Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence...
Saved in:
Published in | The New phytologist Vol. 221; no. 1; pp. 233 - 246 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.01.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools.
We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years.
We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’).
Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. |
---|---|
AbstractList | Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools.We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years.We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’).Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates.Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2-13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed 'the in vivo microbial turnover pathway'). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow-cycling, mineral-associated SOC as well as fast-cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral-associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Summary Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C 4 grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs litter inputs (i.e. root + shoot litter) are poorly understood. Recent theory suggests that living root inputs exert a disproportionate influence on SOC formation, but few field studies have explicitly tested this by separately tracking living root vs litter inputs as they move through the soil food web and into distinct SOC pools. We used a manipulative field experiment with an annual C₄ grass in a forest understory to differentially track its living root vs litter inputs into the soil and to assess net SOC formation over multiple years. We show that living root inputs are 2–13 times more efficient than litter inputs in forming both slow‐cycling, mineral‐associated SOC as well as fast‐cycling, particulate organic C. Furthermore, we demonstrate that living root inputs are more efficiently anabolized by the soil microbial community en route to the mineral‐associated SOC pool (dubbed ‘the in vivo microbial turnover pathway’). Overall, our findings provide support for the primacy of living root inputs in forming SOC. However, we also highlight the possibility of nonadditive effects of living root and litter inputs, which may deplete SOC pools despite greater SOC formation rates. |
Author | Noah W. Sokol Mark A. Bradford Elena Karlsen-Ayala Sara. E. Kuebbing |
Author_xml | – sequence: 1 givenname: Noah W. orcidid: 0000-0003-0239-1976 surname: Sokol fullname: Sokol, Noah W. email: noah.sokol@yale.edu organization: Yale University – sequence: 2 givenname: Sara. E. surname: Kuebbing fullname: Kuebbing, Sara. E. organization: University of Pittsburgh – sequence: 3 givenname: Elena surname: Karlsen‐Ayala fullname: Karlsen‐Ayala, Elena organization: Yale University – sequence: 4 givenname: Mark A. surname: Bradford fullname: Bradford, Mark A. organization: Yale University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30067293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9PGzEQxS1EBYFy4ANQWeLSSiyM7V2vfUSIP5VQ20Mr9bZyvDZxtLFT2wvKt6-TAAckWl88Gv3e05uZA7TrgzcIHRM4J-Vd-OXsnDSMkx00ITWXlSCs3UUTACoqXvPf--ggpTkAyIbTPbTPAHhLJZug2fWj643XBtsQcZ4ZvIxuofQKB4sH9-j8A44hZOz8cszpDPtSbxoFT7N1MbicTTwrxNpjsVak4IYCPCjvNNYqToP_iD5YNSRz9Pwfol831z-v7qr777dfry7vK12DIBWxlIGa9rQE5UQyoHXdgKKylxpEQ1ptRMN7DS3rFdhWc2b7qRWM9oyR2rJD9Hnru4zhz2hS7hYuaTMMypswpo4SIRtGuGz_j5ZATc05FwU9fYPOwxh9GaQYMgklDjSF-vRMjdOF6bvNKuOqe1l3Ab5sAR1DStHYV4RAtz5lV07ZbU5Z2Is3rHZZZRd8jsoN_1I8ucGs3rfuvv24e1GcbBXzlEN8VZR5KG9Fy_4CwPq22Q |
CitedBy_id | crossref_primary_10_1016_j_foreco_2023_121360 crossref_primary_10_1111_ejss_13573 crossref_primary_10_1007_s11356_024_35041_8 crossref_primary_10_1016_j_agee_2021_107851 crossref_primary_10_1016_j_still_2025_106523 crossref_primary_10_1016_j_geoderma_2022_115940 crossref_primary_10_1016_j_soilbio_2022_108811 crossref_primary_10_1016_j_soilbio_2020_108019 crossref_primary_10_2139_ssrn_3980072 crossref_primary_10_1002_ldr_4386 crossref_primary_10_1111_gcb_17591 crossref_primary_10_1002_ecy_3688 crossref_primary_10_1016_j_foreco_2022_120423 crossref_primary_10_1002_ldr_4821 crossref_primary_10_3389_fmicb_2019_00256 crossref_primary_10_1016_j_geodrs_2023_e00732 crossref_primary_10_1016_j_scitotenv_2022_158358 crossref_primary_10_1007_s11104_020_04469_5 crossref_primary_10_1016_j_tree_2021_06_005 crossref_primary_10_3390_f14020221 crossref_primary_10_3390_f14020344 crossref_primary_10_1038_s41467_023_40768_y crossref_primary_10_1007_s11104_024_06695_7 crossref_primary_10_1088_1748_9326_abe06e crossref_primary_10_1038_s41598_023_38409_x crossref_primary_10_1002_ldr_3729 crossref_primary_10_1007_s11368_023_03431_z crossref_primary_10_1016_j_pld_2024_09_002 crossref_primary_10_1016_j_soilbio_2024_109578 crossref_primary_10_1016_j_apsoil_2020_103842 crossref_primary_10_3390_rs13194000 crossref_primary_10_1016_j_foreco_2022_120654 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_1016_j_soilbio_2024_109695 crossref_primary_10_3389_fenvs_2020_00033 crossref_primary_10_1016_j_catena_2021_105761 crossref_primary_10_1111_ejss_13433 crossref_primary_10_1111_gcb_17223 crossref_primary_10_1016_j_geoderma_2024_116803 crossref_primary_10_1371_journal_pone_0289859 crossref_primary_10_1007_s11368_023_03536_5 crossref_primary_10_1029_2023EF004085 crossref_primary_10_1111_gcb_16967 crossref_primary_10_1016_j_geodrs_2023_e00705 crossref_primary_10_1016_j_jhydrol_2020_125112 crossref_primary_10_1016_j_still_2022_105490 crossref_primary_10_1016_j_agwat_2022_107539 crossref_primary_10_1029_2024JG008327 crossref_primary_10_1016_j_still_2024_106022 crossref_primary_10_1038_s41598_021_93157_0 crossref_primary_10_3390_agronomy14020307 crossref_primary_10_5194_soil_10_441_2024 crossref_primary_10_1007_s10533_022_00970_4 crossref_primary_10_1007_s40333_024_0076_1 crossref_primary_10_1016_j_baae_2021_07_007 crossref_primary_10_1016_j_scitotenv_2024_177082 crossref_primary_10_1002_ldr_5333 crossref_primary_10_1016_j_agee_2021_107825 crossref_primary_10_1016_j_soilbio_2021_108431 crossref_primary_10_1016_j_apsoil_2021_104323 crossref_primary_10_1016_j_soilbio_2024_109367 crossref_primary_10_1093_jpe_rtab078 crossref_primary_10_1111_nph_17326 crossref_primary_10_3390_ijerph191710936 crossref_primary_10_1111_gcb_16164 crossref_primary_10_1111_nph_16223 crossref_primary_10_1038_s41598_025_87293_0 crossref_primary_10_1016_j_plaphy_2024_109230 crossref_primary_10_1016_j_soilbio_2020_107972 crossref_primary_10_1016_j_soilbio_2020_107973 crossref_primary_10_1002_saj2_20616 crossref_primary_10_1111_gcbb_12914 crossref_primary_10_2134_agronj2019_01_0051 crossref_primary_10_1016_j_soilbio_2021_108322 crossref_primary_10_1016_j_foreco_2021_119867 crossref_primary_10_1016_j_soilbio_2024_109471 crossref_primary_10_1016_j_ecoleng_2021_106463 crossref_primary_10_1007_s11104_024_07189_2 crossref_primary_10_1111_ejss_13493 crossref_primary_10_3389_fmicb_2022_938574 crossref_primary_10_1111_nph_16298 crossref_primary_10_1111_gcb_16107 crossref_primary_10_1016_j_soilbio_2021_108216 crossref_primary_10_1038_s43705_021_00059_3 crossref_primary_10_1007_s11104_024_06493_1 crossref_primary_10_1016_j_agee_2024_109276 crossref_primary_10_1016_j_scitotenv_2024_175041 crossref_primary_10_3390_su12218962 crossref_primary_10_1016_j_still_2023_105871 crossref_primary_10_1111_gcb_15819 crossref_primary_10_1016_j_eja_2025_127549 crossref_primary_10_3390_agronomy14122871 crossref_primary_10_1038_s41561_018_0258_6 crossref_primary_10_1016_j_soilbio_2023_109146 crossref_primary_10_1016_j_still_2024_106209 crossref_primary_10_3389_fenvs_2020_00068 crossref_primary_10_1016_j_scitotenv_2024_175717 crossref_primary_10_1111_nph_18914 crossref_primary_10_1007_s00374_023_01768_8 crossref_primary_10_1016_j_catena_2022_106904 crossref_primary_10_1016_j_marpolbul_2021_113059 crossref_primary_10_1139_cjss_2019_0062 crossref_primary_10_1016_j_agee_2024_109141 crossref_primary_10_3390_plants13101346 crossref_primary_10_1080_14735903_2025_2461826 crossref_primary_10_1016_j_agee_2025_109564 crossref_primary_10_1111_gcb_15807 crossref_primary_10_1111_wre_12570 crossref_primary_10_1016_j_foreco_2021_119522 crossref_primary_10_1016_j_soilbio_2021_108221 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_1146_annurev_ecolsys_102320_085332 crossref_primary_10_1016_j_catena_2025_108838 crossref_primary_10_1016_j_geoderma_2020_114828 crossref_primary_10_1016_j_plantsci_2025_112431 crossref_primary_10_1155_2023_9843618 crossref_primary_10_3389_fmicb_2023_1283675 crossref_primary_10_1007_s00203_022_03321_x crossref_primary_10_1016_j_jhazmat_2023_132619 crossref_primary_10_3390_f14122291 crossref_primary_10_1007_s11104_019_03999_x crossref_primary_10_3390_horticulturae10020154 crossref_primary_10_1111_ejss_13472 crossref_primary_10_1002_csc2_20920 crossref_primary_10_3389_fmicb_2022_937940 crossref_primary_10_1038_s41598_022_14001_7 crossref_primary_10_3389_fpls_2022_985864 crossref_primary_10_1111_wre_12544 crossref_primary_10_1016_j_agsy_2024_104172 crossref_primary_10_1007_s10705_021_10188_9 crossref_primary_10_1007_s11368_022_03403_9 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1016_j_egg_2024_100279 crossref_primary_10_1029_2021GL097347 crossref_primary_10_1111_nph_17480 crossref_primary_10_3389_fpls_2023_1106531 crossref_primary_10_3390_agronomy15040810 crossref_primary_10_1016_j_soilbio_2023_108952 crossref_primary_10_36783_18069657rbcs20230065 crossref_primary_10_3390_f10050369 crossref_primary_10_1016_j_agee_2021_107504 crossref_primary_10_1007_s11104_025_07367_w crossref_primary_10_3390_f14091869 crossref_primary_10_1038_s41467_022_28715_9 crossref_primary_10_1007_s11104_020_04651_9 crossref_primary_10_1016_j_geoderma_2023_116760 crossref_primary_10_1073_pnas_2217481120 crossref_primary_10_1016_j_jenvman_2023_119387 crossref_primary_10_1111_avsc_12743 crossref_primary_10_1134_S1064229323600124 crossref_primary_10_3390_su16114553 crossref_primary_10_1016_j_catena_2023_107281 crossref_primary_10_1042_BCJ20220245 crossref_primary_10_1038_s41586_021_03306_8 crossref_primary_10_1016_j_agee_2024_109365 crossref_primary_10_1177_0309133319873309 crossref_primary_10_1016_j_soilbio_2023_109017 crossref_primary_10_1007_s11368_021_03067_x crossref_primary_10_1111_1365_2745_13276 crossref_primary_10_1016_j_soilbio_2025_109731 crossref_primary_10_1016_j_soilbio_2022_108786 crossref_primary_10_1038_s41561_022_01079_x crossref_primary_10_1016_j_soilbio_2023_109256 crossref_primary_10_1111_sum_70027 crossref_primary_10_3390_f15040619 crossref_primary_10_1016_j_geoderma_2023_116648 crossref_primary_10_5194_bg_21_4077_2024 crossref_primary_10_1007_s11356_021_16817_8 crossref_primary_10_1073_pnas_2006715117 crossref_primary_10_1016_j_scitotenv_2024_174858 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1016_j_catena_2021_105622 crossref_primary_10_1016_j_foreco_2023_121661 crossref_primary_10_1016_j_fcr_2022_108463 crossref_primary_10_1111_brv_12554 crossref_primary_10_1016_j_agrformet_2024_110212 crossref_primary_10_1016_j_catena_2024_108434 crossref_primary_10_1139_cjss_2024_0033 crossref_primary_10_1002_saj2_20422 crossref_primary_10_1038_s41598_024_72796_z crossref_primary_10_1186_s40663_021_00318_8 crossref_primary_10_1111_nph_18157 crossref_primary_10_2136_sssaj2018_11_0445 crossref_primary_10_3390_f15111958 crossref_primary_10_1007_s11104_024_06978_z crossref_primary_10_1016_j_geoderma_2023_116356 crossref_primary_10_1016_j_geoderma_2023_116598 crossref_primary_10_1016_j_geoderma_2024_116875 crossref_primary_10_1186_s40663_020_00278_5 crossref_primary_10_1016_j_fecs_2023_100092 crossref_primary_10_1016_j_apsoil_2023_104957 crossref_primary_10_2139_ssrn_4007981 crossref_primary_10_1007_s11104_024_06833_1 crossref_primary_10_1016_j_soilbio_2021_108494 crossref_primary_10_1016_j_still_2021_105037 crossref_primary_10_1007_s11104_025_07300_1 crossref_primary_10_1016_j_soilbio_2021_108375 crossref_primary_10_1007_s10021_020_00572_x crossref_primary_10_1016_j_agee_2025_109509 crossref_primary_10_18393_ejss_1396572 crossref_primary_10_3390_land13081296 crossref_primary_10_1016_j_soilbio_2021_108492 crossref_primary_10_1111_gcb_14482 crossref_primary_10_5194_soil_10_699_2024 crossref_primary_10_1111_1365_2435_13934 crossref_primary_10_3390_biology11060870 crossref_primary_10_1016_j_still_2022_105561 crossref_primary_10_3389_fsufs_2022_921216 crossref_primary_10_1016_j_soilbio_2021_108384 crossref_primary_10_3389_fpls_2021_621276 crossref_primary_10_1002_bies_202100010 crossref_primary_10_1016_j_scitotenv_2023_165556 crossref_primary_10_3389_ffgc_2022_1032321 crossref_primary_10_1016_j_agee_2020_106985 crossref_primary_10_1016_j_soilbio_2022_108884 crossref_primary_10_1016_j_soilbio_2024_109610 crossref_primary_10_1093_ismejo_wrae067 crossref_primary_10_1016_j_catena_2023_107545 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_1016_j_sjbs_2023_103578 crossref_primary_10_3389_fsufs_2023_1320870 crossref_primary_10_1007_s10533_024_01161_z crossref_primary_10_3389_fpls_2022_997292 crossref_primary_10_1016_j_catena_2024_108480 crossref_primary_10_1016_j_geoderma_2022_116090 crossref_primary_10_1016_j_geoderma_2023_116336 crossref_primary_10_1007_s10021_024_00949_2 crossref_primary_10_2135_cropsci2018_09_0594 crossref_primary_10_1016_j_scitotenv_2023_167962 crossref_primary_10_1016_j_soilbio_2019_107645 crossref_primary_10_1111_gcb_16322 crossref_primary_10_1016_j_foreco_2023_120884 crossref_primary_10_1111_nph_17604 crossref_primary_10_3390_f10110953 crossref_primary_10_1016_j_soilbio_2021_108390 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_3389_ffgc_2022_836062 crossref_primary_10_1016_j_foreco_2023_121074 crossref_primary_10_1360_N072022_0106 crossref_primary_10_1111_gcb_16798 crossref_primary_10_1111_ejss_70077 crossref_primary_10_3389_fenvs_2020_514701 crossref_primary_10_3390_su13105689 crossref_primary_10_3389_fmicb_2024_1337672 crossref_primary_10_1002_agj2_21475 crossref_primary_10_1016_j_agee_2024_109200 crossref_primary_10_1111_1365_2745_13630 crossref_primary_10_4236_as_2024_1511066 crossref_primary_10_1016_j_foreco_2020_118752 crossref_primary_10_1111_1365_2745_14167 crossref_primary_10_1007_s11104_025_07372_z crossref_primary_10_1007_s11104_024_06835_z crossref_primary_10_1016_j_geoderma_2023_116569 crossref_primary_10_1016_j_scitotenv_2024_171827 crossref_primary_10_1007_s11104_021_05191_6 crossref_primary_10_1016_j_geoderma_2022_116152 crossref_primary_10_1016_j_tplants_2022_04_009 crossref_primary_10_1007_s11104_024_07086_8 crossref_primary_10_3390_agriculture12122076 crossref_primary_10_1002_ecy_3929 crossref_primary_10_1016_j_apsoil_2023_105169 crossref_primary_10_1038_s41598_024_79801_5 crossref_primary_10_3390_plants12030630 crossref_primary_10_1016_j_catena_2020_104739 crossref_primary_10_31857_S0032180X22601281 crossref_primary_10_3389_fenvs_2023_1123510 crossref_primary_10_3389_fsufs_2024_1368418 crossref_primary_10_1016_j_ecolind_2022_109726 crossref_primary_10_1016_j_soilbio_2020_107922 crossref_primary_10_1007_s10533_022_00962_4 crossref_primary_10_1016_j_agee_2023_108583 crossref_primary_10_1016_j_gecco_2023_e02530 crossref_primary_10_1016_j_geoderma_2022_115744 crossref_primary_10_1111_nph_18998 crossref_primary_10_1016_j_catena_2022_106647 crossref_primary_10_1002_jpln_202200090 crossref_primary_10_1016_j_geoderma_2023_116385 crossref_primary_10_1002_saj2_20358 crossref_primary_10_1016_j_scitotenv_2024_170687 crossref_primary_10_1016_j_envres_2022_114981 crossref_primary_10_1111_nph_19159 crossref_primary_10_1016_j_geoderma_2022_115995 crossref_primary_10_1016_j_envpol_2024_125315 crossref_primary_10_1007_s11258_021_01182_w crossref_primary_10_1016_j_soilbio_2022_108607 crossref_primary_10_1016_j_catena_2024_107961 crossref_primary_10_1016_j_agrformet_2023_109471 crossref_primary_10_1016_j_fecs_2024_100229 crossref_primary_10_1088_1755_1315_693_1_012082 crossref_primary_10_1002_ece3_9182 crossref_primary_10_1016_j_rhisph_2024_100868 crossref_primary_10_1007_s11368_020_02622_2 crossref_primary_10_1016_j_rsma_2023_103046 crossref_primary_10_1016_j_scitotenv_2021_148072 crossref_primary_10_1029_2021JG006472 crossref_primary_10_1016_j_soilbio_2024_109371 crossref_primary_10_1007_s10533_024_01185_5 crossref_primary_10_1016_j_geodrs_2024_e00909 crossref_primary_10_2139_ssrn_4148114 crossref_primary_10_1007_s11104_022_05713_w crossref_primary_10_1016_j_apsoil_2023_104855 crossref_primary_10_1016_j_geoderma_2024_117060 crossref_primary_10_1093_jpe_rtae017 crossref_primary_10_1007_s11104_020_04728_5 crossref_primary_10_1111_nph_17082 crossref_primary_10_1007_s00374_024_01796_y crossref_primary_10_1016_j_geoderma_2025_117260 crossref_primary_10_3389_fmicb_2023_1013570 crossref_primary_10_1007_s11104_022_05549_4 crossref_primary_10_3389_fmicb_2019_02969 crossref_primary_10_1016_j_apsoil_2022_104537 crossref_primary_10_1111_gcbb_12729 crossref_primary_10_1016_j_soilbio_2021_108519 crossref_primary_10_1016_j_foreco_2023_120848 crossref_primary_10_3390_f14010034 crossref_primary_10_1007_s10533_023_01067_2 crossref_primary_10_1016_j_soilbio_2024_109603 crossref_primary_10_1111_ele_14191 crossref_primary_10_7717_peerj_18480 crossref_primary_10_1016_j_catena_2023_107317 crossref_primary_10_1021_acs_est_1c00300 crossref_primary_10_3390_su16219481 crossref_primary_10_1029_2021JG006562 crossref_primary_10_1016_j_soilbio_2020_107936 crossref_primary_10_1016_j_soilbio_2020_107817 crossref_primary_10_1016_j_scitotenv_2024_171754 crossref_primary_10_1111_gcb_15787 crossref_primary_10_1016_j_scitotenv_2023_168961 crossref_primary_10_3390_f15050806 crossref_primary_10_1016_j_scitotenv_2024_177058 crossref_primary_10_1007_s10533_019_00577_2 crossref_primary_10_1029_2022JG006829 crossref_primary_10_1029_2024EF005249 crossref_primary_10_1134_S1064229324602142 crossref_primary_10_1007_s11104_023_06090_8 crossref_primary_10_1007_s10533_021_00804_9 crossref_primary_10_1016_j_soilbio_2023_109096 crossref_primary_10_1007_s11430_022_1032_2 crossref_primary_10_1134_S1064229320070170 |
Cites_doi | 10.1016/S0038-0717(97)00030-8 10.1016/S0038-0717(02)00068-8 10.1111/j.1365-2486.2009.02038.x 10.1016/j.soilbio.2018.02.016 10.1002/bimj.200810425 10.1016/0038-0717(78)90099-8 10.2136/sssaj2001.653771x 10.1016/0167-7012(86)90012-6 10.1111/gcb.12113 10.1111/j.1469-8137.2007.02063.x 10.1007/s11104-014-2371-7 10.1080/03650340310001627658 10.1111/j.1365-2486.2005.00959.x 10.2136/sssaj2013.08.0370nafsc 10.1007/s10021-012-9583-6 10.1111/j.1461-0248.2012.01827.x 10.1073/pnas.0610045104 10.1007/s11104-004-0907-y 10.5735/086.046.0501 10.1038/ncomms13630 10.1016/j.agee.2014.11.003 10.1146/annurev-ecolsys-112414-054234 10.1016/j.rhisph.2017.04.016 10.1016/0038-0717(87)90052-6 10.1007/s11104-009-9925-0 10.1126/science.1231923 10.1111/nph.12795 10.1007/s10530-012-0258-1 10.1038/ngeo2520 10.1111/gcb.13850 10.1111/j.1461-0248.2004.00679.x 10.1016/j.geoderma.2016.05.019 10.1038/nature16069 10.1029/94GB00993 10.1007/s10533-014-9970-5 10.1007/BF00017099 10.1016/S0031-4056(23)00152-X 10.1111/j.1365-2486.2008.01650.x 10.1016/S0929-1393(96)00126-6 10.1111/j.1365-2435.2008.01404.x 10.1111/j.1469-8137.2009.03001.x 10.1111/gcb.12816 10.1002/ecy.1906 10.1111/gcbb.12428 10.1016/j.agee.2011.02.029 10.1111/j.1461-0248.2007.01095.x 10.1111/gcbb.12221 10.1111/j.1365-2486.2009.02042.x 10.1016/S0038-0717(02)00251-1 10.1111/j.1461-0248.2007.01064.x 10.1038/nmicrobiol.2017.105 10.1890/1051-0761(2001)011[1287:CISFFI]2.0.CO;2 10.2136/sssaj2009.0346 10.1046/j.1354-1013.2002.00486.x 10.1038/nclimate2580 10.1007/s10533-015-0171-7 10.1016/j.tree.2006.06.004 10.1007/s10533-004-7314-6 10.2136/sssaj1986.03615995005000030017x 10.1007/s00374-016-1168-7 10.1007/s11104-012-1210-y 10.1038/nature10386 10.1007/s10533-012-9822-0 |
ContentType | Journal Article |
Copyright | 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. Copyright © 2018 New Phytologist Trust |
Copyright_xml | – notice: 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. – notice: Copyright © 2018 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.15361 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 246 |
ExternalDocumentID | 30067293 10_1111_nph_15361 NPH15361 90026787 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Connecticut |
GeographicLocations_xml | – name: Connecticut |
GrantInformation_xml | – fundername: National Science & Engineering Research Council of Canada – fundername: Yale Institute for Biospheric Studies |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4081-1f230abd25626193024450a29d9c08517ce856dc073da0f7c63fdbf832d3314f3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:35:59 EDT 2025 Thu Jul 10 19:03:53 EDT 2025 Fri Jul 25 11:53:05 EDT 2025 Wed Feb 19 02:31:25 EST 2025 Tue Jul 01 03:09:28 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Jan 22 16:49:20 EST 2025 Thu Jul 03 22:08:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | natural-abundance 13C tracer rhizodeposition litter inputs microbial biomass soil carbon formation living roots carbon cycle soil organic matter |
Language | English |
License | 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4081-1f230abd25626193024450a29d9c08517ce856dc073da0f7c63fdbf832d3314f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0239-1976 |
PMID | 30067293 |
PQID | 2139007305 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2189531697 proquest_miscellaneous_2081546668 proquest_journals_2139007305 pubmed_primary_30067293 crossref_primary_10_1111_nph_15361 crossref_citationtrail_10_1111_nph_15361 wiley_primary_10_1111_nph_15361_NPH15361 jstor_primary_90026787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2018; 120 2007; 104 2011; 478 2009; 46 2010; 16 2017; 2 2017; 3 2017; 48 2004; 7 1996; 187 2012; 15 1997; 5 2012; 14 2017; 9 2013; 19 2014b; 119 2001 2006; 21 2005; 269 1986; 5 2007; 450 2005; 73 1986 2009; 321 2013; 113 2008; 22 2001; 11 2010; 74 2014; 203 2015; 5 1986; 50 2006; 50 1978; 10 2002; 34 2015; 200 2017; 24 2002; 8 2003; 35 2008; 14 1997; 29 2014a; 78 2015; 528 2016; 127 2003 2002 2008; 50 2007; 10 2015; 8 1987; 19 2015; 7 2001; 65 1994; 8 2017; 53 2016; 7 2015; 390 2013; 339 1977; 17 2017; 98 2015; 21 2017 2009; 184 2011; 141 2012; 359 2005; 11 2017; 348 2017; 304 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Paul EA (e_1_2_7_47_1) 2001 Marschner B (e_1_2_7_43_1) 1986 Coleman DC (e_1_2_7_10_1) 2017 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_65_1 Harden JW (e_1_2_7_25_1) 2017; 348 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 Gee GW (e_1_2_7_21_1) 2002 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 R Core Team (e_1_2_7_58_1) 2017 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 McBrayer JF (e_1_2_7_44_1) 1977; 17 |
References_xml | – volume: 11 start-page: 1287 year: 2001 end-page: 1300 article-title: Changes in soil functions following invasions of exotic understory plants in deciduous forests publication-title: Ecological Applications – volume: 21 start-page: 548 year: 2006 end-page: 554 article-title: Towards a more plant physiological perspective on soil ecology publication-title: Trends in Ecology & Evolution – volume: 528 start-page: 60 year: 2015 end-page: 68 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 14 start-page: 2625 year: 2012 end-page: 2637 article-title: Plant invasion impacts on arthropod abundance, diversity and feeding consistent across environmental and geographic gradients publication-title: Biological Invasions – volume: 7 start-page: 1192 year: 2004 end-page: 1198 article-title: Nitrogen deposition and plant species interact to influence soil carbon stabilization publication-title: Ecology Letters – volume: 50 start-page: 346 year: 2008 end-page: 363 article-title: Simultaneous inference in general parametric models publication-title: Biometrical Journal – volume: 200 start-page: 79 year: 2015 end-page: 87 article-title: Contribution of roots and amendments to soil carbon accumulation within the soil profile in a long‐term field experiment in Sweden publication-title: Agriculture Ecosystems & Environment – volume: 19 start-page: 988 year: 2013 end-page: 995 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology – volume: 15 start-page: 1271 year: 2012 end-page: 1282 article-title: Grass invasions across a regional gradient are associated with declines in belowground carbon pools publication-title: Ecosystems – start-page: 193 year: 2001 end-page: 205 – volume: 11 start-page: 983 year: 2005 end-page: 995 article-title: Patterns of rhizosphere carbon flux in sugar maple ( ) and yellow birch ( ) saplings publication-title: Global Change Biology – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 29 start-page: 1023 year: 1997 end-page: 1032 article-title: An inter‐laboratory comparison of ten different ways of measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 50 start-page: 627 year: 1986 end-page: 633 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils 1 publication-title: Soil Science Society of America Journal – volume: 5 start-page: 588 year: 2015 end-page: 595 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nature Climate Change – volume: 120 start-page: 246 year: 2018 end-page: 259 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biology and Biochemistry – volume: 359 start-page: 233 year: 2012 end-page: 244 article-title: Root carbon flow from an invasive plant to belowground foodwebs publication-title: Plant and Soil – volume: 450 start-page: 277 year: 2007 end-page: 280 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature – volume: 321 start-page: 5 year: 2009 end-page: 33 article-title: Carbon flow in the rhizosphere: carbon trader at the soil‐root interface publication-title: Plant and Soil – volume: 74 start-page: 1201 year: 2010 end-page: 1210 article-title: Tracing root vs. residue carbon into soils from conventional and alternative cropping systems publication-title: Soil Science Society of America Journal – volume: 8 start-page: 776 year: 2015 end-page: 779 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nature Geoscience – volume: 339 start-page: 1615 year: 2013 end-page: 1618 article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest publication-title: Science – volume: 78 start-page: S261 year: 2014a end-page: S269 article-title: Litter and root manipulations provide insights into soil organic matter dynamics and stability publication-title: Soil Science Society of America Journal – volume: 16 start-page: 732 year: 2010 end-page: 746 article-title: Effects of biological invasions on forest carbon sequestration publication-title: Global Change Biology – volume: 9 start-page: 1252 year: 2017 end-page: 1263 article-title: Cover crop root contributions to soil carbon in a no‐till corn bioenergy cropping system publication-title: GCB Bioenergy – volume: 48 start-page: 419 year: 2017 end-page: 445 article-title: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 73 start-page: 231 year: 2005 end-page: 256 article-title: Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO efflux in an old growth coniferous forest publication-title: Biogeochemistry – year: 1986 – volume: 14 start-page: 2420 year: 2008 end-page: 2431 article-title: Shrub ( ) encroachment in a semidesert grassland: spatial‐temporal changes in soil organic carbon and nitrogen pools publication-title: Global Change Biology – volume: 7 start-page: 13630 year: 2016 article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications – volume: 21 start-page: 2082 year: 2015 end-page: 2094 article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles publication-title: Global Change Biology – volume: 7 start-page: 1283 year: 2015 end-page: 1293 article-title: Mineral soil carbon pool responses to forest clearing in Northeastern hardwood forests publication-title: GCB Bioenergy – volume: 348 start-page: 895 year: 2017 article-title: Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter publication-title: Global Change Biology – volume: 3 start-page: 244 year: 2017 end-page: 253 article-title: Using stable isotopes to explore root‐microbe‐mineral interactions in soil publication-title: Rhizosphere – volume: 24 start-page: 1 year: 2017 end-page: 12 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale publication-title: Global Change Biology – volume: 50 start-page: 115 year: 2006 end-page: 132 article-title: Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation publication-title: Archives of Agronomy and Soil Science – volume: 10 start-page: 729 year: 2007 end-page: 736 article-title: The underestimated importance of belowground carbon input for forest soil animal food webs publication-title: Ecology Letters – volume: 46 start-page: 311 year: 2009 end-page: 349 article-title: Final collapse of the Neyman‐Pearson Decision Theoretic Framework and rise of the neoFisherian publication-title: Annales Zoologici Fennici – volume: 98 start-page: 2133 year: 2017 end-page: 2144 article-title: Impacts of an invasive plant are fundamentally altered by a co‐occurring forest disturbance publication-title: Ecology – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 141 start-page: 184 year: 2011 end-page: 192 article-title: Roots contribute more to refractory soil organic matter than above‐ground crop residues, as revealed by a long‐term field experiment publication-title: Agriculture Ecosystems & Environment – volume: 5 start-page: 29 year: 1997 end-page: 56 article-title: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability publication-title: Applied Soil Ecology – volume: 15 start-page: 1042 year: 2012 end-page: 1049 article-title: Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO publication-title: Ecology Letters – volume: 22 start-page: 964 year: 2008 end-page: 974 article-title: Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils publication-title: Functional Ecology – volume: 35 start-page: 167 year: 2003 end-page: 176 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 345 year: 2002 end-page: 360 article-title: Soil carbon stocks and land use change: a meta analysis publication-title: Global Change Biology – volume: 119 start-page: 341 year: 2014b end-page: 360 article-title: Changes to particulate versus mineral‐associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems publication-title: Biogeochemistry – volume: 17 start-page: 89 year: 1977 end-page: 96 article-title: Decomposer invertebrate populations in US forest biomes publication-title: Pedobiologia – volume: 10 start-page: 1046 year: 2007 end-page: 1053 article-title: Interactions between soil and tree roots accelerate long‐term soil carbon decomposition publication-title: Ecology Letters – year: 2003 – volume: 34 start-page: 1261 year: 2002 end-page: 1272 article-title: Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 17105 year: 2017 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 203 start-page: 110 year: 2014 end-page: 124 article-title: Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems publication-title: New Phytologist – volume: 16 start-page: 1338 year: 2010 end-page: 1350 article-title: Grass invasion of a hardwood forest is associated with declines in belowground carbon pools publication-title: Global Change Biology – volume: 113 start-page: 271 year: 2013 end-page: 281 article-title: Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth publication-title: Biogeochemistry – volume: 390 start-page: 61 year: 2015 end-page: 76 article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy‐covariance, atmospheric flux partitioning and CO pulse labeling publication-title: Plant and Soil – volume: 187 start-page: 345 year: 1996 end-page: 350 article-title: Quantification of soil carbon inputs under elevated CO :C plants in a C soil publication-title: Plant and Soil – volume: 269 start-page: 341 year: 2005 end-page: 356 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant and Soil – volume: 65 start-page: 771 year: 2001 end-page: 779 article-title: Short‐term dynamics of root‐and shoot‐derived carbon from a leguminous green manure publication-title: Science Society of America Journal – volume: 104 start-page: 4990 year: 2007 end-page: 4995 article-title: Altered soil microbial community at elevated CO leads to loss of soil carbon publication-title: Proceedings of the National Academy of Sciences, USA – volume: 8 start-page: 279 year: 1994 end-page: 293 article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils publication-title: Global Biogeochemical Cycles – volume: 5 start-page: 177 year: 1986 end-page: 189 article-title: Modifications to the substrate‐induced respiration method to permit measurement of microbial biomass in soils of differing water contents publication-title: Journal of Microbiological Methods – volume: 53 start-page: 257 year: 2017 end-page: 267 article-title: Fate of straw‐ and root‐derived carbon in a Swedish agricultural soil publication-title: Biology and Fertility of Soils – volume: 127 start-page: 1 year: 2016 end-page: 14 article-title: Long‐term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks publication-title: Biogeochemistry – volume: 10 start-page: 215 year: 1978 end-page: 221 article-title: A physiological method for the quantitative measurement of microbial biomass in soils publication-title: Soil Biology and Biochemistry – volume: 304 start-page: 76 year: 2017 end-page: 82 article-title: Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls publication-title: Geoderma – year: 2017 – volume: 184 start-page: 19 year: 2009 end-page: 33 article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance publication-title: New Phytologist – start-page: 255 year: 2002 end-page: 293 – ident: e_1_2_7_4_1 doi: 10.1016/S0038-0717(97)00030-8 – ident: e_1_2_7_26_1 doi: 10.1016/S0038-0717(02)00068-8 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2486.2009.02038.x – ident: e_1_2_7_55_1 doi: 10.1016/j.soilbio.2018.02.016 – ident: e_1_2_7_28_1 doi: 10.1002/bimj.200810425 – ident: e_1_2_7_2_1 doi: 10.1016/0038-0717(78)90099-8 – volume-title: R: a language and environment for statistical computing year: 2017 ident: e_1_2_7_58_1 – volume-title: Mineral nutrition of higher plants year: 1986 ident: e_1_2_7_43_1 – ident: e_1_2_7_57_1 doi: 10.2136/sssaj2001.653771x – ident: e_1_2_7_71_1 doi: 10.1016/0167-7012(86)90012-6 – ident: e_1_2_7_12_1 doi: 10.1111/gcb.12113 – ident: e_1_2_7_20_1 doi: 10.1111/j.1469-8137.2007.02063.x – ident: e_1_2_7_17_1 – ident: e_1_2_7_60_1 doi: 10.1007/s11104-014-2371-7 – start-page: 193 volume-title: Assessment methods for soil carbon year: 2001 ident: e_1_2_7_47_1 – ident: e_1_2_7_38_1 doi: 10.1080/03650340310001627658 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-2486.2005.00959.x – ident: e_1_2_7_39_1 doi: 10.2136/sssaj2013.08.0370nafsc – ident: e_1_2_7_37_1 doi: 10.1007/s10021-012-9583-6 – ident: e_1_2_7_53_1 doi: 10.1111/j.1461-0248.2012.01827.x – ident: e_1_2_7_8_1 doi: 10.1073/pnas.0610045104 – ident: e_1_2_7_59_1 doi: 10.1007/s11104-004-0907-y – start-page: 255 volume-title: Methods of soil analysis, Part 4, Physical methods. Soil Science Society of America Book Series Number 5 year: 2002 ident: e_1_2_7_21_1 – ident: e_1_2_7_29_1 doi: 10.5735/086.046.0501 – ident: e_1_2_7_33_1 doi: 10.1038/ncomms13630 – ident: e_1_2_7_45_1 doi: 10.1016/j.agee.2014.11.003 – ident: e_1_2_7_31_1 doi: 10.1146/annurev-ecolsys-112414-054234 – ident: e_1_2_7_51_1 doi: 10.1016/j.rhisph.2017.04.016 – ident: e_1_2_7_70_1 doi: 10.1016/0038-0717(87)90052-6 – ident: e_1_2_7_32_1 doi: 10.1007/s11104-009-9925-0 – ident: e_1_2_7_9_1 doi: 10.1126/science.1231923 – ident: e_1_2_7_67_1 doi: 10.1111/nph.12795 – ident: e_1_2_7_68_1 doi: 10.1007/s10530-012-0258-1 – ident: e_1_2_7_11_1 doi: 10.1038/ngeo2520 – ident: e_1_2_7_48_1 doi: 10.1111/gcb.13850 – ident: e_1_2_7_14_1 doi: 10.1111/j.1461-0248.2004.00679.x – ident: e_1_2_7_63_1 doi: 10.1016/j.geoderma.2016.05.019 – ident: e_1_2_7_41_1 doi: 10.1038/nature16069 – volume-title: Fundamentals of soil ecology year: 2017 ident: e_1_2_7_10_1 – ident: e_1_2_7_61_1 doi: 10.1029/94GB00993 – ident: e_1_2_7_40_1 doi: 10.1007/s10533-014-9970-5 – ident: e_1_2_7_30_1 doi: 10.1007/BF00017099 – volume: 17 start-page: 89 year: 1977 ident: e_1_2_7_44_1 article-title: Decomposer invertebrate populations in US forest biomes publication-title: Pedobiologia doi: 10.1016/S0031-4056(23)00152-X – ident: e_1_2_7_69_1 doi: 10.1111/j.1365-2486.2008.01650.x – ident: e_1_2_7_23_1 doi: 10.1016/S0929-1393(96)00126-6 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2435.2008.01404.x – ident: e_1_2_7_46_1 doi: 10.1111/j.1469-8137.2009.03001.x – ident: e_1_2_7_19_1 doi: 10.1111/gcb.12816 – ident: e_1_2_7_64_1 doi: 10.1002/ecy.1906 – ident: e_1_2_7_3_1 doi: 10.1111/gcbb.12428 – ident: e_1_2_7_34_1 doi: 10.1016/j.agee.2011.02.029 – ident: e_1_2_7_13_1 doi: 10.1111/j.1461-0248.2007.01095.x – ident: e_1_2_7_50_1 doi: 10.1111/gcbb.12221 – ident: e_1_2_7_65_1 doi: 10.1111/j.1365-2486.2009.02042.x – volume: 348 start-page: 895 year: 2017 ident: e_1_2_7_25_1 article-title: Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter publication-title: Global Change Biology – ident: e_1_2_7_18_1 doi: 10.1016/S0038-0717(02)00251-1 – ident: e_1_2_7_56_1 doi: 10.1111/j.1461-0248.2007.01064.x – ident: e_1_2_7_42_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_7_15_1 doi: 10.1890/1051-0761(2001)011[1287:CISFFI]2.0.CO;2 – ident: e_1_2_7_36_1 doi: 10.2136/sssaj2009.0346 – ident: e_1_2_7_24_1 doi: 10.1046/j.1354-1013.2002.00486.x – ident: e_1_2_7_35_1 doi: 10.1038/nclimate2580 – ident: e_1_2_7_54_1 doi: 10.1007/s10533-015-0171-7 – ident: e_1_2_7_27_1 doi: 10.1016/j.tree.2006.06.004 – ident: e_1_2_7_66_1 doi: 10.1007/s10533-004-7314-6 – ident: e_1_2_7_16_1 doi: 10.2136/sssaj1986.03615995005000030017x – ident: e_1_2_7_22_1 doi: 10.1007/s00374-016-1168-7 – ident: e_1_2_7_7_1 doi: 10.1007/s11104-012-1210-y – ident: e_1_2_7_62_1 doi: 10.1038/nature10386 – ident: e_1_2_7_6_1 doi: 10.1007/s10533-012-9822-0 |
SSID | ssj0009562 |
Score | 2.6749163 |
Snippet | Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits) vs... Summary Soil organic carbon (SOC) is primarily formed from plant inputs, but the relative carbon (C) contributions from living root inputs (i.e. rhizodeposits)... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 233 |
SubjectTerms | Animals C4 plants Carbon Carbon Cycle Connecticut Cycles field experimentation Food Chain Food chains Food webs forest litter Forests grasses Introduced Species Litter litter inputs living roots microbial biomass Microorganisms Minerals natural‐abundance 13C tracer Organic carbon Organic soils Plant Roots - chemistry Plant Roots - metabolism Plant Shoots - chemistry Plant Shoots - metabolism Poaceae rhizodeposition roots shoots Soil Soil - chemistry soil carbon formation soil food webs Soil Microbiology Soil microorganisms soil organic carbon soil organic matter Soils Tracking Trees Understory |
Title | Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon |
URI | https://www.jstor.org/stable/90026787 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15361 https://www.ncbi.nlm.nih.gov/pubmed/30067293 https://www.proquest.com/docview/2139007305 https://www.proquest.com/docview/2081546668 https://www.proquest.com/docview/2189531697 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5C6KGXvtK0m6ZFKT30EC9ry9Ja9NSWhiXQUEIDeygYPSx2ycZeYu8h-fWZkR8kIS0lN2GPbUmjGX0jyd8AfFJcWlkIDHJEzCOi7I4MNzYqEld4qUQWa1qH_HkiZ2fp8VzMt-BL_y9Myw8xLLiRZQR_TQauTX3LyMv1YozmGkIfOqtFgOg0uUW4K5OegVmmct6xCtEpnuHJO3NRexzxIaB5F7eGiefoOfzpq9yeNzkfbxozttf32Bwf2aYX8KwDpOxrO4JewlZRvoIn3yoEjVc7sOizjjIEtwzBIlsTPYW9YpVnqyWtRjDE3g1blutNUx-yEsvhAorXCyogzkfdHaIEveOCnqir5Yq1-aQss_rSVOVrODv68fv7LOqSM0Q2RRgRxR6DF20cQiYKwjjO9amY6EQ5ZQnGTSkfqnQWXYjTEz-1kntnPDoQx3mcer4L22VVFm-BZQgieCy9jzVPXTo1Ey1k5r1zU2OVSEbwuVdTbjvmckqgscr7CAb7LQ_9NoKPg-i6pet4SGg36HqQUBSJoucawX6v_Lwz5TpPECPTfuZEjOBguI1GSDsruiyqDcpgj4gUI8HsHzJxpqiZCj_zph1YQwV42BFXHFsahsff656f_JqFwt7_i76DpwjzVLtwtA_bzeWmeI9QqjEfgs3cAMj0Fyc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQX3qWBAgsCiUMdxV574z1wAEqV0jZCqJVyc727XiVqsKPaEQq_ib_Cf2Jm_VCLCuLSA7dVMnH2MbPzzez6G4BXkgstsgiDnMjnHlF2e4or7WWByayQUeynlIc8HIvRcfhpEk3W4Ef7LkzND9El3Mgy3H5NBk4J6XNWni-mfbRX4TdXKvez1TcM2Mq3ezu4uq-DYPfj0YeR19QU8HSI3s_zLWLuVBn09BQ7cHRRYTRIA2mkJvQxpDKewmjUfJMO7FALbo2yqPeGcz-0HJ97Da5TBXFi6t_5Epyj-BVBy_ksQjFpeIzo3lDX1Qver74AeRm0vYiUnavbvQM_20mqb7ic9peV6uvvv_FH_i-zeBduN5ibvauN5B6sZfl9uPG-QFy8egDTtrAqQ_zOEA-zBTFw6BUrLJvPKOHCMLyo2CxfLKtym-XYdh-geDmlBoYyqJ7bKEHP-Eq_KIvZnNUlszTT6Zkq8odwfCWj3ID1vMizTWAx4iTuC2v9lIcmHKpBGonYWmOGSsso6MGbVi8S3ZCzU42QedIGabhOiVunHrzsRBc1I8llQhtOuToJScE2bs492Gq1LWl2qzIJMAygI9tB1IMX3de4z9DhUZpnxRJlcEaiEIPd-C8yfixpmBL_5lGtyV0HuDv0lxxH6vTxz31Pxp9HrvH430Wfw83R0eFBcrA33n8CtxDVyjpPtgXr1dkye4rIsVLPnMEyOLlq3f4Fyo5ydQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAX3oWFAgaBxKFZJXHijQ8cgGW1pbCqEJX2lsZ2rF2xJFGTFVr-En-FH8VMXmpRQVx64GYlk8SPbzzf2M4MwHPJhRZpiE5O6HGHQnY7iivtpL5JrZBh5CW0DvlxJqZHwft5ON-CH92_ME18iH7BjTSjnq9JwQtjTyl5ViyGqK7Ca09UHqSbb-ivla_2xzi4L3x_8u7z26nTphRwdIDGz_EsUu5EGTT05DpwtFBB6Ca-NFIT-RhRFk9hNALfJK4dacGtURZhbzj3AsvxvZfgciBcSXkixp_8UxF-hd-FfBaBmLdhjOjYUF_VM8avOf94HrM9S5RrSze5AT-7PmoOuHwZris11N9_Cx_5n3TiTbjeMm72ulGRW7CVZrfhypscWfHmDiy6tKoM2TtDNswKir-hNyy3bLWk5RaGzkXFllmxrso9lmG5voDi5YIK6MggOPdQgt7xlZ4o8-WKNQmzNNPJicqzu3B0Ia3cge0sz9L7wCJkSdwT1noJD0wwUm4SishaY0ZKy9AfwMsOFrFuQ7NThpBV3LloOE5xPU4DeNaLFk08kvOEdmps9RKSXG2cmgew24EtbueqMvbRCaANWzccwNP-Ns4ytHWUZGm-RhnskTBAVzf6i4wXSWqmxM_ca4DcV4DXW_6SY0trOP657vHscFoXHvy76BO4ejiexB_2ZwcP4RpSWtksku3CdnWyTh8hbazU41pdGRxfNLR_Ad_zcSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+primacy+of+living+root+inputs%2C+not+root+or+shoot+litter%2C+in+forming+soil+organic+carbon&rft.jtitle=The+New+phytologist&rft.au=Noah+W.+Sokol&rft.au=Sara.+E.+Kuebbing&rft.au=Elena+Karlsen-Ayala&rft.au=Mark+A.+Bradford&rft.date=2019-01-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=221&rft.issue=1&rft.spage=233&rft.epage=246&rft_id=info:doi/10.1111%2Fnph.15361&rft.externalDocID=90026787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |