Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes

• Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. • Loss-of-AGL16 confer...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 232; no. 6; pp. 2418 - 2439
Main Authors Zhao, Ping-Xia, Zhang, Jing, Chen, Si-Yan, Wu, Jie, Xia, Jing-Qiu, Sun, Liang-Qi, Ma, Shi-Song, Xiang, Cheng-Bin
Format Journal Article
LanguageEnglish
Published England Wiley 01.12.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.17760

Cover

Loading…
Abstract • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. • Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. • Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. • Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
AbstractList • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. • Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. • Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. • Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Summary Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS‐box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss‐of‐AGL16 confers resistance to salt stress in seed germination, root elongation and soil‐grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild‐type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress‐responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS‐box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss‐of‐ AGL16 confers resistance to salt stress in seed germination, root elongation and soil‐grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild‐type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress‐responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1 , HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Author Zhang, Jing
Sun, Liang-Qi
Chen, Si-Yan
Wu, Jie
Xiang, Cheng-Bin
Zhao, Ping-Xia
Xia, Jing-Qiu
Ma, Shi-Song
Author_xml – sequence: 1
  givenname: Ping-Xia
  surname: Zhao
  fullname: Zhao, Ping-Xia
– sequence: 2
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 3
  givenname: Si-Yan
  surname: Chen
  fullname: Chen, Si-Yan
– sequence: 4
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
– sequence: 5
  givenname: Jing-Qiu
  surname: Xia
  fullname: Xia, Jing-Qiu
– sequence: 6
  givenname: Liang-Qi
  surname: Sun
  fullname: Sun, Liang-Qi
– sequence: 7
  givenname: Shi-Song
  surname: Ma
  fullname: Ma, Shi-Song
– sequence: 8
  givenname: Cheng-Bin
  surname: Xiang
  fullname: Xiang, Cheng-Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34605021$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFBQ8AssSGLtJeO7FjL0cttJWGHwmQ2EWOYw8eZexgJy2z5cnxdKZdVAK8sXTPd4507zlCBz54g9BLAqckvzM__Dgldc3hCZqRistCkLI-QDMAKgpe8e-H6CilFQBIxukzdFhWHBhQMkO_51G1rgtDcgl_mF98KdrwC1ulxxDx_HJBOM6Cwt4s1ehuDI5mOfVqqwaLh175MY_SEHwyeAw4qX7EacyjhNsN7sKt3zucX96pxR7fhi2NN-k5empVn8yL_X-Mvr1_9_X8qlh8urw-ny8KXYGAgnGmTSUqCh1jUitVg1GW1cJy1rXWdlwQqynhkreESqhkW4GmjErBLSddeYze7nKHGH5OJo3N2iVt-ryDCVNqKC85g5ox8X-U1RJkSegWffMIXYUp-rxIpqQoJQgKmXq9p6Z2bbpmiG6t4qa5LyIDJztAx5BSNPYBIdBsS25yyc1dyZk9e8RqN-YDBz9G5fp_OW5dbzZ_j24-fr66d7zaOVYpd_3goDUhFAgt_wBTgMDH
CitedBy_id crossref_primary_10_1016_j_xplc_2022_100458
crossref_primary_10_1111_pbi_13888
crossref_primary_10_1111_ppl_70001
crossref_primary_10_1007_s11033_024_09902_x
crossref_primary_10_3390_plants13020282
crossref_primary_10_1093_plphys_kiad651
crossref_primary_10_1371_journal_pone_0300159
crossref_primary_10_1007_s12355_024_01518_6
crossref_primary_10_3389_fpls_2024_1331269
crossref_primary_10_3390_ijms252413278
crossref_primary_10_1073_pnas_2210338119
crossref_primary_10_1016_j_celrep_2023_112809
crossref_primary_10_1093_treephys_tpad022
crossref_primary_10_1002_pld3_594
crossref_primary_10_3389_fpls_2023_1178065
crossref_primary_10_1016_j_tplants_2024_10_002
crossref_primary_10_1093_hr_uhae279
crossref_primary_10_1002_tpg2_20521
crossref_primary_10_1016_j_postharvbio_2024_113287
crossref_primary_10_1093_plphys_kiad058
crossref_primary_10_1093_plphys_kiad532
crossref_primary_10_1016_j_plaphy_2023_107900
crossref_primary_10_1016_j_envexpbot_2023_105468
crossref_primary_10_1007_s00344_023_10908_1
crossref_primary_10_1016_j_indcrop_2022_116125
crossref_primary_10_3389_fpls_2022_1035750
crossref_primary_10_1111_nph_20164
crossref_primary_10_3390_agronomy12030582
crossref_primary_10_1093_plcell_koae108
crossref_primary_10_7717_peerj_17001
crossref_primary_10_7717_peerj_17043
crossref_primary_10_1134_S1021443723601271
crossref_primary_10_1186_s12870_023_04652_7
crossref_primary_10_1016_j_bbrc_2023_08_031
crossref_primary_10_1111_tpj_16936
crossref_primary_10_1093_pcp_pcae073
crossref_primary_10_1007_s00344_024_11299_7
crossref_primary_10_1093_hr_uhac040
crossref_primary_10_1016_j_cpb_2024_100364
crossref_primary_10_3389_fpls_2023_1097265
crossref_primary_10_1016_j_cell_2024_10_050
crossref_primary_10_3389_fpls_2023_1299902
crossref_primary_10_3390_plants12071424
crossref_primary_10_1007_s11103_024_01547_5
crossref_primary_10_31857_S001533032360033X
crossref_primary_10_3390_ijms25158233
crossref_primary_10_1016_j_ijbiomac_2022_11_027
Cites_doi 10.1104/pp.16.00891
10.1038/nature01741
10.1046/j.1365-313X.1997.12051067.x
10.3390/ijms19071900
10.1080/07352680590910410
10.1007/s00425-005-0020-3
10.1038/emboj.2013.216
10.1007/s11103-012-9901-6
10.1111/j.1365-3040.2009.02041.x
10.1093/jxb/erq098
10.1105/tpc.111.089581
10.1073/pnas.1319955111
10.1371/journal.pone.0105597
10.1046/j.1365-313X.2002.01309.x
10.1007/s00299-011-1068-0
10.1093/jxb/err280
10.1016/j.devcel.2020.10.012
10.1016/j.cub.2020.09.013
10.1126/science.285.5431.1256
10.1073/pnas.122224699
10.1016/j.cj.2018.01.003
10.1111/nph.13519
10.1038/nprot.2008.38
10.1038/90824
10.1105/tpc.107.050666
10.1093/aob/mcw126
10.1111/j.1365-313X.2005.02595.x
10.1093/emboj/cdg207
10.1016/j.celrep.2018.05.044
10.3389/fpls.2018.00838
10.1111/tpj.12597
10.1016/S0378-1119(03)00747-9
10.1105/tpc.112.100933
10.1038/s41467-021-22812-x
10.1038/s41586-019-1449-z
10.1046/j.1365-313X.2002.01430.x
10.1093/jxb/ert326
10.1093/jxb/ery086
10.1186/1471-2229-9-96
10.1016/j.jplph.2019.153035
10.1016/j.cell.2016.08.029
10.1371/journal.pgen.1007086
10.1105/tpc.108.061515
10.1186/1746-4811-1-13
10.1371/journal.pgen.1005760
10.1038/nature11909
10.1111/nph.16172
10.1093/jxb/ery201
10.1146/annurev.arplant.57.032905.105444
10.1007/s004250100637
10.1111/jipb.12899
10.3389/fpls.2014.00151
10.1038/nprot.2007.199
10.1105/tpc.107.052100
10.1104/pp.107.108647
10.1111/j.1365-313X.2000.00891.x
10.1016/S0005-2736(00)00135-8
10.1105/tpc.18.00584
10.1104/pp.102.019273
10.1016/S0014-5793(02)03488-9
10.1038/nature13593
10.1016/j.ygeno.2012.06.004
10.1007/s11032-006-9048-8
10.1016/j.tplants.2009.08.009
10.1038/ncomms6833
10.1111/j.1365-3040.2007.01637.x
10.1016/0926-6585(65)90170-6
10.1016/j.pbi.2006.05.014
10.3390/ijms19103206
10.1111/pce.12228
10.1016/S1369-5266(03)00085-2
10.1093/jxb/erj114
10.1080/15592324.2015.1117723
10.1146/annurev.arplant.53.091401.143329
10.1016/j.plantsci.2015.10.003
10.1104/pp.105.066324
10.1105/tpc.111.095273
10.1105/tpc.7.8.1259
10.1016/j.cub.2014.06.064
10.1016/j.cub.2020.09.016
10.1016/j.tplants.2010.06.005
10.5511/plantbiotechnology.25.233
10.3389/fpls.2019.00228
10.1111/nph.15793
10.1105/tpc.12.4.599
10.1023/A:1006321900483
10.1002/j.1460-2075.1987.tb02730.x
10.1093/jxb/eraa303
10.1016/j.tplants.2014.02.001
10.1073/pnas.1816991115
10.1073/pnas.1608449113
10.1016/j.tplants.2012.12.002
10.1046/j.1365-313X.2002.01295.x
10.1016/j.cub.2018.01.023
10.1105/tpc.108.064568
10.1104/pp.107.109413
10.1046/j.1365-313x.1998.00343.x
10.1038/ng1643
10.1038/cr.2009.83
10.1093/pcp/pcs050
10.1263/jbb.104.34
10.1126/science.279.5349.407
10.3390/biom8020039
10.1111/nph.14920
10.1016/j.molp.2017.04.004
10.1111/tpj.12091
10.1111/j.1365-313X.2009.04073.x
10.1016/j.gene.2009.02.010
10.1038/s41467-020-14477-9
10.1111/j.1744-7909.2007.00442.x
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors. © 2021 New Phytologist Foundation
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17760
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2439
ExternalDocumentID 34605021
10_1111_nph_17760
NPH17760
27112012
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31900230
– fundername: Youth Innovation Foundation of University of Science and Technology of China
  funderid: WK2070000186
– fundername: China Postdoctoral Science Foundation
  funderid: 2020T130634; 2019M652200
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
JBS
JLS
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AAISJ
AASGY
AASVR
ABBHK
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUPB
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
CBGCD
COF
CUYZI
DEVKO
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
IPSME
JAAYA
JBMMH
JEB
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
LPU
LW6
MVM
NEJ
RCA
SA0
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4080-565ce48420d559caa70eaf578f65dbffd681fc21696b129049b40c252986f61d3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:14 EDT 2025
Fri Jul 11 05:41:47 EDT 2025
Fri Jul 25 10:40:24 EDT 2025
Thu Apr 03 07:06:05 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 02:28:39 EDT 2025
Wed Jan 22 16:28:29 EST 2025
Thu Jul 03 21:34:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Arabidopsis thaliana
MADS-box
ABA signalling
primary root elongation
salt stress
seed germination
AGL16
Language English
License 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4080-565ce48420d559caa70eaf578f65dbffd681fc21696b129049b40c252986f61d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7152-1458
PMID 34605021
PQID 2598390820
PQPubID 2026848
PageCount 22
ParticipantIDs proquest_miscellaneous_2636507558
proquest_miscellaneous_2579093128
proquest_journals_2598390820
pubmed_primary_34605021
crossref_primary_10_1111_nph_17760
crossref_citationtrail_10_1111_nph_17760
wiley_primary_10_1111_nph_17760_NPH17760
jstor_primary_27112012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211201
December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211201
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2007; 104
2010; 15
2003; 316
2019; 10
2002; 99
1999; 285
2014; 24
1998; 279
2020; 11
1998; 16
2018; 6
2009; 14
2018; 9
2018; 8
2000; 12
2005; 222
2018; 217
2020a; 30
2008; 25
2011; 63
2018; 30
2014; 19
2007; 2
2008; 20
2012; 24
2009; 19
2000; 1465
1992; 4
2010; 33
2007; 19
2018; 28
2012; 100
2006; 57
2002; 531
2015; 241
2019; 225
2020b; 62
2016; 167
2019; 223
2018; 23
2016; 12
1995; 7
2016; 11
2018; 19
2002; 69
2020; 30
2013; 73
2018; 115
2014; 37
2005; 1
2003; 22
2019; 572
2016; 172
1965; 109
1987; 6
2000; 42
2005; 139
2008; 3
2020; 55
2007; 30
2008; 146
2012; 53
2005; 24
2019; 241
2010; 61
2014; 65
2009; 436
2013; 18
2014; 5
2016; 118
2003; 6
2002; 44
1997; 12
2016; 113
2001; 19
1999; 11
2011; 23
2005; 37
2014; 9
2001; 214
2014; 514
2009; 21
2002; 30
2000; 24
2006; 9
2002; 32
2011; 30
2015; 208
2014; 111
2012; 79
2005; 44
2003; 132
2018; 69
2021; 12
2003; 424
2013; 32
2020; 71
2017; 10
2017; 13
2013; 497
2009; 9
2014; 79
2007; 49
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
Bao F (e_1_2_8_6_1) 2002; 44
Giraudat J (e_1_2_8_36_1) 1992; 4
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
Urao T (e_1_2_8_90_1) 1999; 11
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 57
  start-page: 781
  year: 2006
  end-page: 803
  article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses
  publication-title: Annual Review of Plant Biology
– volume: 6
  start-page: 3901
  year: 1987
  end-page: 3907
  article-title: GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO Journal
– volume: 12
  start-page: 1067
  year: 1997
  end-page: 1078
  article-title: Calcium signaling in responding to drought and salinity
  publication-title: The Plant Journal
– volume: 9
  start-page: 436
  year: 2006
  end-page: 442
  article-title: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks
  publication-title: Current Opinion in Plant Biology
– volume: 104
  start-page: 34
  year: 2007
  end-page: 41
  article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation
  publication-title: Journal of Bioscience and Bioengineering
– volume: 424
  start-page: 85
  year: 2003
  end-page: 88
  article-title: Assessing the redundancy of MADS‐box genes during carpel and ovule development
  publication-title: Nature
– volume: 11
  start-page: 1743
  year: 1999
  end-page: 1754
  article-title: A transmembrane hybrid‐type histidine kinase in Arabidopsis functions as an osmosensor
  publication-title: Cell
– volume: 69
  start-page: 2435
  year: 2018
  end-page: 2459
  article-title: Dissecting the role of MADS‐box genes in monocot floral development and diversity
  publication-title: Journal of Experimental Botany
– volume: 63
  start-page: 305
  year: 2011
  end-page: 317
  article-title: NADPH oxidase AtrbohD and AtrbohF function in ROS‐dependent regulation of Na /K homeostasis in under salt stress
  publication-title: Journal of Experimental Botany
– volume: 316
  start-page: 1
  year: 2003
  end-page: 21
  article-title: Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development
  publication-title: Gene
– volume: 4
  start-page: 1251
  year: 1992
  end-page: 1261
  article-title: lsolation of the Arabidopsis gene by positional cloning
  publication-title: Plant Cell
– volume: 99
  start-page: 8436
  year: 2002
  end-page: 8441
  article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 24
  start-page: 457
  year: 2000
  end-page: 466
  article-title: MADS‐box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes
  publication-title: The Plant Journal
– volume: 28
  start-page: 666
  year: 2018
  end-page: 675 e665
  article-title: The FERONIA receptor kinase maintains cell‐wall integrity during salt stress through Ca signaling
  publication-title: Current Biology
– volume: 241
  start-page: 109
  year: 2015
  end-page: 119
  article-title: Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis
  publication-title: Plant Science
– volume: 9
  year: 2014
  article-title: The effects of fluctuations in the nutrient supply on the expression of five members of the clade of MADS‐box genes in rice
  publication-title: PLoS ONE
– volume: 497
  start-page: 60
  year: 2013
  end-page: 66
  article-title: Using membrane transporters to improve crops for sustainable food production
  publication-title: Nature
– volume: 19
  start-page: 3206
  year: 2018
  article-title: Plant hormone signaling crosstalks between biotic and abiotic stress responses
  publication-title: International Journal of Molecular Sciences
– volume: 69
  start-page: 247
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annual Review of Plant Biology
– volume: 61
  start-page: 2247
  year: 2010
  end-page: 2254
  article-title: Regulation and function of SOC1, a flowering pathway integrator
  publication-title: Journal of Experimental Botany
– volume: 61
  start-page: 495
  year: 2010
  end-page: 506
  article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato
  publication-title: The Plant Journal
– volume: 73
  start-page: 993
  year: 2013
  end-page: 1005
  article-title: ABI4 downregulates expression of the sodium transporter in Arabidopsis roots and affects salt tolerance
  publication-title: The Plant Journal
– volume: 172
  start-page: 479
  year: 2016
  end-page: 488
  article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering
  publication-title: Plant Physiology
– volume: 44
  start-page: 928
  year: 2005
  end-page: 938
  article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem vessels to xylem parenchyma cells
  publication-title: The Plant Journal
– volume: 21
  start-page: 2163
  year: 2009
  end-page: 2178
  article-title: Shoot Na exclusion and increased salinity tolerance engineered by cell type‐specific alteration of Na transport in Arabidopsis
  publication-title: Plant Cell
– volume: 6
  start-page: 441
  year: 2003
  end-page: 445
  article-title: Regulation of ion homeostasis under salt stress
  publication-title: Current Opinion in Plant Biology
– volume: 30
  start-page: 373
  year: 2002
  end-page: 383
  article-title: Regulation of genes: role of ABI5
  publication-title: The Plant Journal
– volume: 32
  start-page: 317
  year: 2002
  end-page: 328
  article-title: ABI5 acts downstream of ABI3 to execute an ABA‐dependent growth arrest during germination
  publication-title: The Plant Journal
– volume: 13
  year: 2017
  article-title: drives adaptation of to salinity by reducing floral sodium content
  publication-title: PLoS Genetics
– volume: 79
  start-page: 810
  year: 2014
  end-page: 823
  article-title: WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA
  publication-title: The Plant Journal
– volume: 19
  start-page: 765
  year: 2001
  end-page: 768
  article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit
  publication-title: Nature Biotechnology
– volume: 30
  start-page: 1383
  year: 2011
  end-page: 1391
  article-title: Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network
  publication-title: Plant Cell Reports
– volume: 49
  start-page: 556
  year: 2007
  end-page: 567
  article-title: High‐throughput binary vectors for plant gene function analysis
  publication-title: Journal of Integrative Plant Biology
– volume: 1
  start-page: 13
  year: 2005
  article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants
  publication-title: Plant Methods
– volume: 12
  year: 2016
  article-title: ERF1 mediates cross‐talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 Expression
  publication-title: PLoS Genetics
– volume: 139
  start-page: 1185
  year: 2005
  end-page: 1193
  article-title: ABR1, an APETALA2‐domain transcription factor that functions as a repressor of ABA response in Arabidopsis
  publication-title: Plant Physiology
– volume: 37
  start-page: 1202
  year: 2014
  end-page: 1222
  article-title: Functional characterization of Arabidopsis HsfA6a as a heat‐shock transcription factor under high salinity and dehydration conditions
  publication-title: Plant, Cell & Environment
– volume: 1465
  start-page: 140
  year: 2000
  end-page: 151
  article-title: Sodium transport in plant cells
  publication-title: Biochimica et Biophysica Acta
– volume: 24
  start-page: 1887
  year: 2014
  end-page: 1892
  article-title: The receptor‐like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings
  publication-title: Current Biology
– volume: 19
  start-page: 1291
  year: 2009
  end-page: 1304
  article-title: An R2R3‐type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis
  publication-title: Cell Research
– volume: 24
  start-page: 1127
  year: 2012
  end-page: 1142
  article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis
  publication-title: Plant Cell
– volume: 44
  start-page: 532
  year: 2002
  end-page: 536
  article-title: Evidence that the auxin signaling pathway interacts with plant stress response
  publication-title: Acta Botanica Sinica
– volume: 531
  start-page: 157
  year: 2002
  end-page: 161
  article-title: Altered shoot/root Na distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na transporter
  publication-title: FEBS Letters
– volume: 30
  start-page: 529
  year: 2002
  end-page: 539
  article-title: Differential expression and function of NHX Na /H antiporters in the salt stress response
  publication-title: The Plant Journal
– volume: 572
  start-page: 341
  year: 2019
  end-page: 346
  article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx
  publication-title: Nature
– volume: 22
  start-page: 2004
  year: 2003
  end-page: 2014
  article-title: Functional analysis of in Arabidopsis shows that Na recirculation by the phloem is crucial for salt tolerance
  publication-title: EMBO Journal
– volume: 5
  start-page: 5833
  year: 2014
  article-title: Arabidopsis ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation
  publication-title: Nature Communications
– volume: 9
  start-page: 96
  year: 2009
  article-title: WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid
  publication-title: BMC Plant Biology
– volume: 42
  start-page: 657
  year: 2000
  end-page: 665
  article-title: Organization and expression of two Arabidopsis genes encoding DRE‐binding proteins involved in dehydration‐ and high‐salinity‐responsive gene expression
  publication-title: Plant Molecular Biology
– volume: 53
  start-page: 1003
  year: 2012
  end-page: 1016
  article-title: Overexpressing the ANR1 MADS‐box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development
  publication-title: Plant & Cell Physiology
– volume: 7
  start-page: 1259
  year: 1995
  end-page: 1269
  article-title: Diverse roles for MADS box genes in Arabidopsis development
  publication-title: Plant Cell
– volume: 62
  start-page: 25
  year: 2020b
  end-page: 54
  article-title: Abscisic acid dynamics, signaling, and functions in plants
  publication-title: Journal of Integrative Plant Biology
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 115
  start-page: 13123
  year: 2018
  end-page: 13128
  article-title: Leucine‐rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 285
  start-page: 1256
  year: 1999
  end-page: 1258
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in Arabidopsis
  publication-title: Science
– volume: 11
  start-page: 613
  year: 2020
  article-title: A RAF‐SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants
  publication-title: Nature Communications
– volume: 109
  start-page: 448
  year: 1965
  end-page: 453
  article-title: Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol
  publication-title: Biochimica et Biophysica Acta (BBA) – Biophysics including Photosynthesis
– volume: 11
  year: 2016
  article-title: Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome
  publication-title: Plant Signaling & Behavior
– volume: 79
  start-page: 137
  year: 2012
  end-page: 155
  article-title: Expression of wheat Na /H antiporter TNHXS1 and H ‐pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance
  publication-title: Plant Molecular Biology
– volume: 3
  start-page: 698
  year: 2008
  end-page: 709
  article-title: Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real‐time PCR to study transcription factor binding to DNA in
  publication-title: Nature Protocols
– volume: 514
  start-page: 367
  year: 2014
  end-page: 371
  article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in
  publication-title: Nature
– volume: 30
  start-page: 4815
  year: 2020a
  end-page: 4825
  article-title: BONZAI proteins control global osmotic stress responses in plants
  publication-title: Current Biology
– volume: 279
  start-page: 407
  year: 1998
  end-page: 409
  article-title: An Arabidopsis MADS box gene that controls nutrient‐induced changes in root architecture
  publication-title: Science
– volume: 146
  start-page: 178
  year: 2008
  end-page: 188
  article-title: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis
  publication-title: Plant Physiology
– volume: 146
  start-page: 1182
  year: 2008
  end-page: 1192
  article-title: An AGAMOUS‐related MADS‐box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis
  publication-title: Plant Physiology
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  article-title: mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nature Protocols
– volume: 19
  start-page: 2186
  year: 2007
  end-page: 2196
  article-title: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation
  publication-title: Plant Cell
– volume: 65
  start-page: 849
  year: 2014
  end-page: 858
  article-title: Sodium in plants: perception, signalling, and regulation of sodium fluxes
  publication-title: Journal of Experimental Botany
– volume: 113
  start-page: E5519
  year: 2016
  end-page: E5527
  article-title: FERONIA interacts with ABI2‐type phosphatases to facilitate signaling cross‐talk between abscisic acid and RALF peptide in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 33
  start-page: 453
  year: 2010
  end-page: 467
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of
  publication-title: The Plant Journal
– volume: 18
  start-page: 227
  year: 2013
  end-page: 233
  article-title: Plant mechanosensing and Ca transport
  publication-title: Trends in Plant Science
– volume: 9
  start-page: 838
  year: 2018
  article-title: Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid
  publication-title: Frontiers in Plant Science
– volume: 55
  start-page: 529
  year: 2020
  end-page: 543
  article-title: Thriving under stress: how plants balance growth and the stress sesponse
  publication-title: Developmental Cell
– volume: 30
  start-page: 2761
  year: 2018
  end-page: 2778
  article-title: HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport‐related gene expression
  publication-title: Plant Cell
– volume: 10
  start-page: 228
  year: 2019
  article-title: AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis
  publication-title: Frontiers in Plant Science
– volume: 225
  start-page: 835
  year: 2019
  end-page: 847
  article-title: ARABIDOPSIS NITRATE REGULATED 1 acts as a negative modulator of seed germination by activating ABI3 expression
  publication-title: New Phytologist
– volume: 223
  start-page: 1143
  year: 2019
  end-page: 1158
  article-title: MADS‐box genes underground becoming mainstream: plant root developmental mechanisms
  publication-title: New Phytologist
– volume: 19
  start-page: 371
  year: 2014
  end-page: 379
  article-title: Plant salt‐tolerance mechanisms
  publication-title: Trends in Plant Science
– volume: 32
  start-page: 2884
  year: 2013
  end-page: 2895
  article-title: The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression
  publication-title: EMBO Journal
– volume: 19
  start-page: 215
  year: 2007
  end-page: 225
  article-title: Over‐expression of a vacuolar Na /H antiporter gene improves salt tolerance in an upland rice
  publication-title: Molecular Breeding
– volume: 118
  start-page: 787
  year: 2016
  end-page: 796
  article-title: The MADS‐box increases proliferation at the Arabidopsis root stem‐cell niche and participates in transition to differentiation by regulating cell‐cycle components
  publication-title: Annals of Botany
– volume: 6
  start-page: 215
  year: 2018
  end-page: 225
  article-title: Plant salt tolerance and Na sensing and transport
  publication-title: Crop Journal
– volume: 241
  start-page: 153035
  year: 2019
  article-title: Cyclic nucleotide gated channels (CNGCs) in plant signalling‐current knowledge and perspectives
  publication-title: Journal of Plant Physiology
– volume: 57
  start-page: 1181
  year: 2006
  end-page: 1199
  article-title: Alkali cation exchangers: roles in cellular homeostasis and stress tolerance
  publication-title: Journal of Experimental Botany
– volume: 14
  start-page: 660
  year: 2009
  end-page: 668
  article-title: HKT transporter‐mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants
  publication-title: Trends in Plant Science
– volume: 208
  start-page: 668
  year: 2015
  end-page: 673
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytologist
– volume: 24
  start-page: 3393
  year: 2012
  end-page: 3405
  article-title: Arabidopsis growth‐regulating factor7 functions as a transcriptional repressor of abscisic acid‐ and osmotic stress‐responsive genes, including DREB2A
  publication-title: Plant Cell
– volume: 12
  start-page: 2456
  year: 2021
  article-title: Initiation and amplification of SnRK2 activation in abscisic acid signaling
  publication-title: Nature Communications
– volume: 71
  start-page: 6092
  year: 2020
  end-page: 6106
  article-title: Arabidopsis MADS‐box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement
  publication-title: Journal of Experimental Botany
– volume: 217
  start-page: 523
  year: 2018
  end-page: 539
  article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses
  publication-title: New Phytologist
– volume: 436
  start-page: 45
  year: 2009
  end-page: 55
  article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance
  publication-title: Gene
– volume: 20
  start-page: 2729
  year: 2008
  end-page: 2745
  article-title: The gibberellic acid signaling repressor RGL2 inhibits seed germination by stimulating abscisic acid synthesis and ABI5 activity
  publication-title: Plant Cell
– volume: 12
  start-page: 599
  year: 2000
  end-page: 609
  article-title: The Arabidopsis abscisic acid response gene encodes a basic leucine zipper transcription factor
  publication-title: Plant Cell
– volume: 214
  start-page: 365
  year: 2001
  end-page: 372
  article-title: MADS‐box gene expression in lateral primordia, meristems and differentiated tissues of roots
  publication-title: Planta
– volume: 37
  start-page: 1141
  year: 2005
  end-page: 1146
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nature Genetics
– volume: 30
  start-page: 4654
  year: 2020
  end-page: 4664
  article-title: A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants
  publication-title: Current Biology
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 15
  start-page: 573
  year: 2010
  end-page: 581
  article-title: MYB transcription factors in Arabidopsis
  publication-title: Trends in Plant Science
– volume: 100
  start-page: 110
  year: 2012
  end-page: 115
  article-title: Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis
  publication-title: Genomics
– volume: 23
  start-page: 3340
  year: 2018
  end-page: 3351.e3345
  article-title: Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA‐independent SnRK2 activity
  publication-title: Cell Reports
– volume: 10
  start-page: 834
  year: 2017
  end-page: 845
  article-title: Arabidopsis MADS‐box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression
  publication-title: Molecular Plant
– volume: 69
  start-page: 4215
  year: 2018
  end-page: 4226
  article-title: Calcium signaling during salt stress and in the regulation of ion homeostasis
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 151
  year: 2014
  article-title: Tolerance to drought and salt stress in plants: unraveling the signaling networks
  publication-title: Frontiers in Plant Science
– volume: 25
  start-page: 233
  year: 2008
  end-page: 239
  article-title: Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress
  publication-title: Plant Biotechnology
– volume: 19
  start-page: 1900
  year: 2018
  article-title: The Arabidopsis calcium‐dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses
  publication-title: International Journal of Molecular Sciences
– volume: 23
  start-page: 3482
  year: 2011
  end-page: 3497
  article-title: The Arabidopsis Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction
  publication-title: Plant Cell
– volume: 19
  start-page: 3019
  year: 2007
  end-page: 3036
  article-title: Two calcium‐dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis
  publication-title: Plant Cell
– volume: 24
  start-page: 23
  year: 2005
  end-page: 58
  article-title: Drought and salt tolerance in plants
  publication-title: Critical Reviews in Plant Sciences
– volume: 8
  start-page: 39
  year: 2018
  article-title: transcription factor MYB102 increases plant susceptibility to aphids by substantial activation of ethylene biosynthesis
  publication-title: Biomolecules
– volume: 132
  start-page: 1415
  year: 2003
  end-page: 1423
  article-title: Integration of wounding and osmotic stress signals determines the expression of the transcription factor gene
  publication-title: Plant Physiology
– volume: 30
  start-page: 497
  year: 2007
  end-page: 507
  article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in
  publication-title: Plant, Cell & Environment
– volume: 222
  start-page: 730
  year: 2005
  end-page: 742
  article-title: Nutritional regulation of ANR1 and other root‐expressed MADS‐box genes in
  publication-title: Planta
– ident: e_1_2_8_92_1
  doi: 10.1104/pp.16.00891
– ident: e_1_2_8_74_1
  doi: 10.1038/nature01741
– ident: e_1_2_8_48_1
  doi: 10.1046/j.1365-313X.1997.12051067.x
– ident: e_1_2_8_82_1
  doi: 10.3390/ijms19071900
– ident: e_1_2_8_8_1
  doi: 10.1080/07352680590910410
– ident: e_1_2_8_33_1
  doi: 10.1007/s00425-005-0020-3
– ident: e_1_2_8_34_1
  doi: 10.1038/emboj.2013.216
– ident: e_1_2_8_39_1
  doi: 10.1007/s11103-012-9901-6
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1365-3040.2009.02041.x
– ident: e_1_2_8_51_1
  doi: 10.1093/jxb/erq098
– ident: e_1_2_8_9_1
  doi: 10.1105/tpc.111.089581
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.1319955111
– ident: e_1_2_8_101_1
  doi: 10.1371/journal.pone.0105597
– ident: e_1_2_8_99_1
  doi: 10.1046/j.1365-313X.2002.01309.x
– ident: e_1_2_8_38_1
  doi: 10.1007/s00299-011-1068-0
– ident: e_1_2_8_58_1
  doi: 10.1093/jxb/err280
– ident: e_1_2_8_106_1
  doi: 10.1016/j.devcel.2020.10.012
– ident: e_1_2_8_85_1
  doi: 10.1016/j.cub.2020.09.013
– ident: e_1_2_8_5_1
  doi: 10.1126/science.285.5431.1256
– ident: e_1_2_8_76_1
  doi: 10.1073/pnas.122224699
– ident: e_1_2_8_94_1
  doi: 10.1016/j.cj.2018.01.003
– ident: e_1_2_8_69_1
  doi: 10.1111/nph.13519
– ident: e_1_2_8_68_1
  doi: 10.1038/nprot.2008.38
– ident: e_1_2_8_104_1
  doi: 10.1038/90824
– ident: e_1_2_8_114_1
  doi: 10.1105/tpc.107.050666
– ident: e_1_2_8_35_1
  doi: 10.1093/aob/mcw126
– ident: e_1_2_8_87_1
  doi: 10.1111/j.1365-313X.2005.02595.x
– ident: e_1_2_8_10_1
  doi: 10.1093/emboj/cdg207
– ident: e_1_2_8_109_1
  doi: 10.1016/j.celrep.2018.05.044
– ident: e_1_2_8_91_1
  doi: 10.3389/fpls.2018.00838
– ident: e_1_2_8_26_1
  doi: 10.1111/tpj.12597
– ident: e_1_2_8_63_1
  doi: 10.1016/S0378-1119(03)00747-9
– ident: e_1_2_8_47_1
  doi: 10.1105/tpc.112.100933
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-021-22812-x
– ident: e_1_2_8_46_1
  doi: 10.1038/s41586-019-1449-z
– ident: e_1_2_8_57_1
  doi: 10.1046/j.1365-313X.2002.01430.x
– ident: e_1_2_8_59_1
  doi: 10.1093/jxb/ert326
– volume: 44
  start-page: 532
  year: 2002
  ident: e_1_2_8_6_1
  article-title: Evidence that the auxin signaling pathway interacts with plant stress response
  publication-title: Acta Botanica Sinica
– ident: e_1_2_8_14_1
  doi: 10.1093/jxb/ery086
– ident: e_1_2_8_45_1
  doi: 10.1186/1471-2229-9-96
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jplph.2019.153035
– ident: e_1_2_8_112_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_8_4_1
  doi: 10.1371/journal.pgen.1007086
– ident: e_1_2_8_75_1
  doi: 10.1105/tpc.108.061515
– ident: e_1_2_8_40_1
  doi: 10.1186/1746-4811-1-13
– ident: e_1_2_8_61_1
  doi: 10.1371/journal.pgen.1005760
– ident: e_1_2_8_80_1
  doi: 10.1038/nature11909
– ident: e_1_2_8_54_1
  doi: 10.1111/nph.16172
– ident: e_1_2_8_60_1
  doi: 10.1093/jxb/ery201
– ident: e_1_2_8_96_1
  doi: 10.1146/annurev.arplant.57.032905.105444
– ident: e_1_2_8_12_1
  doi: 10.1007/s004250100637
– ident: e_1_2_8_20_1
  doi: 10.1111/jipb.12899
– ident: e_1_2_8_37_1
  doi: 10.3389/fpls.2014.00151
– ident: e_1_2_8_100_1
  doi: 10.1038/nprot.2007.199
– ident: e_1_2_8_88_1
  doi: 10.1105/tpc.107.052100
– ident: e_1_2_8_89_1
  doi: 10.1104/pp.107.108647
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-313X.2000.00891.x
– ident: e_1_2_8_11_1
  doi: 10.1016/S0005-2736(00)00135-8
– ident: e_1_2_8_64_1
  doi: 10.1105/tpc.18.00584
– ident: e_1_2_8_25_1
  doi: 10.1104/pp.102.019273
– ident: e_1_2_8_62_1
  doi: 10.1016/S0014-5793(02)03488-9
– ident: e_1_2_8_103_1
  doi: 10.1038/nature13593
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ygeno.2012.06.004
– ident: e_1_2_8_17_1
  doi: 10.1007/s11032-006-9048-8
– ident: e_1_2_8_41_1
  doi: 10.1016/j.tplants.2009.08.009
– ident: e_1_2_8_13_1
  doi: 10.1038/ncomms6833
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365-3040.2007.01637.x
– ident: e_1_2_8_93_1
  doi: 10.1016/0926-6585(65)90170-6
– ident: e_1_2_8_31_1
  doi: 10.1016/j.pbi.2006.05.014
– ident: e_1_2_8_49_1
  doi: 10.3390/ijms19103206
– ident: e_1_2_8_43_1
  doi: 10.1111/pce.12228
– ident: e_1_2_8_111_1
  doi: 10.1016/S1369-5266(03)00085-2
– ident: e_1_2_8_73_1
  doi: 10.1093/jxb/erj114
– ident: e_1_2_8_79_1
  doi: 10.1080/15592324.2015.1117723
– ident: e_1_2_8_110_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_8_81_1
  doi: 10.1016/j.plantsci.2015.10.003
– ident: e_1_2_8_72_1
  doi: 10.1104/pp.105.066324
– ident: e_1_2_8_7_1
  doi: 10.1105/tpc.111.095273
– ident: e_1_2_8_78_1
  doi: 10.1105/tpc.7.8.1259
– ident: e_1_2_8_83_1
  doi: 10.1016/j.cub.2014.06.064
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cub.2020.09.016
– ident: e_1_2_8_27_1
  doi: 10.1016/j.tplants.2010.06.005
– ident: e_1_2_8_42_1
  doi: 10.5511/plantbiotechnology.25.233
– ident: e_1_2_8_95_1
  doi: 10.3389/fpls.2019.00228
– ident: e_1_2_8_2_1
  doi: 10.1111/nph.15793
– ident: e_1_2_8_30_1
  doi: 10.1105/tpc.12.4.599
– ident: e_1_2_8_71_1
  doi: 10.1023/A:1006321900483
– volume: 11
  start-page: 1743
  year: 1999
  ident: e_1_2_8_90_1
  article-title: A transmembrane hybrid‐type histidine kinase in Arabidopsis functions as an osmosensor
  publication-title: Cell
– ident: e_1_2_8_44_1
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– ident: e_1_2_8_108_1
  doi: 10.1093/jxb/eraa303
– ident: e_1_2_8_24_1
  doi: 10.1016/j.tplants.2014.02.001
– ident: e_1_2_8_107_1
  doi: 10.1073/pnas.1816991115
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1608449113
– ident: e_1_2_8_50_1
  doi: 10.1016/j.tplants.2012.12.002
– ident: e_1_2_8_15_1
  doi: 10.1046/j.1365-313X.2002.01295.x
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cub.2018.01.023
– ident: e_1_2_8_66_1
  doi: 10.1105/tpc.108.064568
– ident: e_1_2_8_86_1
  doi: 10.1104/pp.107.109413
– ident: e_1_2_8_22_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_8_77_1
  doi: 10.1038/ng1643
– volume: 4
  start-page: 1251
  year: 1992
  ident: e_1_2_8_36_1
  article-title: lsolation of the Arabidopsis ABI3 gene by positional cloning
  publication-title: Plant Cell
– ident: e_1_2_8_67_1
  doi: 10.1038/cr.2009.83
– ident: e_1_2_8_32_1
  doi: 10.1093/pcp/pcs050
– ident: e_1_2_8_70_1
  doi: 10.1263/jbb.104.34
– ident: e_1_2_8_105_1
  doi: 10.1126/science.279.5349.407
– ident: e_1_2_8_113_1
  doi: 10.3390/biom8020039
– ident: e_1_2_8_98_1
  doi: 10.1111/nph.14920
– ident: e_1_2_8_102_1
  doi: 10.1016/j.molp.2017.04.004
– ident: e_1_2_8_84_1
  doi: 10.1111/tpj.12091
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1365-313X.2009.04073.x
– ident: e_1_2_8_97_1
  doi: 10.1016/j.gene.2009.02.010
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-020-14477-9
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1744-7909.2007.00442.x
SSID ssj0009562
Score 2.5652564
Snippet • Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response....
Summary Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress...
Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2418
SubjectTerms ABA signalling
Abiotic stress
Abscisic Acid
AGL16
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Down-regulation
Elongation
Environmental stress
Gene Expression Regulation, Plant
Genes
Genetic analysis
Germination
Germination - genetics
Homeostasis
MADS‐box
Mutants
Phenotypes
plant response
Plants, Genetically Modified - metabolism
primary root elongation
root growth
Salt Stress
Salts
Seed germination
Seedlings - metabolism
Stress response
Stress, Physiological - genetics
Transcription
transcription (genetics)
Transcription factors
Transcriptomics
Title Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes
URI https://www.jstor.org/stable/27112012
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17760
https://www.ncbi.nlm.nih.gov/pubmed/34605021
https://www.proquest.com/docview/2598390820
https://www.proquest.com/docview/2579093128
https://www.proquest.com/docview/2636507558
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VFQcuvAsLBRnEgUtWiePYiTgtj7JCtEJApT0gRX6lrVglq01WUE6cOPMb-SWM7SRqUUGIWxSPEz9m4u-LxzMAj7lCJquLLFK2ohHjSHcKzdIotoJZxlNT-ZQs-wd8fsheL7LFFjwdzsKE-BDjDzdnGf577QxcqvaMkder42kiBHd83flqOUD0jp4JuMvpEIGZM77oowo5L56x5rm1KLgjXgQ0z-NWv_DsXYWPQ5ODv8mn6aZTU_31t2iO_9mna3ClB6RkFjToOmzZ-gZcetYgaDy9Cd9na6lOTLNqT1qyP3vx_ue3H6r5QkKaHjJ79SbhBIskqe2RjyFO1iG7PZY2FVktcebwlnfEtaRrSCuXHQknVIg6Jab5XPc1cBH1pfiKvoJ73JH7GN-Cw72XH57Poz51Q6QZYtAIYaK2LGc0NkhZtJQithKnPa94ZlRVGZ4nlaYJL1BZaIE0RbFY04wWOa94YtId2K6b2t4BUvBcSJvkJjGUpdzmQsQGSSwya4Ngj03gyTCJpe7jmrv0Gsty4Dc4qqUf1Qk8GkVXIZjHRUI7XhNGCSoQk-I6PoHdQTXK3tDbEtkjQkyHoybwcCxGE3X7LrK2zcbJiCIuUkQCf5HhqMII3zKUuR3UbmxA6vauEYthT73y_Lnt5cHbub-4---i9-AydX463kVnF7a79cbeR6DVqQfeon4BdpIj6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBQkulFfLtgUM4sAlq8Rx7ETislDKArsrBK20FxTFj5SKVbLazYqWE6ee-xv5JYydh1pUEOIWZcaJE8_E32dPZgCecYlMViWRJ01OPcaR7iSKhZ5vBDOMhzp3JVnGEz48ZO-m0XQNXrT_wtT5IboFN-sZ7nttHdwuSF_w8mL-pR8IwZGwX7MVvW39gr2P9ELKXU7bHMyc8WmTV8jG8XRNL81GdUDiVVDzMnJ1U8_-BnxuO11HnHztryrZV99_y-f4v091G241mJQMaiO6A2umuAvXX5aIG0_vwdlgkcljXc6Xx0syHux9-vnjXJYnpK7UQwZvRgEnKMpIYY5cGnGyqAvco7TMyXyGg4enXCyuIVVJltmsIvVPKkSeEl1-K5oWOI86Kd6iaWAvd2S_x_fhcP_1wauh11Rv8BRDGOohUlSGxYz6GlmLyjLhmwxHPs55pGWeax4HuaIBT9BeaIJMRTJf0YgmMc95oMNNWC_KwjwAkvBYZCaIdaApC7mJhfA18lgk1xrxHuvB83YUU9WkNrcVNmZpS3Hwraburfbgaac6r_N5XKW06Uyh06ACYSlO5T3YbW0jbXx9mSKBRJRpoVQPnnRi9FK79ZIVplxZHZH4SYhg4C86PES4LKIIdbZqu-s6ENrta4Rj-KTOev7c93TyYegOtv9d9THcGB6MR-no7eT9DtykNmzHRezswnq1WJmHiLsq-ci51y-U0igC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqghAXKI-WpQUM4sAlq8Rx7EScFsqyQLuqgEp7QIriV6lYJdFuVrSceuLMb-SXMLaTqEUFIW5RPE78mIm_Lx7PIPSUCWCyMksCoQ0JKAO6k0kaB6HmVFMWK-NSsuxP2eSQvp0lszX0vDsL4-ND9D_crGW477U18FqZc0Ze1p-HEecM-PoVysBYLCJ6T85F3GWkC8HMKJu1YYWsG09f9cJi5P0RL0OaF4GrW3nGN9Gnrs3e4eTLcNWIofz2WzjH_-zUBrrRIlI88ip0C63p8ja6-qIC1Hh6B30fLQpxrKp6ebzE-6PdDz_PfojqBPs8PXj0ei9iGIoKXOojF0QcL3x6eyitDK7nMHVwy3niatxUeFnMG-yPqGBxilX1tWxrwCrqSuEVbQX7uCP7Nb6LDsevPr6cBG3uhkBSAKEB4ESpaUpJqICzyKLgoS5g3lPDEiWMUSyNjCQRy0BbSAY8RdBQkoRkKTMsUvEmWi-rUt9DOGMpL3SUqkgRGjOdch4qYLFArRWgPTpAz7pJzGUb2Nzm15jnHcGBUc3dqA7Qk1609tE8LhPadJrQSxAOoBQW8gHa6VQjby19mQN9BIxpgdQAPe6LwUbtxktR6mplZXgWZjFAgb_IsBjAMk8SkNnyatc3ILab1wDGoKdOef7c9nx6MHEX9_9d9BG6drA7zvfeTN9to-vE-uw4d50dtN4sVvoBgK5GPHTG9QsgZya6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+MADS-box+factor+AGL16+is+a+negative+regulator+of+plant+response+to+salt+stress+by+downregulating+salt-responsive+genes&rft.jtitle=The+New+phytologist&rft.au=Zhao%2C+Ping-Xia&rft.au=Zhang%2C+Jing&rft.au=Chen%2C+Si-Yan&rft.au=Wu%2C+Jie&rft.date=2021-12-01&rft.eissn=1469-8137&rft.volume=232&rft.issue=6&rft.spage=2418&rft_id=info:doi/10.1111%2Fnph.17760&rft_id=info%3Apmid%2F34605021&rft.externalDocID=34605021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon