Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes
• Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. • Loss-of-AGL16 confer...
Saved in:
Published in | The New phytologist Vol. 232; no. 6; pp. 2418 - 2439 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.12.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.17760 |
Cover
Loading…
Abstract | • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis.
• Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels.
• Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16.
• Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. |
---|---|
AbstractList | • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis.
• Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels.
• Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16.
• Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. Summary Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS‐box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss‐of‐AGL16 confers resistance to salt stress in seed germination, root elongation and soil‐grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild‐type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress‐responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS‐box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss‐of‐ AGL16 confers resistance to salt stress in seed germination, root elongation and soil‐grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild‐type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress‐responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1 , HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth. |
Author | Zhang, Jing Sun, Liang-Qi Chen, Si-Yan Wu, Jie Xiang, Cheng-Bin Zhao, Ping-Xia Xia, Jing-Qiu Ma, Shi-Song |
Author_xml | – sequence: 1 givenname: Ping-Xia surname: Zhao fullname: Zhao, Ping-Xia – sequence: 2 givenname: Jing surname: Zhang fullname: Zhang, Jing – sequence: 3 givenname: Si-Yan surname: Chen fullname: Chen, Si-Yan – sequence: 4 givenname: Jie surname: Wu fullname: Wu, Jie – sequence: 5 givenname: Jing-Qiu surname: Xia fullname: Xia, Jing-Qiu – sequence: 6 givenname: Liang-Qi surname: Sun fullname: Sun, Liang-Qi – sequence: 7 givenname: Shi-Song surname: Ma fullname: Ma, Shi-Song – sequence: 8 givenname: Cheng-Bin surname: Xiang fullname: Xiang, Cheng-Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34605021$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFBQ8AssSGLtJeO7FjL0cttJWGHwmQ2EWOYw8eZexgJy2z5cnxdKZdVAK8sXTPd4507zlCBz54g9BLAqckvzM__Dgldc3hCZqRistCkLI-QDMAKgpe8e-H6CilFQBIxukzdFhWHBhQMkO_51G1rgtDcgl_mF98KdrwC1ulxxDx_HJBOM6Cwt4s1ehuDI5mOfVqqwaLh175MY_SEHwyeAw4qX7EacyjhNsN7sKt3zucX96pxR7fhi2NN-k5empVn8yL_X-Mvr1_9_X8qlh8urw-ny8KXYGAgnGmTSUqCh1jUitVg1GW1cJy1rXWdlwQqynhkreESqhkW4GmjErBLSddeYze7nKHGH5OJo3N2iVt-ryDCVNqKC85g5ox8X-U1RJkSegWffMIXYUp-rxIpqQoJQgKmXq9p6Z2bbpmiG6t4qa5LyIDJztAx5BSNPYBIdBsS25yyc1dyZk9e8RqN-YDBz9G5fp_OW5dbzZ_j24-fr66d7zaOVYpd_3goDUhFAgt_wBTgMDH |
CitedBy_id | crossref_primary_10_1016_j_xplc_2022_100458 crossref_primary_10_1111_pbi_13888 crossref_primary_10_1111_ppl_70001 crossref_primary_10_1007_s11033_024_09902_x crossref_primary_10_3390_plants13020282 crossref_primary_10_1093_plphys_kiad651 crossref_primary_10_1371_journal_pone_0300159 crossref_primary_10_1007_s12355_024_01518_6 crossref_primary_10_3389_fpls_2024_1331269 crossref_primary_10_3390_ijms252413278 crossref_primary_10_1073_pnas_2210338119 crossref_primary_10_1016_j_celrep_2023_112809 crossref_primary_10_1093_treephys_tpad022 crossref_primary_10_1002_pld3_594 crossref_primary_10_3389_fpls_2023_1178065 crossref_primary_10_1016_j_tplants_2024_10_002 crossref_primary_10_1093_hr_uhae279 crossref_primary_10_1002_tpg2_20521 crossref_primary_10_1016_j_postharvbio_2024_113287 crossref_primary_10_1093_plphys_kiad058 crossref_primary_10_1093_plphys_kiad532 crossref_primary_10_1016_j_plaphy_2023_107900 crossref_primary_10_1016_j_envexpbot_2023_105468 crossref_primary_10_1007_s00344_023_10908_1 crossref_primary_10_1016_j_indcrop_2022_116125 crossref_primary_10_3389_fpls_2022_1035750 crossref_primary_10_1111_nph_20164 crossref_primary_10_3390_agronomy12030582 crossref_primary_10_1093_plcell_koae108 crossref_primary_10_7717_peerj_17001 crossref_primary_10_7717_peerj_17043 crossref_primary_10_1134_S1021443723601271 crossref_primary_10_1186_s12870_023_04652_7 crossref_primary_10_1016_j_bbrc_2023_08_031 crossref_primary_10_1111_tpj_16936 crossref_primary_10_1093_pcp_pcae073 crossref_primary_10_1007_s00344_024_11299_7 crossref_primary_10_1093_hr_uhac040 crossref_primary_10_1016_j_cpb_2024_100364 crossref_primary_10_3389_fpls_2023_1097265 crossref_primary_10_1016_j_cell_2024_10_050 crossref_primary_10_3389_fpls_2023_1299902 crossref_primary_10_3390_plants12071424 crossref_primary_10_1007_s11103_024_01547_5 crossref_primary_10_31857_S001533032360033X crossref_primary_10_3390_ijms25158233 crossref_primary_10_1016_j_ijbiomac_2022_11_027 |
Cites_doi | 10.1104/pp.16.00891 10.1038/nature01741 10.1046/j.1365-313X.1997.12051067.x 10.3390/ijms19071900 10.1080/07352680590910410 10.1007/s00425-005-0020-3 10.1038/emboj.2013.216 10.1007/s11103-012-9901-6 10.1111/j.1365-3040.2009.02041.x 10.1093/jxb/erq098 10.1105/tpc.111.089581 10.1073/pnas.1319955111 10.1371/journal.pone.0105597 10.1046/j.1365-313X.2002.01309.x 10.1007/s00299-011-1068-0 10.1093/jxb/err280 10.1016/j.devcel.2020.10.012 10.1016/j.cub.2020.09.013 10.1126/science.285.5431.1256 10.1073/pnas.122224699 10.1016/j.cj.2018.01.003 10.1111/nph.13519 10.1038/nprot.2008.38 10.1038/90824 10.1105/tpc.107.050666 10.1093/aob/mcw126 10.1111/j.1365-313X.2005.02595.x 10.1093/emboj/cdg207 10.1016/j.celrep.2018.05.044 10.3389/fpls.2018.00838 10.1111/tpj.12597 10.1016/S0378-1119(03)00747-9 10.1105/tpc.112.100933 10.1038/s41467-021-22812-x 10.1038/s41586-019-1449-z 10.1046/j.1365-313X.2002.01430.x 10.1093/jxb/ert326 10.1093/jxb/ery086 10.1186/1471-2229-9-96 10.1016/j.jplph.2019.153035 10.1016/j.cell.2016.08.029 10.1371/journal.pgen.1007086 10.1105/tpc.108.061515 10.1186/1746-4811-1-13 10.1371/journal.pgen.1005760 10.1038/nature11909 10.1111/nph.16172 10.1093/jxb/ery201 10.1146/annurev.arplant.57.032905.105444 10.1007/s004250100637 10.1111/jipb.12899 10.3389/fpls.2014.00151 10.1038/nprot.2007.199 10.1105/tpc.107.052100 10.1104/pp.107.108647 10.1111/j.1365-313X.2000.00891.x 10.1016/S0005-2736(00)00135-8 10.1105/tpc.18.00584 10.1104/pp.102.019273 10.1016/S0014-5793(02)03488-9 10.1038/nature13593 10.1016/j.ygeno.2012.06.004 10.1007/s11032-006-9048-8 10.1016/j.tplants.2009.08.009 10.1038/ncomms6833 10.1111/j.1365-3040.2007.01637.x 10.1016/0926-6585(65)90170-6 10.1016/j.pbi.2006.05.014 10.3390/ijms19103206 10.1111/pce.12228 10.1016/S1369-5266(03)00085-2 10.1093/jxb/erj114 10.1080/15592324.2015.1117723 10.1146/annurev.arplant.53.091401.143329 10.1016/j.plantsci.2015.10.003 10.1104/pp.105.066324 10.1105/tpc.111.095273 10.1105/tpc.7.8.1259 10.1016/j.cub.2014.06.064 10.1016/j.cub.2020.09.016 10.1016/j.tplants.2010.06.005 10.5511/plantbiotechnology.25.233 10.3389/fpls.2019.00228 10.1111/nph.15793 10.1105/tpc.12.4.599 10.1023/A:1006321900483 10.1002/j.1460-2075.1987.tb02730.x 10.1093/jxb/eraa303 10.1016/j.tplants.2014.02.001 10.1073/pnas.1816991115 10.1073/pnas.1608449113 10.1016/j.tplants.2012.12.002 10.1046/j.1365-313X.2002.01295.x 10.1016/j.cub.2018.01.023 10.1105/tpc.108.064568 10.1104/pp.107.109413 10.1046/j.1365-313x.1998.00343.x 10.1038/ng1643 10.1038/cr.2009.83 10.1093/pcp/pcs050 10.1263/jbb.104.34 10.1126/science.279.5349.407 10.3390/biom8020039 10.1111/nph.14920 10.1016/j.molp.2017.04.004 10.1111/tpj.12091 10.1111/j.1365-313X.2009.04073.x 10.1016/j.gene.2009.02.010 10.1038/s41467-020-14477-9 10.1111/j.1744-7909.2007.00442.x |
ContentType | Journal Article |
Copyright | 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors. © 2021 New Phytologist Foundation 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust |
Copyright_xml | – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors. © 2021 New Phytologist Foundation – notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17760 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2439 |
ExternalDocumentID | 34605021 10_1111_nph_17760 NPH17760 27112012 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31900230 – fundername: Youth Innovation Foundation of University of Science and Technology of China funderid: WK2070000186 – fundername: China Postdoctoral Science Foundation funderid: 2020T130634; 2019M652200 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JBS JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AAISJ AASGY AASVR ABBHK ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM JSODD LPU LW6 MVM NEJ RCA SA0 WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4080-565ce48420d559caa70eaf578f65dbffd681fc21696b129049b40c252986f61d3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:31:14 EDT 2025 Fri Jul 11 05:41:47 EDT 2025 Fri Jul 25 10:40:24 EDT 2025 Thu Apr 03 07:06:05 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 02:28:39 EDT 2025 Wed Jan 22 16:28:29 EST 2025 Thu Jul 03 21:34:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Arabidopsis thaliana MADS-box ABA signalling primary root elongation salt stress seed germination AGL16 |
Language | English |
License | 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4080-565ce48420d559caa70eaf578f65dbffd681fc21696b129049b40c252986f61d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7152-1458 |
PMID | 34605021 |
PQID | 2598390820 |
PQPubID | 2026848 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2636507558 proquest_miscellaneous_2579093128 proquest_journals_2598390820 pubmed_primary_34605021 crossref_primary_10_1111_nph_17760 crossref_citationtrail_10_1111_nph_17760 wiley_primary_10_1111_nph_17760_NPH17760 jstor_primary_27112012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211201 December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211201 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 104 2010; 15 2003; 316 2019; 10 2002; 99 1999; 285 2014; 24 1998; 279 2020; 11 1998; 16 2018; 6 2009; 14 2018; 9 2018; 8 2000; 12 2005; 222 2018; 217 2020a; 30 2008; 25 2011; 63 2018; 30 2014; 19 2007; 2 2008; 20 2012; 24 2009; 19 2000; 1465 1992; 4 2010; 33 2007; 19 2018; 28 2012; 100 2006; 57 2002; 531 2015; 241 2019; 225 2020b; 62 2016; 167 2019; 223 2018; 23 2016; 12 1995; 7 2016; 11 2018; 19 2002; 69 2020; 30 2013; 73 2018; 115 2014; 37 2005; 1 2003; 22 2019; 572 2016; 172 1965; 109 1987; 6 2000; 42 2005; 139 2008; 3 2020; 55 2007; 30 2008; 146 2012; 53 2005; 24 2019; 241 2010; 61 2014; 65 2009; 436 2013; 18 2014; 5 2016; 118 2003; 6 2002; 44 1997; 12 2016; 113 2001; 19 1999; 11 2011; 23 2005; 37 2014; 9 2001; 214 2014; 514 2009; 21 2002; 30 2000; 24 2006; 9 2002; 32 2011; 30 2015; 208 2014; 111 2012; 79 2005; 44 2003; 132 2018; 69 2021; 12 2003; 424 2013; 32 2020; 71 2017; 10 2017; 13 2013; 497 2009; 9 2014; 79 2007; 49 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 Bao F (e_1_2_8_6_1) 2002; 44 Giraudat J (e_1_2_8_36_1) 1992; 4 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 Urao T (e_1_2_8_90_1) 1999; 11 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 57 start-page: 781 year: 2006 end-page: 803 article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses publication-title: Annual Review of Plant Biology – volume: 6 start-page: 3901 year: 1987 end-page: 3907 article-title: GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO Journal – volume: 12 start-page: 1067 year: 1997 end-page: 1078 article-title: Calcium signaling in responding to drought and salinity publication-title: The Plant Journal – volume: 9 start-page: 436 year: 2006 end-page: 442 article-title: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks publication-title: Current Opinion in Plant Biology – volume: 104 start-page: 34 year: 2007 end-page: 41 article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation publication-title: Journal of Bioscience and Bioengineering – volume: 424 start-page: 85 year: 2003 end-page: 88 article-title: Assessing the redundancy of MADS‐box genes during carpel and ovule development publication-title: Nature – volume: 11 start-page: 1743 year: 1999 end-page: 1754 article-title: A transmembrane hybrid‐type histidine kinase in Arabidopsis functions as an osmosensor publication-title: Cell – volume: 69 start-page: 2435 year: 2018 end-page: 2459 article-title: Dissecting the role of MADS‐box genes in monocot floral development and diversity publication-title: Journal of Experimental Botany – volume: 63 start-page: 305 year: 2011 end-page: 317 article-title: NADPH oxidase AtrbohD and AtrbohF function in ROS‐dependent regulation of Na /K homeostasis in under salt stress publication-title: Journal of Experimental Botany – volume: 316 start-page: 1 year: 2003 end-page: 21 article-title: Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development publication-title: Gene – volume: 4 start-page: 1251 year: 1992 end-page: 1261 article-title: lsolation of the Arabidopsis gene by positional cloning publication-title: Plant Cell – volume: 99 start-page: 8436 year: 2002 end-page: 8441 article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 24 start-page: 457 year: 2000 end-page: 466 article-title: MADS‐box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes publication-title: The Plant Journal – volume: 28 start-page: 666 year: 2018 end-page: 675 e665 article-title: The FERONIA receptor kinase maintains cell‐wall integrity during salt stress through Ca signaling publication-title: Current Biology – volume: 241 start-page: 109 year: 2015 end-page: 119 article-title: Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis publication-title: Plant Science – volume: 9 year: 2014 article-title: The effects of fluctuations in the nutrient supply on the expression of five members of the clade of MADS‐box genes in rice publication-title: PLoS ONE – volume: 497 start-page: 60 year: 2013 end-page: 66 article-title: Using membrane transporters to improve crops for sustainable food production publication-title: Nature – volume: 19 start-page: 3206 year: 2018 article-title: Plant hormone signaling crosstalks between biotic and abiotic stress responses publication-title: International Journal of Molecular Sciences – volume: 69 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annual Review of Plant Biology – volume: 61 start-page: 2247 year: 2010 end-page: 2254 article-title: Regulation and function of SOC1, a flowering pathway integrator publication-title: Journal of Experimental Botany – volume: 61 start-page: 495 year: 2010 end-page: 506 article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato publication-title: The Plant Journal – volume: 73 start-page: 993 year: 2013 end-page: 1005 article-title: ABI4 downregulates expression of the sodium transporter in Arabidopsis roots and affects salt tolerance publication-title: The Plant Journal – volume: 172 start-page: 479 year: 2016 end-page: 488 article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering publication-title: Plant Physiology – volume: 44 start-page: 928 year: 2005 end-page: 938 article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem vessels to xylem parenchyma cells publication-title: The Plant Journal – volume: 21 start-page: 2163 year: 2009 end-page: 2178 article-title: Shoot Na exclusion and increased salinity tolerance engineered by cell type‐specific alteration of Na transport in Arabidopsis publication-title: Plant Cell – volume: 6 start-page: 441 year: 2003 end-page: 445 article-title: Regulation of ion homeostasis under salt stress publication-title: Current Opinion in Plant Biology – volume: 30 start-page: 373 year: 2002 end-page: 383 article-title: Regulation of genes: role of ABI5 publication-title: The Plant Journal – volume: 32 start-page: 317 year: 2002 end-page: 328 article-title: ABI5 acts downstream of ABI3 to execute an ABA‐dependent growth arrest during germination publication-title: The Plant Journal – volume: 13 year: 2017 article-title: drives adaptation of to salinity by reducing floral sodium content publication-title: PLoS Genetics – volume: 79 start-page: 810 year: 2014 end-page: 823 article-title: WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA publication-title: The Plant Journal – volume: 19 start-page: 765 year: 2001 end-page: 768 article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit publication-title: Nature Biotechnology – volume: 30 start-page: 1383 year: 2011 end-page: 1391 article-title: Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network publication-title: Plant Cell Reports – volume: 49 start-page: 556 year: 2007 end-page: 567 article-title: High‐throughput binary vectors for plant gene function analysis publication-title: Journal of Integrative Plant Biology – volume: 1 start-page: 13 year: 2005 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods – volume: 12 year: 2016 article-title: ERF1 mediates cross‐talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 Expression publication-title: PLoS Genetics – volume: 139 start-page: 1185 year: 2005 end-page: 1193 article-title: ABR1, an APETALA2‐domain transcription factor that functions as a repressor of ABA response in Arabidopsis publication-title: Plant Physiology – volume: 37 start-page: 1202 year: 2014 end-page: 1222 article-title: Functional characterization of Arabidopsis HsfA6a as a heat‐shock transcription factor under high salinity and dehydration conditions publication-title: Plant, Cell & Environment – volume: 1465 start-page: 140 year: 2000 end-page: 151 article-title: Sodium transport in plant cells publication-title: Biochimica et Biophysica Acta – volume: 24 start-page: 1887 year: 2014 end-page: 1892 article-title: The receptor‐like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings publication-title: Current Biology – volume: 19 start-page: 1291 year: 2009 end-page: 1304 article-title: An R2R3‐type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis publication-title: Cell Research – volume: 24 start-page: 1127 year: 2012 end-page: 1142 article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis publication-title: Plant Cell – volume: 44 start-page: 532 year: 2002 end-page: 536 article-title: Evidence that the auxin signaling pathway interacts with plant stress response publication-title: Acta Botanica Sinica – volume: 531 start-page: 157 year: 2002 end-page: 161 article-title: Altered shoot/root Na distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na transporter publication-title: FEBS Letters – volume: 30 start-page: 529 year: 2002 end-page: 539 article-title: Differential expression and function of NHX Na /H antiporters in the salt stress response publication-title: The Plant Journal – volume: 572 start-page: 341 year: 2019 end-page: 346 article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx publication-title: Nature – volume: 22 start-page: 2004 year: 2003 end-page: 2014 article-title: Functional analysis of in Arabidopsis shows that Na recirculation by the phloem is crucial for salt tolerance publication-title: EMBO Journal – volume: 5 start-page: 5833 year: 2014 article-title: Arabidopsis ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation publication-title: Nature Communications – volume: 9 start-page: 96 year: 2009 article-title: WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid publication-title: BMC Plant Biology – volume: 42 start-page: 657 year: 2000 end-page: 665 article-title: Organization and expression of two Arabidopsis genes encoding DRE‐binding proteins involved in dehydration‐ and high‐salinity‐responsive gene expression publication-title: Plant Molecular Biology – volume: 53 start-page: 1003 year: 2012 end-page: 1016 article-title: Overexpressing the ANR1 MADS‐box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development publication-title: Plant & Cell Physiology – volume: 7 start-page: 1259 year: 1995 end-page: 1269 article-title: Diverse roles for MADS box genes in Arabidopsis development publication-title: Plant Cell – volume: 62 start-page: 25 year: 2020b end-page: 54 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: Journal of Integrative Plant Biology – volume: 111 start-page: 6497 year: 2014 end-page: 6502 article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 115 start-page: 13123 year: 2018 end-page: 13128 article-title: Leucine‐rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 285 start-page: 1256 year: 1999 end-page: 1258 article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in Arabidopsis publication-title: Science – volume: 11 start-page: 613 year: 2020 article-title: A RAF‐SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants publication-title: Nature Communications – volume: 109 start-page: 448 year: 1965 end-page: 453 article-title: Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol publication-title: Biochimica et Biophysica Acta (BBA) – Biophysics including Photosynthesis – volume: 11 year: 2016 article-title: Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome publication-title: Plant Signaling & Behavior – volume: 79 start-page: 137 year: 2012 end-page: 155 article-title: Expression of wheat Na /H antiporter TNHXS1 and H ‐pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance publication-title: Plant Molecular Biology – volume: 3 start-page: 698 year: 2008 end-page: 709 article-title: Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real‐time PCR to study transcription factor binding to DNA in publication-title: Nature Protocols – volume: 514 start-page: 367 year: 2014 end-page: 371 article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in publication-title: Nature – volume: 30 start-page: 4815 year: 2020a end-page: 4825 article-title: BONZAI proteins control global osmotic stress responses in plants publication-title: Current Biology – volume: 279 start-page: 407 year: 1998 end-page: 409 article-title: An Arabidopsis MADS box gene that controls nutrient‐induced changes in root architecture publication-title: Science – volume: 146 start-page: 178 year: 2008 end-page: 188 article-title: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis publication-title: Plant Physiology – volume: 146 start-page: 1182 year: 2008 end-page: 1192 article-title: An AGAMOUS‐related MADS‐box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis publication-title: Plant Physiology – volume: 2 start-page: 1565 year: 2007 end-page: 1572 article-title: mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nature Protocols – volume: 19 start-page: 2186 year: 2007 end-page: 2196 article-title: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation publication-title: Plant Cell – volume: 65 start-page: 849 year: 2014 end-page: 858 article-title: Sodium in plants: perception, signalling, and regulation of sodium fluxes publication-title: Journal of Experimental Botany – volume: 113 start-page: E5519 year: 2016 end-page: E5527 article-title: FERONIA interacts with ABI2‐type phosphatases to facilitate signaling cross‐talk between abscisic acid and RALF peptide in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 33 start-page: 453 year: 2010 end-page: 467 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant, Cell & Environment – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of publication-title: The Plant Journal – volume: 18 start-page: 227 year: 2013 end-page: 233 article-title: Plant mechanosensing and Ca transport publication-title: Trends in Plant Science – volume: 9 start-page: 838 year: 2018 article-title: Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid publication-title: Frontiers in Plant Science – volume: 55 start-page: 529 year: 2020 end-page: 543 article-title: Thriving under stress: how plants balance growth and the stress sesponse publication-title: Developmental Cell – volume: 30 start-page: 2761 year: 2018 end-page: 2778 article-title: HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport‐related gene expression publication-title: Plant Cell – volume: 10 start-page: 228 year: 2019 article-title: AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis publication-title: Frontiers in Plant Science – volume: 225 start-page: 835 year: 2019 end-page: 847 article-title: ARABIDOPSIS NITRATE REGULATED 1 acts as a negative modulator of seed germination by activating ABI3 expression publication-title: New Phytologist – volume: 223 start-page: 1143 year: 2019 end-page: 1158 article-title: MADS‐box genes underground becoming mainstream: plant root developmental mechanisms publication-title: New Phytologist – volume: 19 start-page: 371 year: 2014 end-page: 379 article-title: Plant salt‐tolerance mechanisms publication-title: Trends in Plant Science – volume: 32 start-page: 2884 year: 2013 end-page: 2895 article-title: The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression publication-title: EMBO Journal – volume: 19 start-page: 215 year: 2007 end-page: 225 article-title: Over‐expression of a vacuolar Na /H antiporter gene improves salt tolerance in an upland rice publication-title: Molecular Breeding – volume: 118 start-page: 787 year: 2016 end-page: 796 article-title: The MADS‐box increases proliferation at the Arabidopsis root stem‐cell niche and participates in transition to differentiation by regulating cell‐cycle components publication-title: Annals of Botany – volume: 6 start-page: 215 year: 2018 end-page: 225 article-title: Plant salt tolerance and Na sensing and transport publication-title: Crop Journal – volume: 241 start-page: 153035 year: 2019 article-title: Cyclic nucleotide gated channels (CNGCs) in plant signalling‐current knowledge and perspectives publication-title: Journal of Plant Physiology – volume: 57 start-page: 1181 year: 2006 end-page: 1199 article-title: Alkali cation exchangers: roles in cellular homeostasis and stress tolerance publication-title: Journal of Experimental Botany – volume: 14 start-page: 660 year: 2009 end-page: 668 article-title: HKT transporter‐mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants publication-title: Trends in Plant Science – volume: 208 start-page: 668 year: 2015 end-page: 673 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytologist – volume: 24 start-page: 3393 year: 2012 end-page: 3405 article-title: Arabidopsis growth‐regulating factor7 functions as a transcriptional repressor of abscisic acid‐ and osmotic stress‐responsive genes, including DREB2A publication-title: Plant Cell – volume: 12 start-page: 2456 year: 2021 article-title: Initiation and amplification of SnRK2 activation in abscisic acid signaling publication-title: Nature Communications – volume: 71 start-page: 6092 year: 2020 end-page: 6106 article-title: Arabidopsis MADS‐box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement publication-title: Journal of Experimental Botany – volume: 217 start-page: 523 year: 2018 end-page: 539 article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses publication-title: New Phytologist – volume: 436 start-page: 45 year: 2009 end-page: 55 article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance publication-title: Gene – volume: 20 start-page: 2729 year: 2008 end-page: 2745 article-title: The gibberellic acid signaling repressor RGL2 inhibits seed germination by stimulating abscisic acid synthesis and ABI5 activity publication-title: Plant Cell – volume: 12 start-page: 599 year: 2000 end-page: 609 article-title: The Arabidopsis abscisic acid response gene encodes a basic leucine zipper transcription factor publication-title: Plant Cell – volume: 214 start-page: 365 year: 2001 end-page: 372 article-title: MADS‐box gene expression in lateral primordia, meristems and differentiated tissues of roots publication-title: Planta – volume: 37 start-page: 1141 year: 2005 end-page: 1146 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nature Genetics – volume: 30 start-page: 4654 year: 2020 end-page: 4664 article-title: A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants publication-title: Current Biology – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 15 start-page: 573 year: 2010 end-page: 581 article-title: MYB transcription factors in Arabidopsis publication-title: Trends in Plant Science – volume: 100 start-page: 110 year: 2012 end-page: 115 article-title: Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis publication-title: Genomics – volume: 23 start-page: 3340 year: 2018 end-page: 3351.e3345 article-title: Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA‐independent SnRK2 activity publication-title: Cell Reports – volume: 10 start-page: 834 year: 2017 end-page: 845 article-title: Arabidopsis MADS‐box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression publication-title: Molecular Plant – volume: 69 start-page: 4215 year: 2018 end-page: 4226 article-title: Calcium signaling during salt stress and in the regulation of ion homeostasis publication-title: Journal of Experimental Botany – volume: 5 start-page: 151 year: 2014 article-title: Tolerance to drought and salt stress in plants: unraveling the signaling networks publication-title: Frontiers in Plant Science – volume: 25 start-page: 233 year: 2008 end-page: 239 article-title: Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress publication-title: Plant Biotechnology – volume: 19 start-page: 1900 year: 2018 article-title: The Arabidopsis calcium‐dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses publication-title: International Journal of Molecular Sciences – volume: 23 start-page: 3482 year: 2011 end-page: 3497 article-title: The Arabidopsis Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction publication-title: Plant Cell – volume: 19 start-page: 3019 year: 2007 end-page: 3036 article-title: Two calcium‐dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis publication-title: Plant Cell – volume: 24 start-page: 23 year: 2005 end-page: 58 article-title: Drought and salt tolerance in plants publication-title: Critical Reviews in Plant Sciences – volume: 8 start-page: 39 year: 2018 article-title: transcription factor MYB102 increases plant susceptibility to aphids by substantial activation of ethylene biosynthesis publication-title: Biomolecules – volume: 132 start-page: 1415 year: 2003 end-page: 1423 article-title: Integration of wounding and osmotic stress signals determines the expression of the transcription factor gene publication-title: Plant Physiology – volume: 30 start-page: 497 year: 2007 end-page: 507 article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in publication-title: Plant, Cell & Environment – volume: 222 start-page: 730 year: 2005 end-page: 742 article-title: Nutritional regulation of ANR1 and other root‐expressed MADS‐box genes in publication-title: Planta – ident: e_1_2_8_92_1 doi: 10.1104/pp.16.00891 – ident: e_1_2_8_74_1 doi: 10.1038/nature01741 – ident: e_1_2_8_48_1 doi: 10.1046/j.1365-313X.1997.12051067.x – ident: e_1_2_8_82_1 doi: 10.3390/ijms19071900 – ident: e_1_2_8_8_1 doi: 10.1080/07352680590910410 – ident: e_1_2_8_33_1 doi: 10.1007/s00425-005-0020-3 – ident: e_1_2_8_34_1 doi: 10.1038/emboj.2013.216 – ident: e_1_2_8_39_1 doi: 10.1007/s11103-012-9901-6 – ident: e_1_2_8_65_1 doi: 10.1111/j.1365-3040.2009.02041.x – ident: e_1_2_8_51_1 doi: 10.1093/jxb/erq098 – ident: e_1_2_8_9_1 doi: 10.1105/tpc.111.089581 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.1319955111 – ident: e_1_2_8_101_1 doi: 10.1371/journal.pone.0105597 – ident: e_1_2_8_99_1 doi: 10.1046/j.1365-313X.2002.01309.x – ident: e_1_2_8_38_1 doi: 10.1007/s00299-011-1068-0 – ident: e_1_2_8_58_1 doi: 10.1093/jxb/err280 – ident: e_1_2_8_106_1 doi: 10.1016/j.devcel.2020.10.012 – ident: e_1_2_8_85_1 doi: 10.1016/j.cub.2020.09.013 – ident: e_1_2_8_5_1 doi: 10.1126/science.285.5431.1256 – ident: e_1_2_8_76_1 doi: 10.1073/pnas.122224699 – ident: e_1_2_8_94_1 doi: 10.1016/j.cj.2018.01.003 – ident: e_1_2_8_69_1 doi: 10.1111/nph.13519 – ident: e_1_2_8_68_1 doi: 10.1038/nprot.2008.38 – ident: e_1_2_8_104_1 doi: 10.1038/90824 – ident: e_1_2_8_114_1 doi: 10.1105/tpc.107.050666 – ident: e_1_2_8_35_1 doi: 10.1093/aob/mcw126 – ident: e_1_2_8_87_1 doi: 10.1111/j.1365-313X.2005.02595.x – ident: e_1_2_8_10_1 doi: 10.1093/emboj/cdg207 – ident: e_1_2_8_109_1 doi: 10.1016/j.celrep.2018.05.044 – ident: e_1_2_8_91_1 doi: 10.3389/fpls.2018.00838 – ident: e_1_2_8_26_1 doi: 10.1111/tpj.12597 – ident: e_1_2_8_63_1 doi: 10.1016/S0378-1119(03)00747-9 – ident: e_1_2_8_47_1 doi: 10.1105/tpc.112.100933 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-021-22812-x – ident: e_1_2_8_46_1 doi: 10.1038/s41586-019-1449-z – ident: e_1_2_8_57_1 doi: 10.1046/j.1365-313X.2002.01430.x – ident: e_1_2_8_59_1 doi: 10.1093/jxb/ert326 – volume: 44 start-page: 532 year: 2002 ident: e_1_2_8_6_1 article-title: Evidence that the auxin signaling pathway interacts with plant stress response publication-title: Acta Botanica Sinica – ident: e_1_2_8_14_1 doi: 10.1093/jxb/ery086 – ident: e_1_2_8_45_1 doi: 10.1186/1471-2229-9-96 – ident: e_1_2_8_28_1 doi: 10.1016/j.jplph.2019.153035 – ident: e_1_2_8_112_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_8_4_1 doi: 10.1371/journal.pgen.1007086 – ident: e_1_2_8_75_1 doi: 10.1105/tpc.108.061515 – ident: e_1_2_8_40_1 doi: 10.1186/1746-4811-1-13 – ident: e_1_2_8_61_1 doi: 10.1371/journal.pgen.1005760 – ident: e_1_2_8_80_1 doi: 10.1038/nature11909 – ident: e_1_2_8_54_1 doi: 10.1111/nph.16172 – ident: e_1_2_8_60_1 doi: 10.1093/jxb/ery201 – ident: e_1_2_8_96_1 doi: 10.1146/annurev.arplant.57.032905.105444 – ident: e_1_2_8_12_1 doi: 10.1007/s004250100637 – ident: e_1_2_8_20_1 doi: 10.1111/jipb.12899 – ident: e_1_2_8_37_1 doi: 10.3389/fpls.2014.00151 – ident: e_1_2_8_100_1 doi: 10.1038/nprot.2007.199 – ident: e_1_2_8_88_1 doi: 10.1105/tpc.107.052100 – ident: e_1_2_8_89_1 doi: 10.1104/pp.107.108647 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-313X.2000.00891.x – ident: e_1_2_8_11_1 doi: 10.1016/S0005-2736(00)00135-8 – ident: e_1_2_8_64_1 doi: 10.1105/tpc.18.00584 – ident: e_1_2_8_25_1 doi: 10.1104/pp.102.019273 – ident: e_1_2_8_62_1 doi: 10.1016/S0014-5793(02)03488-9 – ident: e_1_2_8_103_1 doi: 10.1038/nature13593 – ident: e_1_2_8_16_1 doi: 10.1016/j.ygeno.2012.06.004 – ident: e_1_2_8_17_1 doi: 10.1007/s11032-006-9048-8 – ident: e_1_2_8_41_1 doi: 10.1016/j.tplants.2009.08.009 – ident: e_1_2_8_13_1 doi: 10.1038/ncomms6833 – ident: e_1_2_8_23_1 doi: 10.1111/j.1365-3040.2007.01637.x – ident: e_1_2_8_93_1 doi: 10.1016/0926-6585(65)90170-6 – ident: e_1_2_8_31_1 doi: 10.1016/j.pbi.2006.05.014 – ident: e_1_2_8_49_1 doi: 10.3390/ijms19103206 – ident: e_1_2_8_43_1 doi: 10.1111/pce.12228 – ident: e_1_2_8_111_1 doi: 10.1016/S1369-5266(03)00085-2 – ident: e_1_2_8_73_1 doi: 10.1093/jxb/erj114 – ident: e_1_2_8_79_1 doi: 10.1080/15592324.2015.1117723 – ident: e_1_2_8_110_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_8_81_1 doi: 10.1016/j.plantsci.2015.10.003 – ident: e_1_2_8_72_1 doi: 10.1104/pp.105.066324 – ident: e_1_2_8_7_1 doi: 10.1105/tpc.111.095273 – ident: e_1_2_8_78_1 doi: 10.1105/tpc.7.8.1259 – ident: e_1_2_8_83_1 doi: 10.1016/j.cub.2014.06.064 – ident: e_1_2_8_19_1 doi: 10.1016/j.cub.2020.09.016 – ident: e_1_2_8_27_1 doi: 10.1016/j.tplants.2010.06.005 – ident: e_1_2_8_42_1 doi: 10.5511/plantbiotechnology.25.233 – ident: e_1_2_8_95_1 doi: 10.3389/fpls.2019.00228 – ident: e_1_2_8_2_1 doi: 10.1111/nph.15793 – ident: e_1_2_8_30_1 doi: 10.1105/tpc.12.4.599 – ident: e_1_2_8_71_1 doi: 10.1023/A:1006321900483 – volume: 11 start-page: 1743 year: 1999 ident: e_1_2_8_90_1 article-title: A transmembrane hybrid‐type histidine kinase in Arabidopsis functions as an osmosensor publication-title: Cell – ident: e_1_2_8_44_1 doi: 10.1002/j.1460-2075.1987.tb02730.x – ident: e_1_2_8_108_1 doi: 10.1093/jxb/eraa303 – ident: e_1_2_8_24_1 doi: 10.1016/j.tplants.2014.02.001 – ident: e_1_2_8_107_1 doi: 10.1073/pnas.1816991115 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1608449113 – ident: e_1_2_8_50_1 doi: 10.1016/j.tplants.2012.12.002 – ident: e_1_2_8_15_1 doi: 10.1046/j.1365-313X.2002.01295.x – ident: e_1_2_8_29_1 doi: 10.1016/j.cub.2018.01.023 – ident: e_1_2_8_66_1 doi: 10.1105/tpc.108.064568 – ident: e_1_2_8_86_1 doi: 10.1104/pp.107.109413 – ident: e_1_2_8_22_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_8_77_1 doi: 10.1038/ng1643 – volume: 4 start-page: 1251 year: 1992 ident: e_1_2_8_36_1 article-title: lsolation of the Arabidopsis ABI3 gene by positional cloning publication-title: Plant Cell – ident: e_1_2_8_67_1 doi: 10.1038/cr.2009.83 – ident: e_1_2_8_32_1 doi: 10.1093/pcp/pcs050 – ident: e_1_2_8_70_1 doi: 10.1263/jbb.104.34 – ident: e_1_2_8_105_1 doi: 10.1126/science.279.5349.407 – ident: e_1_2_8_113_1 doi: 10.3390/biom8020039 – ident: e_1_2_8_98_1 doi: 10.1111/nph.14920 – ident: e_1_2_8_102_1 doi: 10.1016/j.molp.2017.04.004 – ident: e_1_2_8_84_1 doi: 10.1111/tpj.12091 – ident: e_1_2_8_53_1 doi: 10.1111/j.1365-313X.2009.04073.x – ident: e_1_2_8_97_1 doi: 10.1016/j.gene.2009.02.010 – ident: e_1_2_8_56_1 doi: 10.1038/s41467-020-14477-9 – ident: e_1_2_8_52_1 doi: 10.1111/j.1744-7909.2007.00442.x |
SSID | ssj0009562 |
Score | 2.5652564 |
Snippet | • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response.... Summary Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress... Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2418 |
SubjectTerms | ABA signalling Abiotic stress Abscisic Acid AGL16 Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Down-regulation Elongation Environmental stress Gene Expression Regulation, Plant Genes Genetic analysis Germination Germination - genetics Homeostasis MADS‐box Mutants Phenotypes plant response Plants, Genetically Modified - metabolism primary root elongation root growth Salt Stress Salts Seed germination Seedlings - metabolism Stress response Stress, Physiological - genetics Transcription transcription (genetics) Transcription factors Transcriptomics |
Title | Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes |
URI | https://www.jstor.org/stable/27112012 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17760 https://www.ncbi.nlm.nih.gov/pubmed/34605021 https://www.proquest.com/docview/2598390820 https://www.proquest.com/docview/2579093128 https://www.proquest.com/docview/2636507558 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VFQcuvAsLBRnEgUtWiePYiTgtj7JCtEJApT0gRX6lrVglq01WUE6cOPMb-SWM7SRqUUGIWxSPEz9m4u-LxzMAj7lCJquLLFK2ohHjSHcKzdIotoJZxlNT-ZQs-wd8fsheL7LFFjwdzsKE-BDjDzdnGf577QxcqvaMkder42kiBHd83flqOUD0jp4JuMvpEIGZM77oowo5L56x5rm1KLgjXgQ0z-NWv_DsXYWPQ5ODv8mn6aZTU_31t2iO_9mna3ClB6RkFjToOmzZ-gZcetYgaDy9Cd9na6lOTLNqT1qyP3vx_ue3H6r5QkKaHjJ79SbhBIskqe2RjyFO1iG7PZY2FVktcebwlnfEtaRrSCuXHQknVIg6Jab5XPc1cBH1pfiKvoJ73JH7GN-Cw72XH57Poz51Q6QZYtAIYaK2LGc0NkhZtJQithKnPa94ZlRVGZ4nlaYJL1BZaIE0RbFY04wWOa94YtId2K6b2t4BUvBcSJvkJjGUpdzmQsQGSSwya4Ngj03gyTCJpe7jmrv0Gsty4Dc4qqUf1Qk8GkVXIZjHRUI7XhNGCSoQk-I6PoHdQTXK3tDbEtkjQkyHoybwcCxGE3X7LrK2zcbJiCIuUkQCf5HhqMII3zKUuR3UbmxA6vauEYthT73y_Lnt5cHbub-4---i9-AydX463kVnF7a79cbeR6DVqQfeon4BdpIj6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBQkulFfLtgUM4sAlq8Rx7ETislDKArsrBK20FxTFj5SKVbLazYqWE6ee-xv5JYydh1pUEOIWZcaJE8_E32dPZgCecYlMViWRJ01OPcaR7iSKhZ5vBDOMhzp3JVnGEz48ZO-m0XQNXrT_wtT5IboFN-sZ7nttHdwuSF_w8mL-pR8IwZGwX7MVvW39gr2P9ELKXU7bHMyc8WmTV8jG8XRNL81GdUDiVVDzMnJ1U8_-BnxuO11HnHztryrZV99_y-f4v091G241mJQMaiO6A2umuAvXX5aIG0_vwdlgkcljXc6Xx0syHux9-vnjXJYnpK7UQwZvRgEnKMpIYY5cGnGyqAvco7TMyXyGg4enXCyuIVVJltmsIvVPKkSeEl1-K5oWOI86Kd6iaWAvd2S_x_fhcP_1wauh11Rv8BRDGOohUlSGxYz6GlmLyjLhmwxHPs55pGWeax4HuaIBT9BeaIJMRTJf0YgmMc95oMNNWC_KwjwAkvBYZCaIdaApC7mJhfA18lgk1xrxHuvB83YUU9WkNrcVNmZpS3Hwraburfbgaac6r_N5XKW06Uyh06ACYSlO5T3YbW0jbXx9mSKBRJRpoVQPnnRi9FK79ZIVplxZHZH4SYhg4C86PES4LKIIdbZqu-s6ENrta4Rj-KTOev7c93TyYegOtv9d9THcGB6MR-no7eT9DtykNmzHRezswnq1WJmHiLsq-ci51y-U0igC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqghAXKI-WpQUM4sAlq8Rx7EScFsqyQLuqgEp7QIriV6lYJdFuVrSceuLMb-SXMLaTqEUFIW5RPE78mIm_Lx7PIPSUCWCyMksCoQ0JKAO6k0kaB6HmVFMWK-NSsuxP2eSQvp0lszX0vDsL4-ND9D_crGW477U18FqZc0Ze1p-HEecM-PoVysBYLCJ6T85F3GWkC8HMKJu1YYWsG09f9cJi5P0RL0OaF4GrW3nGN9Gnrs3e4eTLcNWIofz2WzjH_-zUBrrRIlI88ip0C63p8ja6-qIC1Hh6B30fLQpxrKp6ebzE-6PdDz_PfojqBPs8PXj0ei9iGIoKXOojF0QcL3x6eyitDK7nMHVwy3niatxUeFnMG-yPqGBxilX1tWxrwCrqSuEVbQX7uCP7Nb6LDsevPr6cBG3uhkBSAKEB4ESpaUpJqICzyKLgoS5g3lPDEiWMUSyNjCQRy0BbSAY8RdBQkoRkKTMsUvEmWi-rUt9DOGMpL3SUqkgRGjOdch4qYLFArRWgPTpAz7pJzGUb2Nzm15jnHcGBUc3dqA7Qk1609tE8LhPadJrQSxAOoBQW8gHa6VQjby19mQN9BIxpgdQAPe6LwUbtxktR6mplZXgWZjFAgb_IsBjAMk8SkNnyatc3ILab1wDGoKdOef7c9nx6MHEX9_9d9BG6drA7zvfeTN9to-vE-uw4d50dtN4sVvoBgK5GPHTG9QsgZya6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+MADS-box+factor+AGL16+is+a+negative+regulator+of+plant+response+to+salt+stress+by+downregulating+salt-responsive+genes&rft.jtitle=The+New+phytologist&rft.au=Zhao%2C+Ping-Xia&rft.au=Zhang%2C+Jing&rft.au=Chen%2C+Si-Yan&rft.au=Wu%2C+Jie&rft.date=2021-12-01&rft.eissn=1469-8137&rft.volume=232&rft.issue=6&rft.spage=2418&rft_id=info:doi/10.1111%2Fnph.17760&rft_id=info%3Apmid%2F34605021&rft.externalDocID=34605021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |