenv_2023_166468
crossref_primary_10_15835_nbha50112503
crossref_primary_10_1016_j_soilbio_2023_109058
crossref_primary_10_1016_j_soilbio_2023_109175
crossref_primary_10_1007_s00425_024_04338_w
crossref_primary_10_1007_s00572_023_01107_7
crossref_primary_10_1111_1365_2435_14524
crossref_primary_10_1007_s12298_023_01279_8
crossref_primary_10_1360_TB_2021_0579
crossref_primary_10_3389_fmicb_2023_1284648
crossref_primary_10_1016_j_scitotenv_2021_149796
crossref_primary_10_3390_biology11010041
crossref_primary_10_3389_fsoil_2023_1172436
crossref_primary_10_1111_nph_19560
crossref_primary_10_1093_femsre_fuac024
crossref_primary_10_1007_s42729_022_00953_2
crossref_primary_10_1016_j_pedsph_2023_09_007
crossref_primary_10_1007_s11104_023_06144_x
crossref_primary_10_1111_mec_16880
crossref_primary_10_1051_e3sconf_202236104019
crossref_primary_10_1016_j_eti_2024_103947
crossref_primary_10_1186_s40793_023_00521_w
crossref_primary_10_1016_j_jes_2024_02_029
crossref_primary_10_1016_j_pedsph_2024_02_002
crossref_primary_10_1007_s42729_023_01473_3
crossref_primary_10_1080_01490451_2024_2331111
crossref_primary_10_1111_nph_20304
crossref_primary_10_3389_fmicb_2021_797381
crossref_primary_10_1007_s11274_024_04086_9
crossref_primary_10_1038_s41396_021_01155_x
crossref_primary_10_1007_s13199_023_00904_0
crossref_primary_10_3389_ffunb_2023_1141963
crossref_primary_10_1111_nph_17244
crossref_primary_10_1016_j_soilbio_2022_108670
crossref_primary_10_1016_j_crbiot_2023_100158
crossref_primary_10_1007_s11356_022_20399_4
crossref_primary_10_1007_s11104_022_05621_z
crossref_primary_10_1016_j_apsoil_2021_104089
crossref_primary_10_1016_j_mib_2023_102357
crossref_primary_10_1016_j_ecoenv_2022_113385
crossref_primary_10_1007_s44154_021_00027_w
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1007_s11274_024_03926_y
crossref_primary_10_1093_femsre_fuac039
crossref_primary_10_1080_10420940_2025_2449656
crossref_primary_10_1111_rec_13549
crossref_primary_10_3390_jof10030226
crossref_primary_10_1111_sum_13166
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_3390_horticulturae9050564
crossref_primary_10_3389_fpls_2022_875958
crossref_primary_10_1038_s41559_022_01799_8
crossref_primary_10_1016_j_mib_2024_102496
crossref_primary_10_1111_nph_17985
crossref_primary_10_1186_s12866_022_02574_2
crossref_primary_10_1038_s41396_023_01476_z
crossref_primary_10_1016_j_micres_2023_127350
crossref_primary_10_3389_fpls_2023_1206870
crossref_primary_10_1016_j_tplants_2021_07_014
crossref_primary_10_7717_peerj_17138
crossref_primary_10_1111_pce_14951
crossref_primary_10_1016_j_tplants_2024_05_008
crossref_primary_10_1111_pce_15245
crossref_primary_10_1093_ismejo_wrae073
crossref_primary_10_1016_j_scitotenv_2025_178525
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_1016_j_heliyon_2024_e30484
crossref_primary_10_3389_fmicb_2022_996305
crossref_primary_10_1007_s42729_024_02112_1
crossref_primary_10_1021_acs_est_2c00099
crossref_primary_10_3390_jof8080800
crossref_primary_10_1111_1365_2435_14349
crossref_primary_10_1111_nph_19112
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_3390_microorganisms12040683
crossref_primary_10_1016_j_micres_2024_127860
crossref_primary_10_1002_saj2_20679
crossref_primary_10_1016_j_scitotenv_2023_165429
crossref_primary_10_1080_00275514_2023_2206930
crossref_primary_10_1007_s00374_024_01802_3
crossref_primary_10_1093_ismejo_wrae185
crossref_primary_10_1016_j_cell_2025_01_035
crossref_primary_10_1016_j_rhisph_2024_100946
crossref_primary_10_1111_nph_17854
crossref_primary_10_3390_ijms24021119
crossref_primary_10_1016_j_cub_2024_10_028
crossref_primary_10_1128_mbio_02761_22
crossref_primary_10_1016_j_ecolind_2023_111543
crossref_primary_10_1007_s12268_023_2041_5
crossref_primary_10_2139_ssrn_4055845
crossref_primary_10_1007_s11104_024_07150_3
crossref_primary_10_1128_spectrum_00162_23
crossref_primary_10_1111_1365_2435_14232
crossref_primary_10_3389_fmicb_2024_1289022
crossref_primary_10_1093_ismejo_wraf023
crossref_primary_10_1111_gcb_17409
crossref_primary_10_1016_j_apsoil_2023_105211
crossref_primary_10_1016_j_apsoil_2024_105518
crossref_primary_10_1111_nph_70064
crossref_primary_10_1007_s00374_022_01636_x
crossref_primary_10_1016_j_pedsph_2023_04_004
crossref_primary_10_1016_j_soilbio_2023_109215
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1016_j_catena_2025_108893
crossref_primary_10_1128_aem_01369_22
crossref_primary_10_1016_j_fmre_2024_04_016
crossref_primary_10_1111_1365_2435_14249
crossref_primary_10_1016_j_geoderma_2023_116396
crossref_primary_10_1111_1462_2920_16227
crossref_primary_10_1111_1365_2435_14658
crossref_primary_10_1111_nph_18630
crossref_primary_10_3390_biology10020158
crossref_primary_10_1111_nph_18192
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_1038_s41396_022_01308_6
crossref_primary_10_1021_acs_est_3c07850
crossref_primary_10_1016_j_soilbio_2024_109702
crossref_primary_10_1007_s00572_021_01066_x
crossref_primary_10_1016_j_jhazmat_2023_131114
crossref_primary_10_1016_j_apsoil_2021_104346
crossref_primary_10_1093_bbb_zbae116
crossref_primary_10_3389_fmicb_2023_1131797
crossref_primary_10_1007_s11104_024_06801_9
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1021_acs_jafc_4c07428
crossref_primary_10_1016_j_agee_2022_108053
crossref_primary_10_1016_j_mib_2023_102283
crossref_primary_10_1007_s00374_022_01683_4
crossref_primary_10_1093_femsre_fuad066
crossref_primary_10_1039_D3LC00859B
crossref_primary_10_3390_agronomy15030738
crossref_primary_10_1007_s11104_023_06425_5
crossref_primary_10_1063_5_0231656
crossref_primary_10_1111_jmi_13313
crossref_primary_10_3390_agronomy11081567
crossref_primary_10_1038_s41396_021_01112_8
crossref_primary_10_3389_fpls_2024_1372634
crossref_primary_10_1093_aob_mcad191
crossref_primary_10_1016_j_soilbio_2025_109797
crossref_primary_10_1016_j_chemosphere_2022_133613
crossref_primary_10_1016_j_scitotenv_2022_158961
crossref_primary_10_1016_j_pbi_2023_102483
crossref_primary_10_1007_s11104_021_05237_9
crossref_primary_10_1007_s00572_024_01164_6
crossref_primary_10_1007_s11356_024_34910_6
crossref_primary_10_1111_1365_2435_14545
crossref_primary_10_15252_embr_202357455
crossref_primary_10_1016_j_pbi_2023_102448
crossref_primary_10_1111_gcbb_13148
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_1016_j_soilbio_2022_108837
crossref_primary_10_1080_00103624_2022_2142238
crossref_primary_10_1016_j_scitotenv_2023_161420
crossref_primary_10_1016_j_apsoil_2023_105011
crossref_primary_10_1186_s12870_024_05398_6
crossref_primary_10_3390_horticulturae7110500
crossref_primary_10_1016_j_scienta_2023_112774
crossref_primary_10_1016_j_scitotenv_2023_163708
crossref_primary_10_1016_j_envpol_2023_121597
crossref_primary_10_1111_nph_18281
crossref_primary_10_3389_fpls_2022_985574
crossref_primary_10_1016_j_apsoil_2024_105799
crossref_primary_10_1111_1758_2229_13039
crossref_primary_10_1007_s00284_025_04111_6
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1002_imo2_46
crossref_primary_10_1016_j_still_2023_105809
crossref_primary_10_1007_s42729_024_02140_x
crossref_primary_10_1111_1462_2920_16333
Cites_doi 10.1021/es047979z
10.2307/3761216
10.3389/fmicb.2014.00598
10.1093/femsre/fuy008
10.1126/science.1097394
10.1111/j.1365-2958.2011.07559.x
10.3389/fpls.2011.00080
10.1016/j.soilbio.2010.12.009
10.1111/1758-2229.12002
10.1021/es061407s
10.1038/344058a0
10.1111/j.1574-6941.2007.00337.x
10.1038/s41396-018-0171-4
10.1111/1462-2920.14289
10.1073/pnas.1313452110
10.1111/j.1574-6968.2005.00003.x
10.2307/2261666
10.1046/j.1365-2745.1999.00390.x
10.1128/AEM.67.5.2284-2291.2001
10.1146/annurev-arplant-042110-103846
10.1046/j.1469-8137.1998.00216.x
10.1038/ismej.2010.5
10.1080/00380768.1994.10414298
10.1080/00103629009368377
10.1111/nph.13838
10.1146/annurev.micro.57.030502.091014
10.1007/s11104-009-9929-9
10.1016/j.soilbio.2014.03.004
10.1038/nrmicro2405
10.1007/s00374-014-0989-5
10.1093/femsec/fiv116
10.1007/s003740000249
10.1128/AEM.01823-15
ContentType Journal Article
Copyright 2021 China Agricultural University © 2021 New Phytologist Foundation
2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation
2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 China Agricultural University © 2021 New Phytologist Foundation
– notice: 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation
– notice: 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17081
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 315
ExternalDocumentID 33205416
10_1111_nph_17081
NPH17081
27001248
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U1703232
– fundername: National Key R&D Program of China
  funderid: 2017YFD0200200
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4081-cd56b3cb6cb7558aeb5a33b1eb306ebb50f6055d1ddea24c5fb5abb81aab4be3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:30:19 EDT 2025
Sun Aug 24 03:33:04 EDT 2025
Sat Aug 23 13:22:23 EDT 2025
Thu Apr 03 07:09:36 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 02:28:36 EDT 2025
Wed Jan 22 16:31:27 EST 2025
Thu Jul 03 21:34:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hyphosphere interaction
mycorrhizal fungal highway
resource patch
bacterial migration
phosphorus mobilisation
Language English
License 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4081-cd56b3cb6cb7558aeb5a33b1eb306ebb50f6055d1ddea24c5fb5abb81aab4be3
Notes See also the Commentary on this article by
Jansa & Hodge
.
14–16
230
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1663-5620
0000-0002-1052-5009
0000-0003-3231-2159
PMID 33205416
PQID 2494791772
PQPubID 2026848
PageCount 12
ParticipantIDs proquest_miscellaneous_2540490228
proquest_miscellaneous_2461863670
proquest_journals_2494791772
pubmed_primary_33205416
crossref_citationtrail_10_1111_nph_17081
crossref_primary_10_1111_nph_17081
wiley_primary_10_1111_nph_17081_NPH17081
jstor_primary_27001248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210401
April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210401
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 2
2011; 80
2015; 51
1993; 81
2011; 62
2003; 57
2008
1999; 87
2006
1998; 139
1990; 344
2001; 67
2013; 5
2018; 42
2004; 304
1994; 40
2006; 254
1990; 21
2014; 5
2015; 81
2000; 32
1998; 90
2009; 321
2016; 210
2011; 43
2018b; 12
2007; 61
2015; 91
2013; 110
2018a; 20
2007; 41
2014; 74
2005; 39
2010; 4
2010; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Smith SE (e_1_2_7_23_1) 2008
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Neumann G (e_1_2_7_18_1) 2006
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
33600606 - New Phytol. 2021 Apr;230(1):14-16
References_xml – volume: 8
  start-page: 634
  year: 2010
  end-page: 644
  article-title: A field guide to bacterial swarming motility
  publication-title: Nature Reviews Microbiology
– volume: 90
  start-page: 579
  year: 1998
  end-page: 585
  article-title: Monoxenic culture of the intraradical forms of sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection
  publication-title: Mycologia
– volume: 42
  start-page: 335
  year: 2018
  end-page: 352
  article-title: Bacterial‐fungal interactions: ecology, mechanisms and challenges
  publication-title: FEMS Microbiology Review
– start-page: 79
  year: 2006
  end-page: 85
– volume: 5
  start-page: 598
  year: 2014
  article-title: BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents
  publication-title: Frontiers in Microbiology
– volume: 110
  start-page: 20117
  year: 2013
  end-page: 20122
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 43
  start-page: 760
  year: 2011
  end-page: 765
  article-title: Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae
  publication-title: Soil Biology & Biochemistry
– volume: 61
  start-page: 295
  year: 2007
  end-page: 304
  article-title: Influence of AM fungal exudates on bacterial community structure
  publication-title: FEMS Microbiology Ecology
– volume: 51
  start-page: 379
  year: 2015
  end-page: 389
  article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates
  publication-title: Biology and Fertility of Soils
– volume: 67
  start-page: 2284
  year: 2001
  end-page: 2291
  article-title: Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods
  publication-title: Applied Environmental Microbiology
– volume: 81
  start-page: 683
  year: 1993
  end-page: 692
  article-title: Geostatistical patterns of soil heterogeneity around individual perennial plants
  publication-title: Journal of Ecology
– volume: 304
  start-page: 1634
  year: 2004
  end-page: 1637
  article-title: Interactions and self‐organization in the soil‐microbe complex
  publication-title: Science
– volume: 39
  start-page: 4640
  year: 2005
  end-page: 4646
  article-title: Taking the fungal highway: mobilization of pollutant‐degrading bacteria by fungi
  publication-title: Environmental science and technology
– volume: 80
  start-page: 68
  year: 2011
  end-page: 84
  article-title: Multiple effects of benzamide antibiotics on function
  publication-title: Molecular Microbiology
– volume: 87
  start-page: 688
  year: 1999
  end-page: 696
  article-title: Temporal and spatial variation in soil resources in a deciduous woodland
  publication-title: Journal of Ecology
– volume: 91
  start-page: fiv116
  year: 2015
  article-title: Exploiting the fungal highway: development of a novel tool for the isolation of bacteria migrating along fungal mycelium
  publication-title: FEMS Microbiology Ecology
– volume: 2
  start-page: 80
  year: 2011
  article-title: Physiological limits to zinc biofortification of edible crops
  publication-title: Frontiers in Plant Science
– volume: 41
  start-page: 500
  year: 2007
  end-page: 505
  article-title: Effect of fungal hyphae on the access of bacteria to phenanthrene in soil
  publication-title: Environmental Science & Technology
– volume: 12
  start-page: 2339
  year: 2018b
  end-page: 2351
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME Journal
– volume: 210
  start-page: 1022
  year: 2016
  end-page: 1032
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium
  publication-title: New Phytologist
– volume: 4
  start-page: 752
  year: 2010
  end-page: 763
  article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 321
  start-page: 153
  year: 2009
  end-page: 187
  article-title: Plant root growth, architecture and function
  publication-title: Plant and Soil
– volume: 81
  start-page: 7281
  year: 2015
  end-page: 7289
  article-title: alkaline phosphatase gene diversity in soil
  publication-title: Applied and Environmental Microbiology
– year: 2008
– volume: 74
  start-page: 177
  year: 2014
  end-page: 183
  article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil
  publication-title: Soil Biology & Biochemistry
– volume: 57
  start-page: 249
  year: 2003
  end-page: 273
  article-title: Bacterial motility on a surface: many ways to a common goa
  publication-title: Annual Review of Microbiology
– volume: 40
  start-page: 593
  year: 1994
  end-page: 600
  article-title: Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants
  publication-title: Soil Science and Plant Nutrition
– volume: 5
  start-page: 211
  year: 2013
  end-page: 218
  article-title: Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation
  publication-title: Environmental Microbiology Reports
– volume: 62
  start-page: 227
  year: 2011
  end-page: 250
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
– volume: 254
  start-page: 34
  year: 2006
  end-page: 40
  article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species
  publication-title: FEMS Microbiology Letters
– volume: 139
  start-page: 479
  year: 1998
  end-page: 494
  article-title: Root proliferation, soil fauna and plant nitrogen capture from nutrient‐rich patches in soil
  publication-title: New Phytologist
– volume: 32
  start-page: 279
  year: 2000
  end-page: 286
  article-title: Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase
  publication-title: Biology and Fertility of Soils
– volume: 20
  start-page: 2639
  year: 2018a
  end-page: 2651
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environmental Microbiology
– volume: 21
  start-page: 2245
  year: 1990
  end-page: 2255
  article-title: A rapid and simple field test for phosphorus in Olsen and Bray no. 1 extracts of soil
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 344
  start-page: 58
  year: 1990
  end-page: 60
  article-title: Rapid physiological adjustment of roots to localized soil enrichment
  publication-title: Nature
– ident: e_1_2_7_16_1
  doi: 10.1021/es047979z
– ident: e_1_2_7_5_1
  doi: 10.2307/3761216
– ident: e_1_2_7_17_1
  doi: 10.3389/fmicb.2014.00598
– ident: e_1_2_7_6_1
  doi: 10.1093/femsre/fuy008
– ident: e_1_2_7_32_1
  doi: 10.1126/science.1097394
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2958.2011.07559.x
– ident: e_1_2_7_30_1
  doi: 10.3389/fpls.2011.00080
– ident: e_1_2_7_29_1
  doi: 10.1016/j.soilbio.2010.12.009
– ident: e_1_2_7_4_1
  doi: 10.1111/1758-2229.12002
– ident: e_1_2_7_31_1
  doi: 10.1021/es061407s
– ident: e_1_2_7_14_1
  doi: 10.1038/344058a0
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1574-6941.2007.00337.x
– ident: e_1_2_7_34_1
  doi: 10.1038/s41396-018-0171-4
– ident: e_1_2_7_35_1
  doi: 10.1111/1462-2920.14289
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.1313452110
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1574-6968.2005.00003.x
– ident: e_1_2_7_13_1
  doi: 10.2307/2261666
– ident: e_1_2_7_7_1
  doi: 10.1046/j.1365-2745.1999.00390.x
– ident: e_1_2_7_22_1
  doi: 10.1128/AEM.67.5.2284-2291.2001
– start-page: 79
  volume-title: Handbook of methods used in rhizosphere research
  year: 2006
  ident: e_1_2_7_18_1
– ident: e_1_2_7_24_1
  doi: 10.1146/annurev-arplant-042110-103846
– ident: e_1_2_7_11_1
  doi: 10.1046/j.1469-8137.1998.00216.x
– ident: e_1_2_7_20_1
  doi: 10.1038/ismej.2010.5
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_7_23_1
– ident: e_1_2_7_25_1
  doi: 10.1080/00380768.1994.10414298
– ident: e_1_2_7_12_1
  doi: 10.1080/00103629009368377
– ident: e_1_2_7_36_1
  doi: 10.1111/nph.13838
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.micro.57.030502.091014
– ident: e_1_2_7_10_1
  doi: 10.1007/s11104-009-9929-9
– ident: e_1_2_7_33_1
  doi: 10.1016/j.soilbio.2014.03.004
– ident: e_1_2_7_15_1
  doi: 10.1038/nrmicro2405
– ident: e_1_2_7_3_1
  doi: 10.1007/s00374-014-0989-5
– ident: e_1_2_7_21_1
  doi: 10.1093/femsec/fiv116
– ident: e_1_2_7_9_1
  doi: 10.1007/s003740000249
– ident: e_1_2_7_19_1
  doi: 10.1128/AEM.01823-15
– reference: 33600606 - New Phytol. 2021 Apr;230(1):14-16
SSID ssj0009562
Score 2.696011
Snippet • Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused...
Summary Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we...
Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 304
SubjectTerms Arbuscular mycorrhizas
Bacteria
bacterial migration
biofilm
Biofilms
Cohorts
energy
Exudates
Fungi
Hyphae
hyphosphere interaction
inoculum
Microcosms
Mineralization
Mycorrhizae
mycorrhizal fungal highway
Organic phosphorus
Patches (structures)
Phosphates
Phosphorus
phosphorus mobilisation
Plant Roots
resource patch
Rhizosphere
soil
Soil bacteria
Soil conditions
Soil Microbiology
Soil microorganisms
solubilization
Sustainability
Translocation
vesicular arbuscular mycorrhizae
Water film
Title Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae
URI https://www.jstor.org/stable/27001248
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17081
https://www.ncbi.nlm.nih.gov/pubmed/33205416
https://www.proquest.com/docview/2494791772
https://www.proquest.com/docview/2461863670
https://www.proquest.com/docview/2540490228
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA7H4YMv_j5dPSWKD7502aZJusWnUzwWwUPkhH0Qykw2sYt37dLdfdh7uL_9Jklb7uQU8aHQ0imdpDOdb5LJF8be2pxibiExgSK1ibQpJgjokmIiwIlMaxeGsr-c6Nl3-Xmu5nvsfb8WJvJDDANu3jPC_9o7OOD6mpPXq2qc5pOw7NrXanlA9E1cI9zVomdg1lLPO1YhX8UzPHkjFsVyxNuA5k3cGgLP8X32o1c51pv8Gm83ODYXv7E5_mebHrB7HSDlR9GCHrI9Wz9idz40BBp3j9nlEfV6rFXl5zvKVNtqeUHiFA5_LrmtK280_HwZuKu7yiDeOB43izJ8VTVrOtrtmuOOG2hbv6yKY-SIBg5nDV2G2QpOYYJUhzBxxKvdqgL7hJ0efzr9OEu6LRsSI0ntxCyUxsygNpgrNQWLCrIMU0rZJ9oiqomj_EktUvqrgpBGORJAnKYAKNFmB2y_bmr7jHHlDEGHPBW4yCWhCkornQOBBajCWjkdsXf9tytNR2fud9U4K_u0hjqzDJ05Ym8G0VXk8LhN6CAYwCARZuSFf9FhbxFl59_rkpJWmZNKuRix18Nt8kw_3QK1bbZexu9F4Any_iJDgFkWnoNoxJ5GaxsUyDJBeDrV1NJgM3_WvTz5Ogsnz_9d9AW7K3x5TihCOmT7m3ZrXxK-2uCr4EhXgywjzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQX_gsLBQwCiUtWG8dONgcOhVJtabtCaJH2Fnm8DlnRJqvsrlB64IV4FR6KsfOjFhXEpQcOkRJllDj2jGfG_vINwEsTkc-NBXoq9o0njI8eKky9eMBVyoMwTN1S9tE4HH0WH6ZyugE_2n9han6IbsHNWoabr62B2wXpM1aeL7K-H5FLayCVB6b6Rgnb8s3-Lo3uK8733k_ejbympoCnBYl6eiZDDDSGGiMph8qgVEGAPuWUg9AgykFKAb6c-WT2igstUxJAHPpKoUAT0GOvwFVbQNwS9e9-4mcYfkPeUj6HIpw2NEYWNtS19Jzzq_GPF0W25wNl5-n2bsHPto9qgMvX_nqFfX36G33kf9KJt-FmE3GzndpE7sCGye_CtbcFRcXVPfi-Q2pVg3HZSUWpeJnNT0mc_P2XOTN5Zq2CncwdOXcDfWJFyupqWJotsmJJR7leMqyYVmVp_xtjWJNgK6aOC7p02zGM_CB1lXI7YyyrFpky92FyGZ--BZt5kZuHwGSqKTaKfI6zSFDYRHlzmiqOsZKxMWLYg9etriS64Wu3ZUOOkzZvo7FL3Nj14EUnuqhJSi4S2nIK10k4yAG3L9puNTBpJrBlQlm5iKhJEe_B8-42TT12P0nlplhbGVtswTIA_kWGMgIRW5KlHjyotbtrQBBwShj8kL7U6eif256MP47cyaN_F30G10eTo8PkcH988BhucItFcoirbdhclWvzhILJFT51RswguWR9_wWzzIWB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VghAXvksDBRYEEhdH8Xq9jg8cCiFKKUQVKlJu1s5mt47a2paTCLkHfhB_hT_F7PpDLSqISw8cIiXKU7LendmZ8T6_IeSVjjDmxhw8Gfva49oHDyQYLx4waVgghHG3sj9PxeQr_zgLZxvkR_ssTK0P0d1ws57h9mvr4MXcnHPyrEj7foQRrWFU7uvqG9Zry7d7I1zc14yNPxy-n3hNSwFPcYR6ah4KCBQIBVEYDqWGUAYB-FhSDoQGCAcG8_tw7qPXS8ZVaBAAMPSlBA46wJ-9Rq5zMYhtm4jRF3ZO4FewVvFZcDFrVIwsa6gb6YXYV9MfL0tsL-bJLtCN75Cf7RTV_Jbj_noFfXX2m3rk_zGHd8ntJt-mu7WD3CMbOrtPbrzLMSeuHpDvu2hUNRWXnlZYiJfp4gzhGO2PFlRnqfUJerpw0twN8Ynmhta9sBQt0nyJr3K9pFBRJcvSPjVGoZbAllSe5PjRHcZQjII4U9Kdi9G0KlKpH5LDq7j0LbKZ5ZneJjQ0CjOjyGcwjzgmTVg1GyMZxDKMtebDHnnTmkqiGrV22zTkJGmrNly7xK1dj7zsoEUtUXIZaMvZW4dwhANm_2inNcCk2b6WCdbkPMIhRaxHXnRf48ZjT5NkpvO1xdhWC1b_7y8YrAd4bCWWeuRRbdzdAIKAYbngC7xSZ6J_HnsyPZi4N4__Hfqc3DwYjZNPe9P9J-QWs0QkR7faIZurcq2fYia5gmfOhSlJrtjcfwGjsoQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+enhance+mineralisation+of+organic+phosphorus+by+carrying+bacteria+along+their+extraradical+hyphae&rft.jtitle=The+New+phytologist&rft.au=Jiang%2C+Feiyan&rft.au=Zhang%2C+Lin&rft.au=Zhou%2C+Jiachao&rft.au=George%2C+Timothy+S.&rft.date=2021-04-01&rft.issn=0028-646X&rft.volume=230&rft.issue=1+p.304-315&rft.spage=304&rft.epage=315&rft_id=info:doi/10.1111%2Fnph.17081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon