Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae
• Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a...
Saved in:
Published in | The New phytologist Vol. 230; no. 1; pp. 304 - 315 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.04.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface.
• We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB.
• The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates.
• Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. |
---|---|
AbstractList | Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. Summary Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. See also the Commentary on this article by Jansa & Hodge, 230: 14–16. Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. See also the Commentary on this article by Jansa & Hodge, 230 : 14–16 . • Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. • We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. • The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. • Our results could be harnessed to better manage plant–microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant-microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant-microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions. |
Author | Zhou, Jiachao Jiang, Feiyan Zhang, Lin George, Timothy S. Feng, Gu |
Author_xml | – sequence: 1 givenname: Feiyan surname: Jiang fullname: Jiang, Feiyan – sequence: 2 givenname: Lin surname: Zhang fullname: Zhang, Lin – sequence: 3 givenname: Jiachao surname: Zhou fullname: Zhou, Jiachao – sequence: 4 givenname: Timothy S. surname: George fullname: George, Timothy S. – sequence: 5 givenname: Gu surname: Feng fullname: Feng, Gu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33205416$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFAz8AZIkLHNLaju0kx6oCilQBhx64WWPH2XiV2MFOBOHAb8d0dzlUIEayRpa-90Yz7wyd-OAtQs8puaC5Lv3UX9CK1PQR2lAum6KmZXWCNoSwupBcfjlFZyntCCGNkOwJOi1LRgSncoN-XkW9JLMMEPG4mhBj737AgLvFbx22vgdvLB6dtxEGl2B2wePQ4RC34J3BUx9SfnFJWK_YQIyr81uswcw2OsAwhPyde-sitt_nCBFaZ_KAfp16sE_R4w6GZJ8d-jm6e_f27vqmuP30_sP11W1heF6rMK2QujRaGl0JUYPVAspSU6tLIq3WgnSSCNHStrXAuBFdBrSuKYDm2pbn6PXedorh62LTrEaXjB0G8DYsSTHBCW8IY_X_US5pLUtZkYy-eoDuwhJ93iNTDa8aWlUsUy8P1KJH26opuhHiqo4ZZOByD5gYUoq2U8bN94fO53KDokT9TlnllNV9ylnx5oHiaPo39uD-zQ12_TeoPn6-OSpe7BW7NIf4R8EqQijjdfkLZT3DDQ |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_120714 crossref_primary_10_3389_fpls_2024_1450829 crossref_primary_10_3390_jof10120811 crossref_primary_10_1016_j_copbio_2021_06_008 crossref_primary_10_1016_j_jplph_2021_153591 crossref_primary_10_3390_microorganisms10122399 crossref_primary_10_3390_microorganisms9081566 crossref_primary_10_1016_j_geoderma_2021_115662 crossref_primary_10_1146_annurev_arplant_102820_124504 crossref_primary_10_1111_1758_2229_13007 crossref_primary_10_3390_agriculture14030358 crossref_primary_10_1186_s13213_022_01692_6 crossref_primary_10_1007_s11104_024_07132_5 crossref_primary_10_1111_ppl_13715 crossref_primary_10_3390_microorganisms13010151 crossref_primary_10_1007_s00572_023_01132_6 crossref_primary_10_1007_s42729_022_00970_1 crossref_primary_10_1080_03650340_2024_2439297 crossref_primary_10_3389_fmicb_2024_1383813 crossref_primary_10_3390_agronomy13020550 crossref_primary_10_1016_j_pedsph_2024_01_003 crossref_primary_10_1016_j_envres_2024_120148 crossref_primary_10_1080_01904167_2023_2192780 crossref_primary_10_3389_fpls_2023_1278990 crossref_primary_10_1111_tpj_15568 crossref_primary_10_1128_spectrum_01546_24 crossref_primary_10_1146_annurev_arplant_061722_090342 crossref_primary_10_3389_fpls_2024_1333505 crossref_primary_10_1111_nph_18772 crossref_primary_10_3389_fmicb_2024_1280848 crossref_primary_10_3390_d13090408 crossref_primary_10_1146_annurev_micro_041522_105143 crossref_primary_10_1128_spectrum_02260_22 crossref_primary_10_1038_s41579_024_01073_7 crossref_primary_10_3389_fmicb_2023_1083319 crossref_primary_10_1016_j_tplants_2021_10_008 crossref_primary_10_1111_nph_19178 crossref_primary_10_1016_j_tim_2021_08_002 crossref_primary_10_1007_s11104_024_07018_6 crossref_primary_10_1016_j_geoderma_2021_115672 crossref_primary_10_3389_fmicb_2024_1504444 crossref_primary_10_1007_s00253_022_11996_x crossref_primary_10_3389_fmicb_2021_669784 crossref_primary_10_1007_s40726_023_00282_7 crossref_primary_10_1016_j_scitotenv_2023_166468 crossref_primary_10_15835_nbha50112503 crossref_primary_10_1016_j_soilbio_2023_109058 crossref_primary_10_1016_j_soilbio_2023_109175 crossref_primary_10_1007_s00425_024_04338_w crossref_primary_10_1007_s00572_023_01107_7 crossref_primary_10_1111_1365_2435_14524 crossref_primary_10_1007_s12298_023_01279_8 crossref_primary_10_1360_TB_2021_0579 crossref_primary_10_3389_fmicb_2023_1284648 crossref_primary_10_1016_j_scitotenv_2021_149796 crossref_primary_10_3390_biology11010041 crossref_primary_10_3389_fsoil_2023_1172436 crossref_primary_10_1111_nph_19560 crossref_primary_10_1093_femsre_fuac024 crossref_primary_10_1007_s42729_022_00953_2 crossref_primary_10_1016_j_pedsph_2023_09_007 crossref_primary_10_1007_s11104_023_06144_x crossref_primary_10_1111_mec_16880 crossref_primary_10_1051_e3sconf_202236104019 crossref_primary_10_1016_j_eti_2024_103947 crossref_primary_10_1186_s40793_023_00521_w crossref_primary_10_1016_j_jes_2024_02_029 crossref_primary_10_1016_j_pedsph_2024_02_002 crossref_primary_10_1007_s42729_023_01473_3 crossref_primary_10_1080_01490451_2024_2331111 crossref_primary_10_1111_nph_20304 crossref_primary_10_3389_fmicb_2021_797381 crossref_primary_10_1007_s11274_024_04086_9 crossref_primary_10_1038_s41396_021_01155_x crossref_primary_10_1007_s13199_023_00904_0 crossref_primary_10_3389_ffunb_2023_1141963 crossref_primary_10_1111_nph_17244 crossref_primary_10_1016_j_soilbio_2022_108670 crossref_primary_10_1016_j_crbiot_2023_100158 crossref_primary_10_1007_s11356_022_20399_4 crossref_primary_10_1007_s11104_022_05621_z crossref_primary_10_1016_j_apsoil_2021_104089 crossref_primary_10_1016_j_mib_2023_102357 crossref_primary_10_1016_j_ecoenv_2022_113385 crossref_primary_10_1007_s44154_021_00027_w crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1007_s11274_024_03926_y crossref_primary_10_1093_femsre_fuac039 crossref_primary_10_1080_10420940_2025_2449656 crossref_primary_10_1111_rec_13549 crossref_primary_10_3390_jof10030226 crossref_primary_10_1111_sum_13166 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_3390_horticulturae9050564 crossref_primary_10_3389_fpls_2022_875958 crossref_primary_10_1038_s41559_022_01799_8 crossref_primary_10_1016_j_mib_2024_102496 crossref_primary_10_1111_nph_17985 crossref_primary_10_1186_s12866_022_02574_2 crossref_primary_10_1038_s41396_023_01476_z crossref_primary_10_1016_j_micres_2023_127350 crossref_primary_10_3389_fpls_2023_1206870 crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_7717_peerj_17138 crossref_primary_10_1111_pce_14951 crossref_primary_10_1016_j_tplants_2024_05_008 crossref_primary_10_1111_pce_15245 crossref_primary_10_1093_ismejo_wrae073 crossref_primary_10_1016_j_scitotenv_2025_178525 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_1016_j_heliyon_2024_e30484 crossref_primary_10_3389_fmicb_2022_996305 crossref_primary_10_1007_s42729_024_02112_1 crossref_primary_10_1021_acs_est_2c00099 crossref_primary_10_3390_jof8080800 crossref_primary_10_1111_1365_2435_14349 crossref_primary_10_1111_nph_19112 crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_3390_microorganisms12040683 crossref_primary_10_1016_j_micres_2024_127860 crossref_primary_10_1002_saj2_20679 crossref_primary_10_1016_j_scitotenv_2023_165429 crossref_primary_10_1080_00275514_2023_2206930 crossref_primary_10_1007_s00374_024_01802_3 crossref_primary_10_1093_ismejo_wrae185 crossref_primary_10_1016_j_cell_2025_01_035 crossref_primary_10_1016_j_rhisph_2024_100946 crossref_primary_10_1111_nph_17854 crossref_primary_10_3390_ijms24021119 crossref_primary_10_1016_j_cub_2024_10_028 crossref_primary_10_1128_mbio_02761_22 crossref_primary_10_1016_j_ecolind_2023_111543 crossref_primary_10_1007_s12268_023_2041_5 crossref_primary_10_2139_ssrn_4055845 crossref_primary_10_1007_s11104_024_07150_3 crossref_primary_10_1128_spectrum_00162_23 crossref_primary_10_1111_1365_2435_14232 crossref_primary_10_3389_fmicb_2024_1289022 crossref_primary_10_1093_ismejo_wraf023 crossref_primary_10_1111_gcb_17409 crossref_primary_10_1016_j_apsoil_2023_105211 crossref_primary_10_1016_j_apsoil_2024_105518 crossref_primary_10_1111_nph_70064 crossref_primary_10_1007_s00374_022_01636_x crossref_primary_10_1016_j_pedsph_2023_04_004 crossref_primary_10_1016_j_soilbio_2023_109215 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_1016_j_catena_2025_108893 crossref_primary_10_1128_aem_01369_22 crossref_primary_10_1016_j_fmre_2024_04_016 crossref_primary_10_1111_1365_2435_14249 crossref_primary_10_1016_j_geoderma_2023_116396 crossref_primary_10_1111_1462_2920_16227 crossref_primary_10_1111_1365_2435_14658 crossref_primary_10_1111_nph_18630 crossref_primary_10_3390_biology10020158 crossref_primary_10_1111_nph_18192 crossref_primary_10_1016_j_apsoil_2024_105449 crossref_primary_10_1038_s41396_022_01308_6 crossref_primary_10_1021_acs_est_3c07850 crossref_primary_10_1016_j_soilbio_2024_109702 crossref_primary_10_1007_s00572_021_01066_x crossref_primary_10_1016_j_jhazmat_2023_131114 crossref_primary_10_1016_j_apsoil_2021_104346 crossref_primary_10_1093_bbb_zbae116 crossref_primary_10_3389_fmicb_2023_1131797 crossref_primary_10_1007_s11104_024_06801_9 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1021_acs_jafc_4c07428 crossref_primary_10_1016_j_agee_2022_108053 crossref_primary_10_1016_j_mib_2023_102283 crossref_primary_10_1007_s00374_022_01683_4 crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1039_D3LC00859B crossref_primary_10_3390_agronomy15030738 crossref_primary_10_1007_s11104_023_06425_5 crossref_primary_10_1063_5_0231656 crossref_primary_10_1111_jmi_13313 crossref_primary_10_3390_agronomy11081567 crossref_primary_10_1038_s41396_021_01112_8 crossref_primary_10_3389_fpls_2024_1372634 crossref_primary_10_1093_aob_mcad191 crossref_primary_10_1016_j_soilbio_2025_109797 crossref_primary_10_1016_j_chemosphere_2022_133613 crossref_primary_10_1016_j_scitotenv_2022_158961 crossref_primary_10_1016_j_pbi_2023_102483 crossref_primary_10_1007_s11104_021_05237_9 crossref_primary_10_1007_s00572_024_01164_6 crossref_primary_10_1007_s11356_024_34910_6 crossref_primary_10_1111_1365_2435_14545 crossref_primary_10_15252_embr_202357455 crossref_primary_10_1016_j_pbi_2023_102448 crossref_primary_10_1111_gcbb_13148 crossref_primary_10_1016_j_ibiod_2023_105728 crossref_primary_10_1016_j_soilbio_2022_108837 crossref_primary_10_1080_00103624_2022_2142238 crossref_primary_10_1016_j_scitotenv_2023_161420 crossref_primary_10_1016_j_apsoil_2023_105011 crossref_primary_10_1186_s12870_024_05398_6 crossref_primary_10_3390_horticulturae7110500 crossref_primary_10_1016_j_scienta_2023_112774 crossref_primary_10_1016_j_scitotenv_2023_163708 crossref_primary_10_1016_j_envpol_2023_121597 crossref_primary_10_1111_nph_18281 crossref_primary_10_3389_fpls_2022_985574 crossref_primary_10_1016_j_apsoil_2024_105799 crossref_primary_10_1111_1758_2229_13039 crossref_primary_10_1007_s00284_025_04111_6 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_1002_imo2_46 crossref_primary_10_1016_j_still_2023_105809 crossref_primary_10_1007_s42729_024_02140_x crossref_primary_10_1111_1462_2920_16333 |
Cites_doi | 10.1021/es047979z 10.2307/3761216 10.3389/fmicb.2014.00598 10.1093/femsre/fuy008 10.1126/science.1097394 10.1111/j.1365-2958.2011.07559.x 10.3389/fpls.2011.00080 10.1016/j.soilbio.2010.12.009 10.1111/1758-2229.12002 10.1021/es061407s 10.1038/344058a0 10.1111/j.1574-6941.2007.00337.x 10.1038/s41396-018-0171-4 10.1111/1462-2920.14289 10.1073/pnas.1313452110 10.1111/j.1574-6968.2005.00003.x 10.2307/2261666 10.1046/j.1365-2745.1999.00390.x 10.1128/AEM.67.5.2284-2291.2001 10.1146/annurev-arplant-042110-103846 10.1046/j.1469-8137.1998.00216.x 10.1038/ismej.2010.5 10.1080/00380768.1994.10414298 10.1080/00103629009368377 10.1111/nph.13838 10.1146/annurev.micro.57.030502.091014 10.1007/s11104-009-9929-9 10.1016/j.soilbio.2014.03.004 10.1038/nrmicro2405 10.1007/s00374-014-0989-5 10.1093/femsec/fiv116 10.1007/s003740000249 10.1128/AEM.01823-15 |
ContentType | Journal Article |
Copyright | 2021 China Agricultural University © 2021 New Phytologist Foundation 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust |
Copyright_xml | – notice: 2021 China Agricultural University © 2021 New Phytologist Foundation – notice: 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation – notice: 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 315 |
ExternalDocumentID | 33205416 10_1111_nph_17081 NPH17081 27001248 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U1703232 – fundername: National Key R&D Program of China funderid: 2017YFD0200200 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4081-cd56b3cb6cb7558aeb5a33b1eb306ebb50f6055d1ddea24c5fb5abb81aab4be3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:30:19 EDT 2025 Sun Aug 24 03:33:04 EDT 2025 Sat Aug 23 13:22:23 EDT 2025 Thu Apr 03 07:09:36 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 02:28:36 EDT 2025 Wed Jan 22 16:31:27 EST 2025 Thu Jul 03 21:34:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | hyphosphere interaction mycorrhizal fungal highway resource patch bacterial migration phosphorus mobilisation |
Language | English |
License | 2021 China Agricultural University New Phytologist © 2021 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4081-cd56b3cb6cb7558aeb5a33b1eb306ebb50f6055d1ddea24c5fb5abb81aab4be3 |
Notes | See also the Commentary on this article by Jansa & Hodge . 14–16 230 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1663-5620 0000-0002-1052-5009 0000-0003-3231-2159 |
PMID | 33205416 |
PQID | 2494791772 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2540490228 proquest_miscellaneous_2461863670 proquest_journals_2494791772 pubmed_primary_33205416 crossref_citationtrail_10_1111_nph_17081 crossref_primary_10_1111_nph_17081 wiley_primary_10_1111_nph_17081_NPH17081 jstor_primary_27001248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210401 April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210401 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2011; 2 2011; 80 2015; 51 1993; 81 2011; 62 2003; 57 2008 1999; 87 2006 1998; 139 1990; 344 2001; 67 2013; 5 2018; 42 2004; 304 1994; 40 2006; 254 1990; 21 2014; 5 2015; 81 2000; 32 1998; 90 2009; 321 2016; 210 2011; 43 2018b; 12 2007; 61 2015; 91 2013; 110 2018a; 20 2007; 41 2014; 74 2005; 39 2010; 4 2010; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Smith SE (e_1_2_7_23_1) 2008 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Neumann G (e_1_2_7_18_1) 2006 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 33600606 - New Phytol. 2021 Apr;230(1):14-16 |
References_xml | – volume: 8 start-page: 634 year: 2010 end-page: 644 article-title: A field guide to bacterial swarming motility publication-title: Nature Reviews Microbiology – volume: 90 start-page: 579 year: 1998 end-page: 585 article-title: Monoxenic culture of the intraradical forms of sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection publication-title: Mycologia – volume: 42 start-page: 335 year: 2018 end-page: 352 article-title: Bacterial‐fungal interactions: ecology, mechanisms and challenges publication-title: FEMS Microbiology Review – start-page: 79 year: 2006 end-page: 85 – volume: 5 start-page: 598 year: 2014 article-title: BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents publication-title: Frontiers in Microbiology – volume: 110 start-page: 20117 year: 2013 end-page: 20122 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 43 start-page: 760 year: 2011 end-page: 765 article-title: Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae publication-title: Soil Biology & Biochemistry – volume: 61 start-page: 295 year: 2007 end-page: 304 article-title: Influence of AM fungal exudates on bacterial community structure publication-title: FEMS Microbiology Ecology – volume: 51 start-page: 379 year: 2015 end-page: 389 article-title: Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates publication-title: Biology and Fertility of Soils – volume: 67 start-page: 2284 year: 2001 end-page: 2291 article-title: Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods publication-title: Applied Environmental Microbiology – volume: 81 start-page: 683 year: 1993 end-page: 692 article-title: Geostatistical patterns of soil heterogeneity around individual perennial plants publication-title: Journal of Ecology – volume: 304 start-page: 1634 year: 2004 end-page: 1637 article-title: Interactions and self‐organization in the soil‐microbe complex publication-title: Science – volume: 39 start-page: 4640 year: 2005 end-page: 4646 article-title: Taking the fungal highway: mobilization of pollutant‐degrading bacteria by fungi publication-title: Environmental science and technology – volume: 80 start-page: 68 year: 2011 end-page: 84 article-title: Multiple effects of benzamide antibiotics on function publication-title: Molecular Microbiology – volume: 87 start-page: 688 year: 1999 end-page: 696 article-title: Temporal and spatial variation in soil resources in a deciduous woodland publication-title: Journal of Ecology – volume: 91 start-page: fiv116 year: 2015 article-title: Exploiting the fungal highway: development of a novel tool for the isolation of bacteria migrating along fungal mycelium publication-title: FEMS Microbiology Ecology – volume: 2 start-page: 80 year: 2011 article-title: Physiological limits to zinc biofortification of edible crops publication-title: Frontiers in Plant Science – volume: 41 start-page: 500 year: 2007 end-page: 505 article-title: Effect of fungal hyphae on the access of bacteria to phenanthrene in soil publication-title: Environmental Science & Technology – volume: 12 start-page: 2339 year: 2018b end-page: 2351 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME Journal – volume: 210 start-page: 1022 year: 2016 end-page: 1032 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium publication-title: New Phytologist – volume: 4 start-page: 752 year: 2010 end-page: 763 article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi publication-title: ISME Journal – volume: 321 start-page: 153 year: 2009 end-page: 187 article-title: Plant root growth, architecture and function publication-title: Plant and Soil – volume: 81 start-page: 7281 year: 2015 end-page: 7289 article-title: alkaline phosphatase gene diversity in soil publication-title: Applied and Environmental Microbiology – year: 2008 – volume: 74 start-page: 177 year: 2014 end-page: 183 article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil publication-title: Soil Biology & Biochemistry – volume: 57 start-page: 249 year: 2003 end-page: 273 article-title: Bacterial motility on a surface: many ways to a common goa publication-title: Annual Review of Microbiology – volume: 40 start-page: 593 year: 1994 end-page: 600 article-title: Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants publication-title: Soil Science and Plant Nutrition – volume: 5 start-page: 211 year: 2013 end-page: 218 article-title: Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation publication-title: Environmental Microbiology Reports – volume: 62 start-page: 227 year: 2011 end-page: 250 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology – volume: 254 start-page: 34 year: 2006 end-page: 40 article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species publication-title: FEMS Microbiology Letters – volume: 139 start-page: 479 year: 1998 end-page: 494 article-title: Root proliferation, soil fauna and plant nitrogen capture from nutrient‐rich patches in soil publication-title: New Phytologist – volume: 32 start-page: 279 year: 2000 end-page: 286 article-title: Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase publication-title: Biology and Fertility of Soils – volume: 20 start-page: 2639 year: 2018a end-page: 2651 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environmental Microbiology – volume: 21 start-page: 2245 year: 1990 end-page: 2255 article-title: A rapid and simple field test for phosphorus in Olsen and Bray no. 1 extracts of soil publication-title: Communications in Soil Science and Plant Analysis – volume: 344 start-page: 58 year: 1990 end-page: 60 article-title: Rapid physiological adjustment of roots to localized soil enrichment publication-title: Nature – ident: e_1_2_7_16_1 doi: 10.1021/es047979z – ident: e_1_2_7_5_1 doi: 10.2307/3761216 – ident: e_1_2_7_17_1 doi: 10.3389/fmicb.2014.00598 – ident: e_1_2_7_6_1 doi: 10.1093/femsre/fuy008 – ident: e_1_2_7_32_1 doi: 10.1126/science.1097394 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2958.2011.07559.x – ident: e_1_2_7_30_1 doi: 10.3389/fpls.2011.00080 – ident: e_1_2_7_29_1 doi: 10.1016/j.soilbio.2010.12.009 – ident: e_1_2_7_4_1 doi: 10.1111/1758-2229.12002 – ident: e_1_2_7_31_1 doi: 10.1021/es061407s – ident: e_1_2_7_14_1 doi: 10.1038/344058a0 – ident: e_1_2_7_28_1 doi: 10.1111/j.1574-6941.2007.00337.x – ident: e_1_2_7_34_1 doi: 10.1038/s41396-018-0171-4 – ident: e_1_2_7_35_1 doi: 10.1111/1462-2920.14289 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.1313452110 – ident: e_1_2_7_27_1 doi: 10.1111/j.1574-6968.2005.00003.x – ident: e_1_2_7_13_1 doi: 10.2307/2261666 – ident: e_1_2_7_7_1 doi: 10.1046/j.1365-2745.1999.00390.x – ident: e_1_2_7_22_1 doi: 10.1128/AEM.67.5.2284-2291.2001 – start-page: 79 volume-title: Handbook of methods used in rhizosphere research year: 2006 ident: e_1_2_7_18_1 – ident: e_1_2_7_24_1 doi: 10.1146/annurev-arplant-042110-103846 – ident: e_1_2_7_11_1 doi: 10.1046/j.1469-8137.1998.00216.x – ident: e_1_2_7_20_1 doi: 10.1038/ismej.2010.5 – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_7_23_1 – ident: e_1_2_7_25_1 doi: 10.1080/00380768.1994.10414298 – ident: e_1_2_7_12_1 doi: 10.1080/00103629009368377 – ident: e_1_2_7_36_1 doi: 10.1111/nph.13838 – ident: e_1_2_7_8_1 doi: 10.1146/annurev.micro.57.030502.091014 – ident: e_1_2_7_10_1 doi: 10.1007/s11104-009-9929-9 – ident: e_1_2_7_33_1 doi: 10.1016/j.soilbio.2014.03.004 – ident: e_1_2_7_15_1 doi: 10.1038/nrmicro2405 – ident: e_1_2_7_3_1 doi: 10.1007/s00374-014-0989-5 – ident: e_1_2_7_21_1 doi: 10.1093/femsec/fiv116 – ident: e_1_2_7_9_1 doi: 10.1007/s003740000249 – ident: e_1_2_7_19_1 doi: 10.1128/AEM.01823-15 – reference: 33600606 - New Phytol. 2021 Apr;230(1):14-16 |
SSID | ssj0009562 |
Score | 2.696011 |
Snippet | • Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused... Summary Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we... Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 304 |
SubjectTerms | Arbuscular mycorrhizas Bacteria bacterial migration biofilm Biofilms Cohorts energy Exudates Fungi Hyphae hyphosphere interaction inoculum Microcosms Mineralization Mycorrhizae mycorrhizal fungal highway Organic phosphorus Patches (structures) Phosphates Phosphorus phosphorus mobilisation Plant Roots resource patch Rhizosphere soil Soil bacteria Soil conditions Soil Microbiology Soil microorganisms solubilization Sustainability Translocation vesicular arbuscular mycorrhizae Water film |
Title | Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae |
URI | https://www.jstor.org/stable/27001248 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17081 https://www.ncbi.nlm.nih.gov/pubmed/33205416 https://www.proquest.com/docview/2494791772 https://www.proquest.com/docview/2461863670 https://www.proquest.com/docview/2540490228 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA7H4YMv_j5dPSWKD7502aZJusWnUzwWwUPkhH0Qykw2sYt37dLdfdh7uL_9Jklb7uQU8aHQ0imdpDOdb5LJF8be2pxibiExgSK1ibQpJgjokmIiwIlMaxeGsr-c6Nl3-Xmu5nvsfb8WJvJDDANu3jPC_9o7OOD6mpPXq2qc5pOw7NrXanlA9E1cI9zVomdg1lLPO1YhX8UzPHkjFsVyxNuA5k3cGgLP8X32o1c51pv8Gm83ODYXv7E5_mebHrB7HSDlR9GCHrI9Wz9idz40BBp3j9nlEfV6rFXl5zvKVNtqeUHiFA5_LrmtK280_HwZuKu7yiDeOB43izJ8VTVrOtrtmuOOG2hbv6yKY-SIBg5nDV2G2QpOYYJUhzBxxKvdqgL7hJ0efzr9OEu6LRsSI0ntxCyUxsygNpgrNQWLCrIMU0rZJ9oiqomj_EktUvqrgpBGORJAnKYAKNFmB2y_bmr7jHHlDEGHPBW4yCWhCkornQOBBajCWjkdsXf9tytNR2fud9U4K_u0hjqzDJ05Ym8G0VXk8LhN6CAYwCARZuSFf9FhbxFl59_rkpJWmZNKuRix18Nt8kw_3QK1bbZexu9F4Any_iJDgFkWnoNoxJ5GaxsUyDJBeDrV1NJgM3_WvTz5Ogsnz_9d9AW7K3x5TihCOmT7m3ZrXxK-2uCr4EhXgywjzQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQX_gsLBQwCiUtWG8dONgcOhVJtabtCaJH2Fnm8DlnRJqvsrlB64IV4FR6KsfOjFhXEpQcOkRJllDj2jGfG_vINwEsTkc-NBXoq9o0njI8eKky9eMBVyoMwTN1S9tE4HH0WH6ZyugE_2n9han6IbsHNWoabr62B2wXpM1aeL7K-H5FLayCVB6b6Rgnb8s3-Lo3uK8733k_ejbympoCnBYl6eiZDDDSGGiMph8qgVEGAPuWUg9AgykFKAb6c-WT2igstUxJAHPpKoUAT0GOvwFVbQNwS9e9-4mcYfkPeUj6HIpw2NEYWNtS19Jzzq_GPF0W25wNl5-n2bsHPto9qgMvX_nqFfX36G33kf9KJt-FmE3GzndpE7sCGye_CtbcFRcXVPfi-Q2pVg3HZSUWpeJnNT0mc_P2XOTN5Zq2CncwdOXcDfWJFyupqWJotsmJJR7leMqyYVmVp_xtjWJNgK6aOC7p02zGM_CB1lXI7YyyrFpky92FyGZ--BZt5kZuHwGSqKTaKfI6zSFDYRHlzmiqOsZKxMWLYg9etriS64Wu3ZUOOkzZvo7FL3Nj14EUnuqhJSi4S2nIK10k4yAG3L9puNTBpJrBlQlm5iKhJEe_B8-42TT12P0nlplhbGVtswTIA_kWGMgIRW5KlHjyotbtrQBBwShj8kL7U6eif256MP47cyaN_F30G10eTo8PkcH988BhucItFcoirbdhclWvzhILJFT51RswguWR9_wWzzIWB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VghAXvksDBRYEEhdH8Xq9jg8cCiFKKUQVKlJu1s5mt47a2paTCLkHfhB_hT_F7PpDLSqISw8cIiXKU7LendmZ8T6_IeSVjjDmxhw8Gfva49oHDyQYLx4waVgghHG3sj9PxeQr_zgLZxvkR_ssTK0P0d1ws57h9mvr4MXcnHPyrEj7foQRrWFU7uvqG9Zry7d7I1zc14yNPxy-n3hNSwFPcYR6ah4KCBQIBVEYDqWGUAYB-FhSDoQGCAcG8_tw7qPXS8ZVaBAAMPSlBA46wJ-9Rq5zMYhtm4jRF3ZO4FewVvFZcDFrVIwsa6gb6YXYV9MfL0tsL-bJLtCN75Cf7RTV_Jbj_noFfXX2m3rk_zGHd8ntJt-mu7WD3CMbOrtPbrzLMSeuHpDvu2hUNRWXnlZYiJfp4gzhGO2PFlRnqfUJerpw0twN8Ynmhta9sBQt0nyJr3K9pFBRJcvSPjVGoZbAllSe5PjRHcZQjII4U9Kdi9G0KlKpH5LDq7j0LbKZ5ZneJjQ0CjOjyGcwjzgmTVg1GyMZxDKMtebDHnnTmkqiGrV22zTkJGmrNly7xK1dj7zsoEUtUXIZaMvZW4dwhANm_2inNcCk2b6WCdbkPMIhRaxHXnRf48ZjT5NkpvO1xdhWC1b_7y8YrAd4bCWWeuRRbdzdAIKAYbngC7xSZ6J_HnsyPZi4N4__Hfqc3DwYjZNPe9P9J-QWs0QkR7faIZurcq2fYia5gmfOhSlJrtjcfwGjsoQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+enhance+mineralisation+of+organic+phosphorus+by+carrying+bacteria+along+their+extraradical+hyphae&rft.jtitle=The+New+phytologist&rft.au=Jiang%2C+Feiyan&rft.au=Zhang%2C+Lin&rft.au=Zhou%2C+Jiachao&rft.au=George%2C+Timothy+S.&rft.date=2021-04-01&rft.issn=0028-646X&rft.volume=230&rft.issue=1+p.304-315&rft.spage=304&rft.epage=315&rft_id=info:doi/10.1111%2Fnph.17081&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |