Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon

Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 221; no. 1; pp. 233 - 246
Main Authors Sokol, Noah W., Kuebbing, Sara. E., Karlsen‐Ayala, Elena, Bradford, Mark A.
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.01.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
AbstractList Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools.We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years.We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’).Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Summary Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C 4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C₄ grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.
Author Noah W. Sokol
Mark A. Bradford
Elena Karlsen-Ayala
Sara. E. Kuebbing
Author_xml – sequence: 1
  givenname: Noah W.
  orcidid: 0000-0003-0239-1976
  surname: Sokol
  fullname: Sokol, Noah W.
  email: noah.sokol@yale.edu
  organization: Yale University
– sequence: 2
  givenname: Sara. E.
  surname: Kuebbing
  fullname: Kuebbing, Sara. E.
  organization: University of Pittsburgh
– sequence: 3
  givenname: Elena
  surname: Karlsen‐Ayala
  fullname: Karlsen‐Ayala, Elena
  organization: Yale University
– sequence: 4
  givenname: Mark A.
  surname: Bradford
  fullname: Bradford, Mark A.
  organization: Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30067293$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9PGzEQxS1EBYFy4ANQWeLSSiyM7V2vfUSIP5VQ20Mr9bZyvDZxtLFT2wvKt6-TAAckWl88Gv3e05uZA7TrgzcIHRM4J-Vd-OXsnDSMkx00ITWXlSCs3UUTACoqXvPf--ggpTkAyIbTPbTPAHhLJZug2fWj643XBtsQcZ4ZvIxuofQKB4sH9-j8A44hZOz8cszpDPtSbxoFT7N1MbicTTwrxNpjsVak4IYCPCjvNNYqToP_iD5YNSRz9Pwfol831z-v7qr777dfry7vK12DIBWxlIGa9rQE5UQyoHXdgKKylxpEQ1ptRMN7DS3rFdhWc2b7qRWM9oyR2rJD9Hnru4zhz2hS7hYuaTMMypswpo4SIRtGuGz_j5ZATc05FwU9fYPOwxh9GaQYMgklDjSF-vRMjdOF6bvNKuOqe1l3Ab5sAR1DStHYV4RAtz5lV07ZbU5Z2Is3rHZZZRd8jsoN_1I8ucGs3rfuvv24e1GcbBXzlEN8VZR5KG9Fy_4CwPq22Q
CitedBy_id crossref_primary_10_1016_j_foreco_2023_121360
crossref_primary_10_1111_ejss_13573
crossref_primary_10_1007_s11356_024_35041_8
crossref_primary_10_1016_j_agee_2021_107851
crossref_primary_10_1016_j_still_2025_106523
crossref_primary_10_1016_j_geoderma_2022_115940
crossref_primary_10_1016_j_soilbio_2022_108811
crossref_primary_10_1016_j_soilbio_2020_108019
crossref_primary_10_2139_ssrn_3980072
crossref_primary_10_1002_ldr_4386
crossref_primary_10_1111_gcb_17591
crossref_primary_10_1002_ecy_3688
crossref_primary_10_1016_j_foreco_2022_120423
crossref_primary_10_1002_ldr_4821
crossref_primary_10_3389_fmicb_2019_00256
crossref_primary_10_1016_j_geodrs_2023_e00732
crossref_primary_10_1016_j_scitotenv_2022_158358
crossref_primary_10_1007_s11104_020_04469_5
crossref_primary_10_1016_j_tree_2021_06_005
crossref_primary_10_3390_f14020221
crossref_primary_10_3390_f14020344
crossref_primary_10_1038_s41467_023_40768_y
crossref_primary_10_1007_s11104_024_06695_7
crossref_primary_10_1088_1748_9326_abe06e
crossref_primary_10_1038_s41598_023_38409_x
crossref_primary_10_1002_ldr_3729
crossref_primary_10_1007_s11368_023_03431_z
crossref_primary_10_1016_j_pld_2024_09_002
crossref_primary_10_1016_j_soilbio_2024_109578
crossref_primary_10_1016_j_apsoil_2020_103842
crossref_primary_10_3390_rs13194000
crossref_primary_10_1016_j_foreco_2022_120654
crossref_primary_10_1016_j_agee_2024_109181
crossref_primary_10_1016_j_soilbio_2024_109695
crossref_primary_10_3389_fenvs_2020_00033
crossref_primary_10_1016_j_catena_2021_105761
crossref_primary_10_1111_ejss_13433
crossref_primary_10_1111_gcb_17223
crossref_primary_10_1016_j_geoderma_2024_116803
crossref_primary_10_1371_journal_pone_0289859
crossref_primary_10_1007_s11368_023_03536_5
crossref_primary_10_1029_2023EF004085
crossref_primary_10_1111_gcb_16967
crossref_primary_10_1016_j_geodrs_2023_e00705
crossref_primary_10_1016_j_jhydrol_2020_125112
crossref_primary_10_1016_j_still_2022_105490
crossref_primary_10_1016_j_agwat_2022_107539
crossref_primary_10_1029_2024JG008327
crossref_primary_10_1016_j_still_2024_106022
crossref_primary_10_1038_s41598_021_93157_0
crossref_primary_10_3390_agronomy14020307
crossref_primary_10_5194_soil_10_441_2024
crossref_primary_10_1007_s10533_022_00970_4
crossref_primary_10_1007_s40333_024_0076_1
crossref_primary_10_1016_j_baae_2021_07_007
crossref_primary_10_1016_j_scitotenv_2024_177082
crossref_primary_10_1002_ldr_5333
crossref_primary_10_1016_j_agee_2021_107825
crossref_primary_10_1016_j_soilbio_2021_108431
crossref_primary_10_1016_j_apsoil_2021_104323
crossref_primary_10_1016_j_soilbio_2024_109367
crossref_primary_10_1093_jpe_rtab078
crossref_primary_10_1111_nph_17326
crossref_primary_10_3390_ijerph191710936
crossref_primary_10_1111_gcb_16164
crossref_primary_10_1111_nph_16223
crossref_primary_10_1038_s41598_025_87293_0
crossref_primary_10_1016_j_plaphy_2024_109230
crossref_primary_10_1016_j_soilbio_2020_107972
crossref_primary_10_1016_j_soilbio_2020_107973
crossref_primary_10_1002_saj2_20616
crossref_primary_10_1111_gcbb_12914
crossref_primary_10_2134_agronj2019_01_0051
crossref_primary_10_1016_j_soilbio_2021_108322
crossref_primary_10_1016_j_foreco_2021_119867
crossref_primary_10_1016_j_soilbio_2024_109471
crossref_primary_10_1016_j_ecoleng_2021_106463
crossref_primary_10_1007_s11104_024_07189_2
crossref_primary_10_1111_ejss_13493
crossref_primary_10_3389_fmicb_2022_938574
crossref_primary_10_1111_nph_16298
crossref_primary_10_1111_gcb_16107
crossref_primary_10_1016_j_soilbio_2021_108216
crossref_primary_10_1038_s43705_021_00059_3
crossref_primary_10_1007_s11104_024_06493_1
crossref_primary_10_1016_j_agee_2024_109276
crossref_primary_10_1016_j_scitotenv_2024_175041
crossref_primary_10_3390_su12218962
crossref_primary_10_1016_j_still_2023_105871
crossref_primary_10_1111_gcb_15819
crossref_primary_10_1016_j_eja_2025_127549
crossref_primary_10_3390_agronomy14122871
crossref_primary_10_1038_s41561_018_0258_6
crossref_primary_10_1016_j_soilbio_2023_109146
crossref_primary_10_1016_j_still_2024_106209
crossref_primary_10_3389_fenvs_2020_00068
crossref_primary_10_1016_j_scitotenv_2024_175717
crossref_primary_10_1111_nph_18914
crossref_primary_10_1007_s00374_023_01768_8
crossref_primary_10_1016_j_catena_2022_106904
crossref_primary_10_1016_j_marpolbul_2021_113059
crossref_primary_10_1139_cjss_2019_0062
crossref_primary_10_1016_j_agee_2024_109141
crossref_primary_10_3390_plants13101346
crossref_primary_10_1080_14735903_2025_2461826
crossref_primary_10_1016_j_agee_2025_109564
crossref_primary_10_1111_gcb_15807
crossref_primary_10_1111_wre_12570
crossref_primary_10_1016_j_foreco_2021_119522
crossref_primary_10_1016_j_soilbio_2021_108221
crossref_primary_10_1016_j_micres_2023_127564
crossref_primary_10_1146_annurev_ecolsys_102320_085332
crossref_primary_10_1016_j_catena_2025_108838
crossref_primary_10_1016_j_geoderma_2020_114828
crossref_primary_10_1016_j_plantsci_2025_112431
crossref_primary_10_1155_2023_9843618
crossref_primary_10_3389_fmicb_2023_1283675
crossref_primary_10_1007_s00203_022_03321_x
crossref_primary_10_1016_j_jhazmat_2023_132619
crossref_primary_10_3390_f14122291
crossref_primary_10_1007_s11104_019_03999_x
crossref_primary_10_3390_horticulturae10020154
crossref_primary_10_1111_ejss_13472
crossref_primary_10_1002_csc2_20920
crossref_primary_10_3389_fmicb_2022_937940
crossref_primary_10_1038_s41598_022_14001_7
crossref_primary_10_3389_fpls_2022_985864
crossref_primary_10_1111_wre_12544
crossref_primary_10_1016_j_agsy_2024_104172
crossref_primary_10_1007_s10705_021_10188_9
crossref_primary_10_1007_s11368_022_03403_9
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1016_j_egg_2024_100279
crossref_primary_10_1029_2021GL097347
crossref_primary_10_1111_nph_17480
crossref_primary_10_3389_fpls_2023_1106531
crossref_primary_10_3390_agronomy15040810
crossref_primary_10_1016_j_soilbio_2023_108952
crossref_primary_10_36783_18069657rbcs20230065
crossref_primary_10_3390_f10050369
crossref_primary_10_1016_j_agee_2021_107504
crossref_primary_10_1007_s11104_025_07367_w
crossref_primary_10_3390_f14091869
crossref_primary_10_1038_s41467_022_28715_9
crossref_primary_10_1007_s11104_020_04651_9
crossref_primary_10_1016_j_geoderma_2023_116760
crossref_primary_10_1073_pnas_2217481120
crossref_primary_10_1016_j_jenvman_2023_119387
crossref_primary_10_1111_avsc_12743
crossref_primary_10_1134_S1064229323600124
crossref_primary_10_3390_su16114553
crossref_primary_10_1016_j_catena_2023_107281
crossref_primary_10_1042_BCJ20220245
crossref_primary_10_1038_s41586_021_03306_8
crossref_primary_10_1016_j_agee_2024_109365
crossref_primary_10_1177_0309133319873309
crossref_primary_10_1016_j_soilbio_2023_109017
crossref_primary_10_1007_s11368_021_03067_x
crossref_primary_10_1111_1365_2745_13276
crossref_primary_10_1016_j_soilbio_2025_109731
crossref_primary_10_1016_j_soilbio_2022_108786
crossref_primary_10_1038_s41561_022_01079_x
crossref_primary_10_1016_j_soilbio_2023_109256
crossref_primary_10_1111_sum_70027
crossref_primary_10_3390_f15040619
crossref_primary_10_1016_j_geoderma_2023_116648
crossref_primary_10_5194_bg_21_4077_2024
crossref_primary_10_1007_s11356_021_16817_8
crossref_primary_10_1073_pnas_2006715117
crossref_primary_10_1016_j_scitotenv_2024_174858
crossref_primary_10_1111_ejss_13219
crossref_primary_10_1016_j_catena_2021_105622
crossref_primary_10_1016_j_foreco_2023_121661
crossref_primary_10_1016_j_fcr_2022_108463
crossref_primary_10_1111_brv_12554
crossref_primary_10_1016_j_agrformet_2024_110212
crossref_primary_10_1016_j_catena_2024_108434
crossref_primary_10_1139_cjss_2024_0033
crossref_primary_10_1002_saj2_20422
crossref_primary_10_1038_s41598_024_72796_z
crossref_primary_10_1186_s40663_021_00318_8
crossref_primary_10_1111_nph_18157
crossref_primary_10_2136_sssaj2018_11_0445
crossref_primary_10_3390_f15111958
crossref_primary_10_1007_s11104_024_06978_z
crossref_primary_10_1016_j_geoderma_2023_116356
crossref_primary_10_1016_j_geoderma_2023_116598
crossref_primary_10_1016_j_geoderma_2024_116875
crossref_primary_10_1186_s40663_020_00278_5
crossref_primary_10_1016_j_fecs_2023_100092
crossref_primary_10_1016_j_apsoil_2023_104957
crossref_primary_10_2139_ssrn_4007981
crossref_primary_10_1007_s11104_024_06833_1
crossref_primary_10_1016_j_soilbio_2021_108494
crossref_primary_10_1016_j_still_2021_105037
crossref_primary_10_1007_s11104_025_07300_1
crossref_primary_10_1016_j_soilbio_2021_108375
crossref_primary_10_1007_s10021_020_00572_x
crossref_primary_10_1016_j_agee_2025_109509
crossref_primary_10_18393_ejss_1396572
crossref_primary_10_3390_land13081296
crossref_primary_10_1016_j_soilbio_2021_108492
crossref_primary_10_1111_gcb_14482
crossref_primary_10_5194_soil_10_699_2024
crossref_primary_10_1111_1365_2435_13934
crossref_primary_10_3390_biology11060870
crossref_primary_10_1016_j_still_2022_105561
crossref_primary_10_3389_fsufs_2022_921216
crossref_primary_10_1016_j_soilbio_2021_108384
crossref_primary_10_3389_fpls_2021_621276
crossref_primary_10_1002_bies_202100010
crossref_primary_10_1016_j_scitotenv_2023_165556
crossref_primary_10_3389_ffgc_2022_1032321
crossref_primary_10_1016_j_agee_2020_106985
crossref_primary_10_1016_j_soilbio_2022_108884
crossref_primary_10_1016_j_soilbio_2024_109610
crossref_primary_10_1093_ismejo_wrae067
crossref_primary_10_1016_j_catena_2023_107545
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_1016_j_sjbs_2023_103578
crossref_primary_10_3389_fsufs_2023_1320870
crossref_primary_10_1007_s10533_024_01161_z
crossref_primary_10_3389_fpls_2022_997292
crossref_primary_10_1016_j_catena_2024_108480
crossref_primary_10_1016_j_geoderma_2022_116090
crossref_primary_10_1016_j_geoderma_2023_116336
crossref_primary_10_1007_s10021_024_00949_2
crossref_primary_10_2135_cropsci2018_09_0594
crossref_primary_10_1016_j_scitotenv_2023_167962
crossref_primary_10_1016_j_soilbio_2019_107645
crossref_primary_10_1111_gcb_16322
crossref_primary_10_1016_j_foreco_2023_120884
crossref_primary_10_1111_nph_17604
crossref_primary_10_3390_f10110953
crossref_primary_10_1016_j_soilbio_2021_108390
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_3389_ffgc_2022_836062
crossref_primary_10_1016_j_foreco_2023_121074
crossref_primary_10_1360_N072022_0106
crossref_primary_10_1111_gcb_16798
crossref_primary_10_1111_ejss_70077
crossref_primary_10_3389_fenvs_2020_514701
crossref_primary_10_3390_su13105689
crossref_primary_10_3389_fmicb_2024_1337672
crossref_primary_10_1002_agj2_21475
crossref_primary_10_1016_j_agee_2024_109200
crossref_primary_10_1111_1365_2745_13630
crossref_primary_10_4236_as_2024_1511066
crossref_primary_10_1016_j_foreco_2020_118752
crossref_primary_10_1111_1365_2745_14167
crossref_primary_10_1007_s11104_025_07372_z
crossref_primary_10_1007_s11104_024_06835_z
crossref_primary_10_1016_j_geoderma_2023_116569
crossref_primary_10_1016_j_scitotenv_2024_171827
crossref_primary_10_1007_s11104_021_05191_6
crossref_primary_10_1016_j_geoderma_2022_116152
crossref_primary_10_1016_j_tplants_2022_04_009
crossref_primary_10_1007_s11104_024_07086_8
crossref_primary_10_3390_agriculture12122076
crossref_primary_10_1002_ecy_3929
crossref_primary_10_1016_j_apsoil_2023_105169
crossref_primary_10_1038_s41598_024_79801_5
crossref_primary_10_3390_plants12030630
crossref_primary_10_1016_j_catena_2020_104739
crossref_primary_10_31857_S0032180X22601281
crossref_primary_10_3389_fenvs_2023_1123510
crossref_primary_10_3389_fsufs_2024_1368418
crossref_primary_10_1016_j_ecolind_2022_109726
crossref_primary_10_1016_j_soilbio_2020_107922
crossref_primary_10_1007_s10533_022_00962_4
crossref_primary_10_1016_j_agee_2023_108583
crossref_primary_10_1016_j_gecco_2023_e02530
crossref_primary_10_1016_j_geoderma_2022_115744
crossref_primary_10_1111_nph_18998
crossref_primary_10_1016_j_catena_2022_106647
crossref_primary_10_1002_jpln_202200090
crossref_primary_10_1016_j_geoderma_2023_116385
crossref_primary_10_1002_saj2_20358
crossref_primary_10_1016_j_scitotenv_2024_170687
crossref_primary_10_1016_j_envres_2022_114981
crossref_primary_10_1111_nph_19159
crossref_primary_10_1016_j_geoderma_2022_115995
crossref_primary_10_1016_j_envpol_2024_125315
crossref_primary_10_1007_s11258_021_01182_w
crossref_primary_10_1016_j_soilbio_2022_108607
crossref_primary_10_1016_j_catena_2024_107961
crossref_primary_10_1016_j_agrformet_2023_109471
crossref_primary_10_1016_j_fecs_2024_100229
crossref_primary_10_1088_1755_1315_693_1_012082
crossref_primary_10_1002_ece3_9182
crossref_primary_10_1016_j_rhisph_2024_100868
crossref_primary_10_1007_s11368_020_02622_2
crossref_primary_10_1016_j_rsma_2023_103046
crossref_primary_10_1016_j_scitotenv_2021_148072
crossref_primary_10_1029_2021JG006472
crossref_primary_10_1016_j_soilbio_2024_109371
crossref_primary_10_1007_s10533_024_01185_5
crossref_primary_10_1016_j_geodrs_2024_e00909
crossref_primary_10_2139_ssrn_4148114
crossref_primary_10_1007_s11104_022_05713_w
crossref_primary_10_1016_j_apsoil_2023_104855
crossref_primary_10_1016_j_geoderma_2024_117060
crossref_primary_10_1093_jpe_rtae017
crossref_primary_10_1007_s11104_020_04728_5
crossref_primary_10_1111_nph_17082
crossref_primary_10_1007_s00374_024_01796_y
crossref_primary_10_1016_j_geoderma_2025_117260
crossref_primary_10_3389_fmicb_2023_1013570
crossref_primary_10_1007_s11104_022_05549_4
crossref_primary_10_3389_fmicb_2019_02969
crossref_primary_10_1016_j_apsoil_2022_104537
crossref_primary_10_1111_gcbb_12729
crossref_primary_10_1016_j_soilbio_2021_108519
crossref_primary_10_1016_j_foreco_2023_120848
crossref_primary_10_3390_f14010034
crossref_primary_10_1007_s10533_023_01067_2
crossref_primary_10_1016_j_soilbio_2024_109603
crossref_primary_10_1111_ele_14191
crossref_primary_10_7717_peerj_18480
crossref_primary_10_1016_j_catena_2023_107317
crossref_primary_10_1021_acs_est_1c00300
crossref_primary_10_3390_su16219481
crossref_primary_10_1029_2021JG006562
crossref_primary_10_1016_j_soilbio_2020_107936
crossref_primary_10_1016_j_soilbio_2020_107817
crossref_primary_10_1016_j_scitotenv_2024_171754
crossref_primary_10_1111_gcb_15787
crossref_primary_10_1016_j_scitotenv_2023_168961
crossref_primary_10_3390_f15050806
crossref_primary_10_1016_j_scitotenv_2024_177058
crossref_primary_10_1007_s10533_019_00577_2
crossref_primary_10_1029_2022JG006829
crossref_primary_10_1029_2024EF005249
crossref_primary_10_1134_S1064229324602142
crossref_primary_10_1007_s11104_023_06090_8
crossref_primary_10_1007_s10533_021_00804_9
crossref_primary_10_1016_j_soilbio_2023_109096
crossref_primary_10_1007_s11430_022_1032_2
crossref_primary_10_1134_S1064229320070170
Cites_doi 10.1016/S0038-0717(97)00030-8
10.1016/S0038-0717(02)00068-8
10.1111/j.1365-2486.2009.02038.x
10.1016/j.soilbio.2018.02.016
10.1002/bimj.200810425
10.1016/0038-0717(78)90099-8
10.2136/sssaj2001.653771x
10.1016/0167-7012(86)90012-6
10.1111/gcb.12113
10.1111/j.1469-8137.2007.02063.x
10.1007/s11104-014-2371-7
10.1080/03650340310001627658
10.1111/j.1365-2486.2005.00959.x
10.2136/sssaj2013.08.0370nafsc
10.1007/s10021-012-9583-6
10.1111/j.1461-0248.2012.01827.x
10.1073/pnas.0610045104
10.1007/s11104-004-0907-y
10.5735/086.046.0501
10.1038/ncomms13630
10.1016/j.agee.2014.11.003
10.1146/annurev-ecolsys-112414-054234
10.1016/j.rhisph.2017.04.016
10.1016/0038-0717(87)90052-6
10.1007/s11104-009-9925-0
10.1126/science.1231923
10.1111/nph.12795
10.1007/s10530-012-0258-1
10.1038/ngeo2520
10.1111/gcb.13850
10.1111/j.1461-0248.2004.00679.x
10.1016/j.geoderma.2016.05.019
10.1038/nature16069
10.1029/94GB00993
10.1007/s10533-014-9970-5
10.1007/BF00017099
10.1016/S0031-4056(23)00152-X
10.1111/j.1365-2486.2008.01650.x
10.1016/S0929-1393(96)00126-6
10.1111/j.1365-2435.2008.01404.x
10.1111/j.1469-8137.2009.03001.x
10.1111/gcb.12816
10.1002/ecy.1906
10.1111/gcbb.12428
10.1016/j.agee.2011.02.029
10.1111/j.1461-0248.2007.01095.x
10.1111/gcbb.12221
10.1111/j.1365-2486.2009.02042.x
10.1016/S0038-0717(02)00251-1
10.1111/j.1461-0248.2007.01064.x
10.1038/nmicrobiol.2017.105
10.1890/1051-0761(2001)011[1287:CISFFI]2.0.CO;2
10.2136/sssaj2009.0346
10.1046/j.1354-1013.2002.00486.x
10.1038/nclimate2580
10.1007/s10533-015-0171-7
10.1016/j.tree.2006.06.004
10.1007/s10533-004-7314-6
10.2136/sssaj1986.03615995005000030017x
10.1007/s00374-016-1168-7
10.1007/s11104-012-1210-y
10.1038/nature10386
10.1007/s10533-012-9822-0
ContentType Journal Article
Copyright 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright © 2018 New Phytologist Trust
Copyright_xml – notice: 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
– notice: Copyright © 2018 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.15361
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
MEDLINE


CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 246
ExternalDocumentID 30067293
10_1111_nph_15361
NPH15361
90026787
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Connecticut
GeographicLocations_xml – name: Connecticut
GrantInformation_xml – fundername: National Science & Engineering Research Council of Canada
– fundername: Yale Institute for Biospheric Studies
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4081-1f230abd25626193024450a29d9c08517ce856dc073da0f7c63fdbf832d3314f3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:35:59 EDT 2025
Thu Jul 10 19:03:53 EDT 2025
Fri Jul 25 11:53:05 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Tue Jul 01 03:09:28 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Jan 22 16:49:20 EST 2025
Thu Jul 03 22:08:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords natural-abundance 13C tracer
rhizodeposition
litter inputs
microbial biomass
soil carbon formation
living roots
carbon cycle
soil organic matter
Language English
License 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4081-1f230abd25626193024450a29d9c08517ce856dc073da0f7c63fdbf832d3314f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0239-1976
PMID 30067293
PQID 2139007305
PQPubID 2026848
PageCount 14
ParticipantIDs proquest_miscellaneous_2189531697
proquest_miscellaneous_2081546668
proquest_journals_2139007305
pubmed_primary_30067293
crossref_primary_10_1111_nph_15361
crossref_citationtrail_10_1111_nph_15361
wiley_primary_10_1111_nph_15361_NPH15361
jstor_primary_90026787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190101
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2018; 120
2007; 104
2011; 478
2009; 46
2010; 16
2017; 2
2017; 3
2017; 48
2004; 7
1996; 187
2012; 15
1997; 5
2012; 14
2017; 9
2013; 19
2014b; 119
2001
2006; 21
2005; 269
1986; 5
2007; 450
2005; 73
1986
2009; 321
2013; 113
2008; 22
2001; 11
2010; 74
2014; 203
2015; 5
1986; 50
2006; 50
1978; 10
2002; 34
2015; 200
2017; 24
2002; 8
2003; 35
2008; 14
1997; 29
2014a; 78
2015; 528
2016; 127
2003
2002
2008; 50
2007; 10
2015; 8
1987; 19
2015; 7
2001; 65
1994; 8
2017; 53
2016; 7
2015; 390
2013; 339
1977; 17
2017; 98
2015; 21
2017
2009; 184
2011; 141
2012; 359
2005; 11
2017; 348
2017; 304
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Paul EA (e_1_2_7_47_1) 2001
Marschner B (e_1_2_7_43_1) 1986
Coleman DC (e_1_2_7_10_1) 2017
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_65_1
Harden JW (e_1_2_7_25_1) 2017; 348
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
Gee GW (e_1_2_7_21_1) 2002
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
R Core Team (e_1_2_7_58_1) 2017
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
McBrayer JF (e_1_2_7_44_1) 1977; 17
References_xml – volume: 11
  start-page: 1287
  year: 2001
  end-page: 1300
  article-title: Changes in soil functions following invasions of exotic understory plants in deciduous forests
  publication-title: Ecological Applications
– volume: 21
  start-page: 548
  year: 2006
  end-page: 554
  article-title: Towards a more plant physiological perspective on soil ecology
  publication-title: Trends in Ecology & Evolution
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 14
  start-page: 2625
  year: 2012
  end-page: 2637
  article-title: Plant invasion impacts on arthropod abundance, diversity and feeding consistent across environmental and geographic gradients
  publication-title: Biological Invasions
– volume: 7
  start-page: 1192
  year: 2004
  end-page: 1198
  article-title: Nitrogen deposition and plant species interact to influence soil carbon stabilization
  publication-title: Ecology Letters
– volume: 50
  start-page: 346
  year: 2008
  end-page: 363
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
– volume: 200
  start-page: 79
  year: 2015
  end-page: 87
  article-title: Contribution of roots and amendments to soil carbon accumulation within the soil profile in a long‐term field experiment in Sweden
  publication-title: Agriculture Ecosystems & Environment
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 15
  start-page: 1271
  year: 2012
  end-page: 1282
  article-title: Grass invasions across a regional gradient are associated with declines in belowground carbon pools
  publication-title: Ecosystems
– start-page: 193
  year: 2001
  end-page: 205
– volume: 11
  start-page: 983
  year: 2005
  end-page: 995
  article-title: Patterns of rhizosphere carbon flux in sugar maple ( ) and yellow birch ( ) saplings
  publication-title: Global Change Biology
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 29
  start-page: 1023
  year: 1997
  end-page: 1032
  article-title: An inter‐laboratory comparison of ten different ways of measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 50
  start-page: 627
  year: 1986
  end-page: 633
  article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils 1
  publication-title: Soil Science Society of America Journal
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nature Climate Change
– volume: 120
  start-page: 246
  year: 2018
  end-page: 259
  article-title: The root of the matter: linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biology and Biochemistry
– volume: 359
  start-page: 233
  year: 2012
  end-page: 244
  article-title: Root carbon flow from an invasive plant to belowground foodwebs
  publication-title: Plant and Soil
– volume: 450
  start-page: 277
  year: 2007
  end-page: 280
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  article-title: Carbon flow in the rhizosphere: carbon trader at the soil‐root interface
  publication-title: Plant and Soil
– volume: 74
  start-page: 1201
  year: 2010
  end-page: 1210
  article-title: Tracing root vs. residue carbon into soils from conventional and alternative cropping systems
  publication-title: Soil Science Society of America Journal
– volume: 8
  start-page: 776
  year: 2015
  end-page: 779
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nature Geoscience
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest
  publication-title: Science
– volume: 78
  start-page: S261
  year: 2014a
  end-page: S269
  article-title: Litter and root manipulations provide insights into soil organic matter dynamics and stability
  publication-title: Soil Science Society of America Journal
– volume: 16
  start-page: 732
  year: 2010
  end-page: 746
  article-title: Effects of biological invasions on forest carbon sequestration
  publication-title: Global Change Biology
– volume: 9
  start-page: 1252
  year: 2017
  end-page: 1263
  article-title: Cover crop root contributions to soil carbon in a no‐till corn bioenergy cropping system
  publication-title: GCB Bioenergy
– volume: 48
  start-page: 419
  year: 2017
  end-page: 445
  article-title: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 73
  start-page: 231
  year: 2005
  end-page: 256
  article-title: Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO efflux in an old growth coniferous forest
  publication-title: Biogeochemistry
– year: 1986
– volume: 14
  start-page: 2420
  year: 2008
  end-page: 2431
  article-title: Shrub ( ) encroachment in a semidesert grassland: spatial‐temporal changes in soil organic carbon and nitrogen pools
  publication-title: Global Change Biology
– volume: 7
  start-page: 13630
  year: 2016
  article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
– volume: 21
  start-page: 2082
  year: 2015
  end-page: 2094
  article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles
  publication-title: Global Change Biology
– volume: 7
  start-page: 1283
  year: 2015
  end-page: 1293
  article-title: Mineral soil carbon pool responses to forest clearing in Northeastern hardwood forests
  publication-title: GCB Bioenergy
– volume: 348
  start-page: 895
  year: 2017
  article-title: Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter
  publication-title: Global Change Biology
– volume: 3
  start-page: 244
  year: 2017
  end-page: 253
  article-title: Using stable isotopes to explore root‐microbe‐mineral interactions in soil
  publication-title: Rhizosphere
– volume: 24
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– volume: 50
  start-page: 115
  year: 2006
  end-page: 132
  article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation
  publication-title: Archives of Agronomy and Soil Science
– volume: 10
  start-page: 729
  year: 2007
  end-page: 736
  article-title: The underestimated importance of belowground carbon input for forest soil animal food webs
  publication-title: Ecology Letters
– volume: 46
  start-page: 311
  year: 2009
  end-page: 349
  article-title: Final collapse of the Neyman‐Pearson Decision Theoretic Framework and rise of the neoFisherian
  publication-title: Annales Zoologici Fennici
– volume: 98
  start-page: 2133
  year: 2017
  end-page: 2144
  article-title: Impacts of an invasive plant are fundamentally altered by a co‐occurring forest disturbance
  publication-title: Ecology
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 141
  start-page: 184
  year: 2011
  end-page: 192
  article-title: Roots contribute more to refractory soil organic matter than above‐ground crop residues, as revealed by a long‐term field experiment
  publication-title: Agriculture Ecosystems & Environment
– volume: 5
  start-page: 29
  year: 1997
  end-page: 56
  article-title: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability
  publication-title: Applied Soil Ecology
– volume: 15
  start-page: 1042
  year: 2012
  end-page: 1049
  article-title: Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO
  publication-title: Ecology Letters
– volume: 22
  start-page: 964
  year: 2008
  end-page: 974
  article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils
  publication-title: Functional Ecology
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  article-title: Soil carbon stocks and land use change: a meta analysis
  publication-title: Global Change Biology
– volume: 119
  start-page: 341
  year: 2014b
  end-page: 360
  article-title: Changes to particulate versus mineral‐associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems
  publication-title: Biogeochemistry
– volume: 17
  start-page: 89
  year: 1977
  end-page: 96
  article-title: Decomposer invertebrate populations in US forest biomes
  publication-title: Pedobiologia
– volume: 10
  start-page: 1046
  year: 2007
  end-page: 1053
  article-title: Interactions between soil and tree roots accelerate long‐term soil carbon decomposition
  publication-title: Ecology Letters
– year: 2003
– volume: 34
  start-page: 1261
  year: 2002
  end-page: 1272
  article-title: Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 17105
  year: 2017
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 203
  start-page: 110
  year: 2014
  end-page: 124
  article-title: Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems
  publication-title: New Phytologist
– volume: 16
  start-page: 1338
  year: 2010
  end-page: 1350
  article-title: Grass invasion of a hardwood forest is associated with declines in belowground carbon pools
  publication-title: Global Change Biology
– volume: 113
  start-page: 271
  year: 2013
  end-page: 281
  article-title: Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth
  publication-title: Biogeochemistry
– volume: 390
  start-page: 61
  year: 2015
  end-page: 76
  article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy‐covariance, atmospheric flux partitioning and CO pulse labeling
  publication-title: Plant and Soil
– volume: 187
  start-page: 345
  year: 1996
  end-page: 350
  article-title: Quantification of soil carbon inputs under elevated CO :C plants in a C soil
  publication-title: Plant and Soil
– volume: 269
  start-page: 341
  year: 2005
  end-page: 356
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant and Soil
– volume: 65
  start-page: 771
  year: 2001
  end-page: 779
  article-title: Short‐term dynamics of root‐and shoot‐derived carbon from a leguminous green manure
  publication-title: Science Society of America Journal
– volume: 104
  start-page: 4990
  year: 2007
  end-page: 4995
  article-title: Altered soil microbial community at elevated CO leads to loss of soil carbon
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 8
  start-page: 279
  year: 1994
  end-page: 293
  article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils
  publication-title: Global Biogeochemical Cycles
– volume: 5
  start-page: 177
  year: 1986
  end-page: 189
  article-title: Modifications to the substrate‐induced respiration method to permit measurement of microbial biomass in soils of differing water contents
  publication-title: Journal of Microbiological Methods
– volume: 53
  start-page: 257
  year: 2017
  end-page: 267
  article-title: Fate of straw‐ and root‐derived carbon in a Swedish agricultural soil
  publication-title: Biology and Fertility of Soils
– volume: 127
  start-page: 1
  year: 2016
  end-page: 14
  article-title: Long‐term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks
  publication-title: Biogeochemistry
– volume: 10
  start-page: 215
  year: 1978
  end-page: 221
  article-title: A physiological method for the quantitative measurement of microbial biomass in soils
  publication-title: Soil Biology and Biochemistry
– volume: 304
  start-page: 76
  year: 2017
  end-page: 82
  article-title: Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls
  publication-title: Geoderma
– year: 2017
– volume: 184
  start-page: 19
  year: 2009
  end-page: 33
  article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance
  publication-title: New Phytologist
– start-page: 255
  year: 2002
  end-page: 293
– ident: e_1_2_7_4_1
  doi: 10.1016/S0038-0717(97)00030-8
– ident: e_1_2_7_26_1
  doi: 10.1016/S0038-0717(02)00068-8
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-2486.2009.02038.x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.soilbio.2018.02.016
– ident: e_1_2_7_28_1
  doi: 10.1002/bimj.200810425
– ident: e_1_2_7_2_1
  doi: 10.1016/0038-0717(78)90099-8
– volume-title: R: a language and environment for statistical computing
  year: 2017
  ident: e_1_2_7_58_1
– volume-title: Mineral nutrition of higher plants
  year: 1986
  ident: e_1_2_7_43_1
– ident: e_1_2_7_57_1
  doi: 10.2136/sssaj2001.653771x
– ident: e_1_2_7_71_1
  doi: 10.1016/0167-7012(86)90012-6
– ident: e_1_2_7_12_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1469-8137.2007.02063.x
– ident: e_1_2_7_17_1
– ident: e_1_2_7_60_1
  doi: 10.1007/s11104-014-2371-7
– start-page: 193
  volume-title: Assessment methods for soil carbon
  year: 2001
  ident: e_1_2_7_47_1
– ident: e_1_2_7_38_1
  doi: 10.1080/03650340310001627658
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-2486.2005.00959.x
– ident: e_1_2_7_39_1
  doi: 10.2136/sssaj2013.08.0370nafsc
– ident: e_1_2_7_37_1
  doi: 10.1007/s10021-012-9583-6
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1461-0248.2012.01827.x
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.0610045104
– ident: e_1_2_7_59_1
  doi: 10.1007/s11104-004-0907-y
– start-page: 255
  volume-title: Methods of soil analysis, Part 4, Physical methods. Soil Science Society of America Book Series Number 5
  year: 2002
  ident: e_1_2_7_21_1
– ident: e_1_2_7_29_1
  doi: 10.5735/086.046.0501
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms13630
– ident: e_1_2_7_45_1
  doi: 10.1016/j.agee.2014.11.003
– ident: e_1_2_7_31_1
  doi: 10.1146/annurev-ecolsys-112414-054234
– ident: e_1_2_7_51_1
  doi: 10.1016/j.rhisph.2017.04.016
– ident: e_1_2_7_70_1
  doi: 10.1016/0038-0717(87)90052-6
– ident: e_1_2_7_32_1
  doi: 10.1007/s11104-009-9925-0
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1231923
– ident: e_1_2_7_67_1
  doi: 10.1111/nph.12795
– ident: e_1_2_7_68_1
  doi: 10.1007/s10530-012-0258-1
– ident: e_1_2_7_11_1
  doi: 10.1038/ngeo2520
– ident: e_1_2_7_48_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1461-0248.2004.00679.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.geoderma.2016.05.019
– ident: e_1_2_7_41_1
  doi: 10.1038/nature16069
– volume-title: Fundamentals of soil ecology
  year: 2017
  ident: e_1_2_7_10_1
– ident: e_1_2_7_61_1
  doi: 10.1029/94GB00993
– ident: e_1_2_7_40_1
  doi: 10.1007/s10533-014-9970-5
– ident: e_1_2_7_30_1
  doi: 10.1007/BF00017099
– volume: 17
  start-page: 89
  year: 1977
  ident: e_1_2_7_44_1
  article-title: Decomposer invertebrate populations in US forest biomes
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(23)00152-X
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1365-2486.2008.01650.x
– ident: e_1_2_7_23_1
  doi: 10.1016/S0929-1393(96)00126-6
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2435.2008.01404.x
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1469-8137.2009.03001.x
– ident: e_1_2_7_19_1
  doi: 10.1111/gcb.12816
– ident: e_1_2_7_64_1
  doi: 10.1002/ecy.1906
– ident: e_1_2_7_3_1
  doi: 10.1111/gcbb.12428
– ident: e_1_2_7_34_1
  doi: 10.1016/j.agee.2011.02.029
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1461-0248.2007.01095.x
– ident: e_1_2_7_50_1
  doi: 10.1111/gcbb.12221
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1365-2486.2009.02042.x
– volume: 348
  start-page: 895
  year: 2017
  ident: e_1_2_7_25_1
  article-title: Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter
  publication-title: Global Change Biology
– ident: e_1_2_7_18_1
  doi: 10.1016/S0038-0717(02)00251-1
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1461-0248.2007.01064.x
– ident: e_1_2_7_42_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_7_15_1
  doi: 10.1890/1051-0761(2001)011[1287:CISFFI]2.0.CO;2
– ident: e_1_2_7_36_1
  doi: 10.2136/sssaj2009.0346
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: e_1_2_7_35_1
  doi: 10.1038/nclimate2580
– ident: e_1_2_7_54_1
  doi: 10.1007/s10533-015-0171-7
– ident: e_1_2_7_27_1
  doi: 10.1016/j.tree.2006.06.004
– ident: e_1_2_7_66_1
  doi: 10.1007/s10533-004-7314-6
– ident: e_1_2_7_16_1
  doi: 10.2136/sssaj1986.03615995005000030017x
– ident: e_1_2_7_22_1
  doi: 10.1007/s00374-016-1168-7
– ident: e_1_2_7_7_1
  doi: 10.1007/s11104-012-1210-y
– ident: e_1_2_7_62_1
  doi: 10.1038/nature10386
– ident: e_1_2_7_6_1
  doi: 10.1007/s10533-012-9822-0
SSID ssj0009562
Score 2.6749163
Snippet Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs...
Summary Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits)...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms Animals
C4 plants
Carbon
Carbon Cycle
Connecticut
Cycles
field experimentation
Food Chain
Food chains
Food webs
forest litter
Forests
grasses
Introduced Species
Litter
litter inputs
living roots
microbial biomass
Microorganisms
Minerals
natural‐abundance 13C tracer
Organic carbon
Organic soils
Plant Roots - chemistry
Plant Roots - metabolism
Plant Shoots - chemistry
Plant Shoots - metabolism
Poaceae
rhizodeposition
roots
shoots
Soil
Soil - chemistry
soil carbon formation
soil food webs
Soil Microbiology
Soil microorganisms
soil organic carbon
soil organic matter
Soils
Tracking
Trees
Understory
Title Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
URI https://www.jstor.org/stable/90026787
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15361
https://www.ncbi.nlm.nih.gov/pubmed/30067293
https://www.proquest.com/docview/2139007305
https://www.proquest.com/docview/2081546668
https://www.proquest.com/docview/2189531697
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5C6KGXvtK0m6ZFKT30EC9ry9Ja9NSWhiXQUEIDeygYPSx2ycZeYu8h-fWZkR8kIS0lN2GPbUmjGX0jyd8AfFJcWlkIDHJEzCOi7I4MNzYqEld4qUQWa1qH_HkiZ2fp8VzMt-BL_y9Myw8xLLiRZQR_TQauTX3LyMv1YozmGkIfOqtFgOg0uUW4K5OegVmmct6xCtEpnuHJO3NRexzxIaB5F7eGiefoOfzpq9yeNzkfbxozttf32Bwf2aYX8KwDpOxrO4JewlZRvoIn3yoEjVc7sOizjjIEtwzBIlsTPYW9YpVnqyWtRjDE3g1blutNUx-yEsvhAorXCyogzkfdHaIEveOCnqir5Yq1-aQss_rSVOVrODv68fv7LOqSM0Q2RRgRxR6DF20cQiYKwjjO9amY6EQ5ZQnGTSkfqnQWXYjTEz-1kntnPDoQx3mcer4L22VVFm-BZQgieCy9jzVPXTo1Ey1k5r1zU2OVSEbwuVdTbjvmckqgscr7CAb7LQ_9NoKPg-i6pet4SGg36HqQUBSJoucawX6v_Lwz5TpPECPTfuZEjOBguI1GSDsruiyqDcpgj4gUI8HsHzJxpqiZCj_zph1YQwV42BFXHFsahsff656f_JqFwt7_i76DpwjzVLtwtA_bzeWmeI9QqjEfgs3cAMj0Fyc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQX3qWBAgsCiUMdxV574z1wAEqV0jZCqJVyc727XiVqsKPaEQq_ib_Cf2Jm_VCLCuLSA7dVMnH2MbPzzez6G4BXkgstsgiDnMjnHlF2e4or7WWByayQUeynlIc8HIvRcfhpEk3W4Ef7LkzND9El3Mgy3H5NBk4J6XNWni-mfbRX4TdXKvez1TcM2Mq3ezu4uq-DYPfj0YeR19QU8HSI3s_zLWLuVBn09BQ7cHRRYTRIA2mkJvQxpDKewmjUfJMO7FALbo2yqPeGcz-0HJ97Da5TBXFi6t_5Epyj-BVBy_ksQjFpeIzo3lDX1Qver74AeRm0vYiUnavbvQM_20mqb7ic9peV6uvvv_FH_i-zeBduN5ibvauN5B6sZfl9uPG-QFy8egDTtrAqQ_zOEA-zBTFw6BUrLJvPKOHCMLyo2CxfLKtym-XYdh-geDmlBoYyqJ7bKEHP-Eq_KIvZnNUlszTT6Zkq8odwfCWj3ID1vMizTWAx4iTuC2v9lIcmHKpBGonYWmOGSsso6MGbVi8S3ZCzU42QedIGabhOiVunHrzsRBc1I8llQhtOuToJScE2bs492Gq1LWl2qzIJMAygI9tB1IMX3de4z9DhUZpnxRJlcEaiEIPd-C8yfixpmBL_5lGtyV0HuDv0lxxH6vTxz31Pxp9HrvH430Wfw83R0eFBcrA33n8CtxDVyjpPtgXr1dkye4rIsVLPnMEyOLlq3f4Fyo5ydQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAX3oWFAgaBxKFZJXHijQ8cgGW1pbCqEJX2lsZ2rF2xJFGTFVr-En-FH8VMXmpRQVx64GYlk8SPbzzf2M4MwHPJhRZpiE5O6HGHQnY7iivtpL5JrZBh5CW0DvlxJqZHwft5ON-CH92_ME18iH7BjTSjnq9JwQtjTyl5ViyGqK7Ca09UHqSbb-ivla_2xzi4L3x_8u7z26nTphRwdIDGz_EsUu5EGTT05DpwtFBB6Ca-NFIT-RhRFk9hNALfJK4dacGtURZhbzj3AsvxvZfgciBcSXkixp_8UxF-hd-FfBaBmLdhjOjYUF_VM8avOf94HrM9S5RrSze5AT-7PmoOuHwZris11N9_Cx_5n3TiTbjeMm72ulGRW7CVZrfhypscWfHmDiy6tKoM2TtDNswKir-hNyy3bLWk5RaGzkXFllmxrso9lmG5voDi5YIK6MggOPdQgt7xlZ4o8-WKNQmzNNPJicqzu3B0Ia3cge0sz9L7wCJkSdwT1noJD0wwUm4SishaY0ZKy9AfwMsOFrFuQ7NThpBV3LloOE5xPU4DeNaLFk08kvOEdmps9RKSXG2cmgew24EtbueqMvbRCaANWzccwNP-Ns4ytHWUZGm-RhnskTBAVzf6i4wXSWqmxM_ca4DcV4DXW_6SY0trOP657vHscFoXHvy76BO4ejiexB_2ZwcP4RpSWtksku3CdnWyTh8hbazU41pdGRxfNLR_Ad_zcSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+primacy+of+living+root+inputs%2C+not+root+or+shoot+litter%2C+in+forming+soil+organic+carbon&rft.jtitle=The+New+phytologist&rft.au=Noah+W.+Sokol&rft.au=Sara.+E.+Kuebbing&rft.au=Elena+Karlsen-Ayala&rft.au=Mark+A.+Bradford&rft.date=2019-01-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=221&rft.issue=1&rft.spage=233&rft.epage=246&rft_id=info:doi/10.1111%2Fnph.15361&rft.externalDocID=90026787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon