Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing vari...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 142; no. 6; p. 064704
Main Authors E, J. C., Wang, L., Cai, Y., Wu, H. A., Luo, S. N.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m−3s−1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.
AbstractList Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m−3s−1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.
Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.
Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{sup −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.
Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.
Author Luo, S. N.
E, J. C.
Wu, H. A.
Wang, L.
Cai, Y.
Author_xml – sequence: 1
  givenname: J. C.
  orcidid: 0000-0001-6061-5734
  surname: E
  fullname: E, J. C.
– sequence: 2
  givenname: L.
  surname: Wang
  fullname: Wang, L.
– sequence: 3
  givenname: Y.
  surname: Cai
  fullname: Cai, Y.
– sequence: 4
  givenname: H. A.
  surname: Wu
  fullname: Wu, H. A.
– sequence: 5
  givenname: S. N.
  surname: Luo
  fullname: Luo, S. N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25681932$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22416128$$D View this record in Osti.gov
BookMark eNplkc1OHDEQhK2IKCw_h7wAGokLOQx02zP2mlu0CiECKRc4Wx7bC0Zee7E9iuDpM7BLIsGpL1-Vuqr2yE5M0RHyFeEUgbMzPO0kCE7FJzJDmMtWcAk7ZAZAsZUc-C7ZK-UBAFDQ7gvZpT2fo2R0Rq4W-alUHYJ_1tWn2PjYlHHtskkpONsE_zh62yzG8-YyrdKdiy6NpYmjCW4j0NE2dzn9qfcH5PNSh-IOt3ef3F78uFlctte_f_5afL9uTQeitq7jzNgOBko7Z_tBYwdLlIORS2RsEECBC2GNpdo4YSUyI7gbgFKmtZGG7ZPjjW8q1atifHXm3qQYnalqMkWOdD5RJxtqndPj6EpVK1-MC0G_RlDI-14wQIr_Df-hD2nMccqgKNKp2zlgP1FHW2ocVs6qdfYrnZ_UW5kTcLYBTE6lZLdU02uvJdWsfVAI6mUuhWo716T49k7xZvqR_QsKvJI1
CitedBy_id crossref_primary_10_1016_j_jcrysgro_2022_126928
crossref_primary_10_1016_j_jcrysgro_2022_126927
crossref_primary_10_1021_acs_jpcc_6b00013
crossref_primary_10_1088_1361_651X_aa67b1
crossref_primary_10_1063_1_4926785
crossref_primary_10_1088_2632_959X_ab951e
crossref_primary_10_1038_s41467_024_50182_7
crossref_primary_10_1063_5_0097023
crossref_primary_10_1021_acs_jpcc_7b05973
crossref_primary_10_1016_j_jcrysgro_2017_04_024
crossref_primary_10_1088_1361_648X_abe0e1
crossref_primary_10_3390_ma17143573
crossref_primary_10_7498_aps_71_20211415
crossref_primary_10_1016_j_commatsci_2022_111316
crossref_primary_10_1142_S1793292021501320
crossref_primary_10_3390_met10111532
crossref_primary_10_1103_PhysRevB_92_014108
crossref_primary_10_1039_C8CE00767E
crossref_primary_10_1016_j_mechmat_2020_103479
crossref_primary_10_1063_1_5020068
crossref_primary_10_1063_5_0188765
crossref_primary_10_3390_mi10050281
crossref_primary_10_1038_srep31653
crossref_primary_10_1016_j_actamat_2018_04_008
crossref_primary_10_3390_molecules29102230
crossref_primary_10_1016_j_mtla_2021_101258
crossref_primary_10_1063_1_4978359
crossref_primary_10_1107_S1600577517016733
crossref_primary_10_1063_1_4923408
crossref_primary_10_1063_1_5010088
crossref_primary_10_1063_1_4997595
crossref_primary_10_1007_s42114_022_00522_2
crossref_primary_10_1016_j_jmst_2021_10_058
crossref_primary_10_1016_j_jcrysgro_2017_06_023
crossref_primary_10_1080_14786435_2019_1644464
crossref_primary_10_1103_PhysRevLett_132_206102
crossref_primary_10_3390_met12091504
crossref_primary_10_3390_met12122101
crossref_primary_10_1063_5_0090633
crossref_primary_10_1098_rsos_210501
Cites_doi 10.1021/ja072260n
10.1063/1.2364057
10.1038/nmat1136
10.1016/j.cpc.2007.05.018
10.1103/RevModPhys.49.523
10.1063/1.437316
10.1063/1.2402167
10.1063/1.2363382
10.1063/1.3072794
10.1103/RevModPhys.62.251
10.1063/1.1373664
10.1016/0927-0256(94)90109-0
10.1063/1.2713401
10.1016/j.scriptamat.2008.08.041
10.1063/1.3204448
10.1063/1.1879111
10.5194/acp-11-2853-2011
10.1063/1.361222
10.1103/PhysRevB.47.10785
10.1063/1.3675909
10.1016/s0081-1947(08)60144-7
10.1063/1.3049799
10.1063/1.3001576
10.1088/0953-8984/20/11/114113
10.1006/jcph.1995.1039
10.1103/PhysRevLett.96.225701
10.1063/1.1927699
10.1103/PhysRevLett.94.235703
10.1063/1.1750631
10.1063/1.2243958
10.1038/ncomms5327
10.1103/PhysRevLett.107.055501
10.1016/j.jcrysgro.2012.02.018
10.1063/1.3263948
10.1063/1.117559
10.1103/PhysRevLett.69.1228
10.1007/s10947-006-0388-3
10.1002/(SICI)1521-4079(1998)33:1%3C3::AID-CRAT3%3E3.0.CO;2-3
10.1063/1.1823042
10.1021/jp404403k
10.1103/PhysRevB.63.224106
10.1103/PhysRevLett.112.097602
10.1063/1.4900861
10.1063/1.2790424
10.1063/1.1755655
10.1103/PhysRevLett.90.085702
10.1063/1.373696
10.1063/1.4880960
10.1021/jp052904i
10.1103/PhysRevB.68.134206
10.1039/c1cp22167a
10.1063/1.1747055
10.1088/0953-8984/20/9/095220
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OTOTI
DOI 10.1063/1.4907627
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 22416128
25681932
10_1063_1_4907627
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
NPM
8FD
H8D
L7M
7X8
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c407t-e463cd40b224ed5ba140f19bc9f133b7020677dcd2ace7d913c76eb0223aac9c3
ISSN 0021-9606
1089-7690
IngestDate Thu May 18 18:29:35 EDT 2023
Thu Jul 10 23:05:29 EDT 2025
Mon Jun 30 02:35:29 EDT 2025
Thu Apr 03 06:57:37 EDT 2025
Tue Jul 01 04:15:55 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-e463cd40b224ed5ba140f19bc9f133b7020677dcd2ace7d913c76eb0223aac9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6061-5734
PMID 25681932
PQID 2124908015
PQPubID 2050685
ParticipantIDs osti_scitechconnect_22416128
proquest_miscellaneous_1655730121
proquest_journals_2124908015
pubmed_primary_25681932
crossref_citationtrail_10_1063_1_4907627
crossref_primary_10_1063_1_4907627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-14
PublicationDateYYYYMMDD 2015-02-14
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023061916332560800_c17) 1979; 70
(2023061916332560800_c49) 2008; 59
(2023061916332560800_c35) 2005; 97
(2023061916332560800_c42) 2006; 125
(2023061916332560800_c45) 2012; 345
(2023061916332560800_c53) 2004; 85
(2023061916332560800_c2) 1991; 45
(2023061916332560800_c19) 2004; 120
(2023061916332560800_c32) 2008; 20
(2023061916332560800_c26) 1940; 8
(2023061916332560800_c33) 1995; 117
(2023061916332560800_c38) 2014; 85
(2023061916332560800_c52) 2004; 3
(2023061916332560800_c55) 1949; 17
(2023061916332560800_c5) 2006; 96
(2023061916332560800_c18) 2001; 115
(2023061916332560800_c21) 2005; 94
(2023061916332560800_c31) 2001; 63
(2023061916332560800_c16) 2011; 11
(2023061916332560800_c10) 2007; 129
(2023061916332560800_c20) 2006; 47
(2023061916332560800_c12) 2012; 100
(2023061916332560800_c40) 1990; 62
(2023061916332560800_c44) 2005; 109
(2023061916332560800_c25) 2008; 20
(2023061916332560800_c58) 2011; 13
(2023061916332560800_c14) 2003; 68
(2023061916332560800_c43) 2006; 125
(2023061916332560800_c3) 2009; 131
(2023061916332560800_c28) 1999
(2023061916332560800_c47) 2005; 86
(2023061916332560800_c37) 2014; 112
(2023061916332560800_c4) 2007; 127
(2023061916332560800_c51) 2009; 95
(2023061916332560800_c59) 1977; 49
(2023061916332560800_c36) 2011; 107
(2023061916332560800_c9) 2006; 89
(2023061916332560800_c50) 2014; 5
(2023061916332560800_c24) 2009; 130
(2023061916332560800_c1) 1965
(2023061916332560800_c22) 2003; 90
(2023061916332560800_c29) 1994; 2
(2023061916332560800_c34) 1992; 69
(2023061916332560800_c8) 1996; 69
(2023061916332560800_c6) 2014; 140
(2023061916332560800_c30) 2007; 177
(2023061916332560800_c57) 2013; 117
2023061916332560800_c41
(2023061916332560800_c56) 1981
(2023061916332560800_c11) 2008; 93
(2023061916332560800_c7) 1993; 47
(2023061916332560800_c39) 1946
(2023061916332560800_c23) 2007; 126
(2023061916332560800_c54) 1998; 33
(2023061916332560800_c15) 2000; 88
(2023061916332560800_c48) 2006; 89
(2023061916332560800_c13) 1996; 79
(2023061916332560800_c27) 1939; 135
(2023061916332560800_c46) 2009; 130
References_xml – volume: 129
  start-page: 7012
  year: 2007
  ident: 2023061916332560800_c10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072260n
– volume: 89
  start-page: 173104
  year: 2006
  ident: 2023061916332560800_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2364057
– volume: 3
  start-page: 399
  year: 2004
  ident: 2023061916332560800_c52
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1136
– volume: 177
  start-page: 518
  year: 2007
  ident: 2023061916332560800_c30
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.05.018
– volume: 49
  start-page: 523
  year: 1977
  ident: 2023061916332560800_c59
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.49.523
– volume: 70
  start-page: 5234
  year: 1979
  ident: 2023061916332560800_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437316
– volume: 125
  start-page: 214505
  year: 2006
  ident: 2023061916332560800_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2402167
– volume: 125
  start-page: 194503
  year: 2006
  ident: 2023061916332560800_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2363382
– volume: 130
  start-page: 064505
  year: 2009
  ident: 2023061916332560800_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3072794
– volume: 62
  start-page: 251
  year: 1990
  ident: 2023061916332560800_c40
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.62.251
– volume: 115
  start-page: 385
  year: 2001
  ident: 2023061916332560800_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1373664
– volume: 2
  start-page: 279
  year: 1994
  ident: 2023061916332560800_c29
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(94)90109-0
– volume: 126
  start-page: 134103
  year: 2007
  ident: 2023061916332560800_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2713401
– volume: 59
  start-page: 1267
  year: 2008
  ident: 2023061916332560800_c49
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2008.08.041
– volume: 131
  start-page: 114506
  year: 2009
  ident: 2023061916332560800_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3204448
– volume: 86
  start-page: 103112
  year: 2005
  ident: 2023061916332560800_c47
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1879111
– volume: 11
  start-page: 2853
  year: 2011
  ident: 2023061916332560800_c16
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-2853-2011
– volume: 79
  start-page: 2981
  year: 1996
  ident: 2023061916332560800_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.361222
– volume: 47
  start-page: 10785
  year: 1993
  ident: 2023061916332560800_c7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.10785
– volume: 100
  start-page: 041909
  year: 2012
  ident: 2023061916332560800_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3675909
– volume-title: The Theory of Transformation in Metals and Alloys
  year: 1965
  ident: 2023061916332560800_c1
– volume: 135
  start-page: 416
  year: 1939
  ident: 2023061916332560800_c27
  publication-title: Am. Inst. Min. Met. Engrs.-Trans.
– volume: 45
  start-page: 75
  year: 1991
  ident: 2023061916332560800_c2
  publication-title: Solid State Phys.
  doi: 10.1016/s0081-1947(08)60144-7
– ident: 2023061916332560800_c41
– volume: 130
  start-page: 024508
  year: 2009
  ident: 2023061916332560800_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3049799
– volume: 93
  start-page: 153115
  year: 2008
  ident: 2023061916332560800_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3001576
– volume: 20
  start-page: 114113
  year: 2008
  ident: 2023061916332560800_c25
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/11/114113
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023061916332560800_c33
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 96
  start-page: 225701
  year: 2006
  ident: 2023061916332560800_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.225701
– volume: 97
  start-page: 111101
  year: 2005
  ident: 2023061916332560800_c35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1927699
– volume: 94
  start-page: 235703
  year: 2005
  ident: 2023061916332560800_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.235703
– volume: 8
  start-page: 212
  year: 1940
  ident: 2023061916332560800_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750631
– volume: 89
  start-page: 041919
  year: 2006
  ident: 2023061916332560800_c48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2243958
– volume: 5
  start-page: 4327
  year: 2014
  ident: 2023061916332560800_c50
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5327
– volume: 107
  start-page: 055501
  year: 2011
  ident: 2023061916332560800_c36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.055501
– volume: 345
  start-page: 34
  year: 2012
  ident: 2023061916332560800_c45
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.02.018
– volume: 95
  start-page: 203101
  year: 2009
  ident: 2023061916332560800_c51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3263948
– volume: 69
  start-page: 3887
  year: 1996
  ident: 2023061916332560800_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117559
– volume: 69
  start-page: 1228
  year: 1992
  ident: 2023061916332560800_c34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1228
– volume: 47
  start-page: S141
  year: 2006
  ident: 2023061916332560800_c20
  publication-title: J. Struct. Chem.
  doi: 10.1007/s10947-006-0388-3
– volume: 33
  start-page: 3
  year: 1998
  ident: 2023061916332560800_c54
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/(SICI)1521-4079(1998)33:1%3C3::AID-CRAT3%3E3.0.CO;2-3
– volume: 85
  start-page: 5049
  year: 2004
  ident: 2023061916332560800_c53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1823042
– volume: 117
  start-page: 10241
  year: 2013
  ident: 2023061916332560800_c57
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp404403k
– volume-title: Phase Transformations in Metals and Alloys
  year: 1981
  ident: 2023061916332560800_c56
– volume: 63
  start-page: 224106
  year: 2001
  ident: 2023061916332560800_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.224106
– volume: 112
  start-page: 097602
  year: 2014
  ident: 2023061916332560800_c37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.097602
– volume: 85
  start-page: 113902
  year: 2014
  ident: 2023061916332560800_c38
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4900861
– volume: 127
  start-page: 164503
  year: 2007
  ident: 2023061916332560800_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2790424
– volume: 120
  start-page: 11640
  year: 2004
  ident: 2023061916332560800_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1755655
– volume-title: Kinetic Theory of Liquids
  year: 1946
  ident: 2023061916332560800_c39
– volume: 90
  start-page: 085702
  year: 2003
  ident: 2023061916332560800_c22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.085702
– volume: 88
  start-page: 562
  year: 2000
  ident: 2023061916332560800_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373696
– volume: 140
  start-page: 214317
  year: 2014
  ident: 2023061916332560800_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880960
– volume: 109
  start-page: 21502
  year: 2005
  ident: 2023061916332560800_c44
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052904i
– volume: 68
  start-page: 134206
  year: 2003
  ident: 2023061916332560800_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.134206
– volume-title: The Physics of Phase Transitions
  year: 1999
  ident: 2023061916332560800_c28
– volume: 13
  start-page: 19807
  year: 2011
  ident: 2023061916332560800_c58
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22167a
– volume: 17
  start-page: 71
  year: 1949
  ident: 2023061916332560800_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747055
– volume: 20
  start-page: 095220
  year: 2008
  ident: 2023061916332560800_c32
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/9/095220
SSID ssj0001724
Score 2.348408
Snippet Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 064704
SubjectTerms ATOMS
COMPUTERIZED SIMULATION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal defects
CRYSTALLIZATION
Crystals
FLUCTUATIONS
GRAIN BOUNDARIES
Ice
INTERFACES
Liquid-solid interfaces
LIQUIDS
Microstructure
Molecular dynamics
MOLECULAR DYNAMICS METHOD
MONOCRYSTALS
NANOSTRUCTURES
NUCLEATION
Probabilistic methods
PROBABILITY
Single crystals
SOLIDS
Stacking faults
Statistical analysis
SUPERCOOLING
TWINNING
Variation
X-RAY DIFFRACTION
Title Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth
URI https://www.ncbi.nlm.nih.gov/pubmed/25681932
https://www.proquest.com/docview/2124908015
https://www.proquest.com/docview/1655730121
https://www.osti.gov/biblio/22416128
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKwQXBOW1UJBBHJBQlnXsOGtuVQCtgCIkWrW3KLEdWCndLNvkAL-emdh5FFoJuERRnMdqvon9zWzmG0KeZzwsDI-xoidTgRBRGGSqUAHEQ5Kh-IoqsFD44JNcHon3J9FJ1xLeV5fU-Uz_vLCu5H9QhWOAK1bJ_gOy_U3hAOwDvrAFhGH7Vxgn2x9A7srS11Ji7uKs2ditrqoSiGS5-t6szMukwbB_WZ1WcCPbKrKiiLG7BPPmXyEUr7-NaepQMNZSVd2pCrg8yEDDWx8YEq3HPvncJ5QT1-y6p8vHTbvU-QSqTzawtnjbFXnOrJsg5wsAUroWn_0MKsKRq4znQyxlde2F_5iqgRth1mAmIDyXTh9gBNnmtMUsRH005TOg53Wxu6GrZCeEECGckJ39Nwcfv_TrMFAz0WlJSf6qfxLqP_trz5GRSQWT6uWBRks4Dm-Rm978dN_Bfptcsetdcj3pGvTtkmufHRp3yIffHIGu1nTkCNQ5Ak2a13TkBnRwAwpuQJ0b3CVH794eJsvAd8kINATjdWCF5NqIeQ5kzJoozyBkLpjKtSoY53k8R4H-2GgTZtrGRjGuY2lz4G48y7TS_B6ZrKu1fUCo0EUR55bpmGsh58BUFrmKjMxixSIjzJS86MyVai8hj51MyrT9lEHylKXeyFPyrD9143RTLjppD22eAtlDxWKNn3bpOkVWCcR7AcMdFql_687SELulQ5jDoil52g-D5fGPrqw1X8pkFOHKFbIpue8w7H9EB_3DS0cekRuD6--RSb1t7GNgnnX-xLvYLzydf1k
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+in+supercooled+liquid+Cu%3A+Homogeneous+nucleation+and+growth&rft.jtitle=The+Journal+of+chemical+physics&rft.au=E%2C+J+C&rft.au=Wang%2C+L&rft.au=Cai%2C+Y&rft.au=Wu%2C+H+A&rft.date=2015-02-14&rft.eissn=1089-7690&rft.volume=142&rft.issue=6&rft.spage=064704&rft_id=info:doi/10.1063%2F1.4907627&rft_id=info%3Apmid%2F25681932&rft.externalDocID=25681932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon