Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth
Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing vari...
Saved in:
Published in | The Journal of chemical physics Vol. 142; no. 6; p. 064704 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m−3s−1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling. |
---|---|
AbstractList | Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m−3s−1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling. Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling. Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{sup −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling. Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling. |
Author | Luo, S. N. E, J. C. Wu, H. A. Wang, L. Cai, Y. |
Author_xml | – sequence: 1 givenname: J. C. orcidid: 0000-0001-6061-5734 surname: E fullname: E, J. C. – sequence: 2 givenname: L. surname: Wang fullname: Wang, L. – sequence: 3 givenname: Y. surname: Cai fullname: Cai, Y. – sequence: 4 givenname: H. A. surname: Wu fullname: Wu, H. A. – sequence: 5 givenname: S. N. surname: Luo fullname: Luo, S. N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25681932$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22416128$$D View this record in Osti.gov |
BookMark | eNplkc1OHDEQhK2IKCw_h7wAGokLOQx02zP2mlu0CiECKRc4Wx7bC0Zee7E9iuDpM7BLIsGpL1-Vuqr2yE5M0RHyFeEUgbMzPO0kCE7FJzJDmMtWcAk7ZAZAsZUc-C7ZK-UBAFDQ7gvZpT2fo2R0Rq4W-alUHYJ_1tWn2PjYlHHtskkpONsE_zh62yzG8-YyrdKdiy6NpYmjCW4j0NE2dzn9qfcH5PNSh-IOt3ef3F78uFlctte_f_5afL9uTQeitq7jzNgOBko7Z_tBYwdLlIORS2RsEECBC2GNpdo4YSUyI7gbgFKmtZGG7ZPjjW8q1atifHXm3qQYnalqMkWOdD5RJxtqndPj6EpVK1-MC0G_RlDI-14wQIr_Df-hD2nMccqgKNKp2zlgP1FHW2ocVs6qdfYrnZ_UW5kTcLYBTE6lZLdU02uvJdWsfVAI6mUuhWo716T49k7xZvqR_QsKvJI1 |
CitedBy_id | crossref_primary_10_1016_j_jcrysgro_2022_126928 crossref_primary_10_1016_j_jcrysgro_2022_126927 crossref_primary_10_1021_acs_jpcc_6b00013 crossref_primary_10_1088_1361_651X_aa67b1 crossref_primary_10_1063_1_4926785 crossref_primary_10_1088_2632_959X_ab951e crossref_primary_10_1038_s41467_024_50182_7 crossref_primary_10_1063_5_0097023 crossref_primary_10_1021_acs_jpcc_7b05973 crossref_primary_10_1016_j_jcrysgro_2017_04_024 crossref_primary_10_1088_1361_648X_abe0e1 crossref_primary_10_3390_ma17143573 crossref_primary_10_7498_aps_71_20211415 crossref_primary_10_1016_j_commatsci_2022_111316 crossref_primary_10_1142_S1793292021501320 crossref_primary_10_3390_met10111532 crossref_primary_10_1103_PhysRevB_92_014108 crossref_primary_10_1039_C8CE00767E crossref_primary_10_1016_j_mechmat_2020_103479 crossref_primary_10_1063_1_5020068 crossref_primary_10_1063_5_0188765 crossref_primary_10_3390_mi10050281 crossref_primary_10_1038_srep31653 crossref_primary_10_1016_j_actamat_2018_04_008 crossref_primary_10_3390_molecules29102230 crossref_primary_10_1016_j_mtla_2021_101258 crossref_primary_10_1063_1_4978359 crossref_primary_10_1107_S1600577517016733 crossref_primary_10_1063_1_4923408 crossref_primary_10_1063_1_5010088 crossref_primary_10_1063_1_4997595 crossref_primary_10_1007_s42114_022_00522_2 crossref_primary_10_1016_j_jmst_2021_10_058 crossref_primary_10_1016_j_jcrysgro_2017_06_023 crossref_primary_10_1080_14786435_2019_1644464 crossref_primary_10_1103_PhysRevLett_132_206102 crossref_primary_10_3390_met12091504 crossref_primary_10_3390_met12122101 crossref_primary_10_1063_5_0090633 crossref_primary_10_1098_rsos_210501 |
Cites_doi | 10.1021/ja072260n 10.1063/1.2364057 10.1038/nmat1136 10.1016/j.cpc.2007.05.018 10.1103/RevModPhys.49.523 10.1063/1.437316 10.1063/1.2402167 10.1063/1.2363382 10.1063/1.3072794 10.1103/RevModPhys.62.251 10.1063/1.1373664 10.1016/0927-0256(94)90109-0 10.1063/1.2713401 10.1016/j.scriptamat.2008.08.041 10.1063/1.3204448 10.1063/1.1879111 10.5194/acp-11-2853-2011 10.1063/1.361222 10.1103/PhysRevB.47.10785 10.1063/1.3675909 10.1016/s0081-1947(08)60144-7 10.1063/1.3049799 10.1063/1.3001576 10.1088/0953-8984/20/11/114113 10.1006/jcph.1995.1039 10.1103/PhysRevLett.96.225701 10.1063/1.1927699 10.1103/PhysRevLett.94.235703 10.1063/1.1750631 10.1063/1.2243958 10.1038/ncomms5327 10.1103/PhysRevLett.107.055501 10.1016/j.jcrysgro.2012.02.018 10.1063/1.3263948 10.1063/1.117559 10.1103/PhysRevLett.69.1228 10.1007/s10947-006-0388-3 10.1002/(SICI)1521-4079(1998)33:1%3C3::AID-CRAT3%3E3.0.CO;2-3 10.1063/1.1823042 10.1021/jp404403k 10.1103/PhysRevB.63.224106 10.1103/PhysRevLett.112.097602 10.1063/1.4900861 10.1063/1.2790424 10.1063/1.1755655 10.1103/PhysRevLett.90.085702 10.1063/1.373696 10.1063/1.4880960 10.1021/jp052904i 10.1103/PhysRevB.68.134206 10.1039/c1cp22167a 10.1063/1.1747055 10.1088/0953-8984/20/9/095220 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OTOTI |
DOI | 10.1063/1.4907627 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 22416128 25681932 10_1063_1_4907627 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 8FD H8D L7M 7X8 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c407t-e463cd40b224ed5ba140f19bc9f133b7020677dcd2ace7d913c76eb0223aac9c3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu May 18 18:29:35 EDT 2023 Thu Jul 10 23:05:29 EDT 2025 Mon Jun 30 02:35:29 EDT 2025 Thu Apr 03 06:57:37 EDT 2025 Tue Jul 01 04:15:55 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-e463cd40b224ed5ba140f19bc9f133b7020677dcd2ace7d913c76eb0223aac9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6061-5734 |
PMID | 25681932 |
PQID | 2124908015 |
PQPubID | 2050685 |
ParticipantIDs | osti_scitechconnect_22416128 proquest_miscellaneous_1655730121 proquest_journals_2124908015 pubmed_primary_25681932 crossref_citationtrail_10_1063_1_4907627 crossref_primary_10_1063_1_4907627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-14 |
PublicationDateYYYYMMDD | 2015-02-14 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023061916332560800_c17) 1979; 70 (2023061916332560800_c49) 2008; 59 (2023061916332560800_c35) 2005; 97 (2023061916332560800_c42) 2006; 125 (2023061916332560800_c45) 2012; 345 (2023061916332560800_c53) 2004; 85 (2023061916332560800_c2) 1991; 45 (2023061916332560800_c19) 2004; 120 (2023061916332560800_c32) 2008; 20 (2023061916332560800_c26) 1940; 8 (2023061916332560800_c33) 1995; 117 (2023061916332560800_c38) 2014; 85 (2023061916332560800_c52) 2004; 3 (2023061916332560800_c55) 1949; 17 (2023061916332560800_c5) 2006; 96 (2023061916332560800_c18) 2001; 115 (2023061916332560800_c21) 2005; 94 (2023061916332560800_c31) 2001; 63 (2023061916332560800_c16) 2011; 11 (2023061916332560800_c10) 2007; 129 (2023061916332560800_c20) 2006; 47 (2023061916332560800_c12) 2012; 100 (2023061916332560800_c40) 1990; 62 (2023061916332560800_c44) 2005; 109 (2023061916332560800_c25) 2008; 20 (2023061916332560800_c58) 2011; 13 (2023061916332560800_c14) 2003; 68 (2023061916332560800_c43) 2006; 125 (2023061916332560800_c3) 2009; 131 (2023061916332560800_c28) 1999 (2023061916332560800_c47) 2005; 86 (2023061916332560800_c37) 2014; 112 (2023061916332560800_c4) 2007; 127 (2023061916332560800_c51) 2009; 95 (2023061916332560800_c59) 1977; 49 (2023061916332560800_c36) 2011; 107 (2023061916332560800_c9) 2006; 89 (2023061916332560800_c50) 2014; 5 (2023061916332560800_c24) 2009; 130 (2023061916332560800_c1) 1965 (2023061916332560800_c22) 2003; 90 (2023061916332560800_c29) 1994; 2 (2023061916332560800_c34) 1992; 69 (2023061916332560800_c8) 1996; 69 (2023061916332560800_c6) 2014; 140 (2023061916332560800_c30) 2007; 177 (2023061916332560800_c57) 2013; 117 2023061916332560800_c41 (2023061916332560800_c56) 1981 (2023061916332560800_c11) 2008; 93 (2023061916332560800_c7) 1993; 47 (2023061916332560800_c39) 1946 (2023061916332560800_c23) 2007; 126 (2023061916332560800_c54) 1998; 33 (2023061916332560800_c15) 2000; 88 (2023061916332560800_c48) 2006; 89 (2023061916332560800_c13) 1996; 79 (2023061916332560800_c27) 1939; 135 (2023061916332560800_c46) 2009; 130 |
References_xml | – volume: 129 start-page: 7012 year: 2007 ident: 2023061916332560800_c10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072260n – volume: 89 start-page: 173104 year: 2006 ident: 2023061916332560800_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2364057 – volume: 3 start-page: 399 year: 2004 ident: 2023061916332560800_c52 publication-title: Nat. Mater. doi: 10.1038/nmat1136 – volume: 177 start-page: 518 year: 2007 ident: 2023061916332560800_c30 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2007.05.018 – volume: 49 start-page: 523 year: 1977 ident: 2023061916332560800_c59 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.49.523 – volume: 70 start-page: 5234 year: 1979 ident: 2023061916332560800_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.437316 – volume: 125 start-page: 214505 year: 2006 ident: 2023061916332560800_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.2402167 – volume: 125 start-page: 194503 year: 2006 ident: 2023061916332560800_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.2363382 – volume: 130 start-page: 064505 year: 2009 ident: 2023061916332560800_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.3072794 – volume: 62 start-page: 251 year: 1990 ident: 2023061916332560800_c40 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.62.251 – volume: 115 start-page: 385 year: 2001 ident: 2023061916332560800_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.1373664 – volume: 2 start-page: 279 year: 1994 ident: 2023061916332560800_c29 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(94)90109-0 – volume: 126 start-page: 134103 year: 2007 ident: 2023061916332560800_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.2713401 – volume: 59 start-page: 1267 year: 2008 ident: 2023061916332560800_c49 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2008.08.041 – volume: 131 start-page: 114506 year: 2009 ident: 2023061916332560800_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.3204448 – volume: 86 start-page: 103112 year: 2005 ident: 2023061916332560800_c47 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1879111 – volume: 11 start-page: 2853 year: 2011 ident: 2023061916332560800_c16 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-2853-2011 – volume: 79 start-page: 2981 year: 1996 ident: 2023061916332560800_c13 publication-title: J. Appl. Phys. doi: 10.1063/1.361222 – volume: 47 start-page: 10785 year: 1993 ident: 2023061916332560800_c7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.10785 – volume: 100 start-page: 041909 year: 2012 ident: 2023061916332560800_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3675909 – volume-title: The Theory of Transformation in Metals and Alloys year: 1965 ident: 2023061916332560800_c1 – volume: 135 start-page: 416 year: 1939 ident: 2023061916332560800_c27 publication-title: Am. Inst. Min. Met. Engrs.-Trans. – volume: 45 start-page: 75 year: 1991 ident: 2023061916332560800_c2 publication-title: Solid State Phys. doi: 10.1016/s0081-1947(08)60144-7 – ident: 2023061916332560800_c41 – volume: 130 start-page: 024508 year: 2009 ident: 2023061916332560800_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.3049799 – volume: 93 start-page: 153115 year: 2008 ident: 2023061916332560800_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3001576 – volume: 20 start-page: 114113 year: 2008 ident: 2023061916332560800_c25 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/11/114113 – volume: 117 start-page: 1 year: 1995 ident: 2023061916332560800_c33 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 96 start-page: 225701 year: 2006 ident: 2023061916332560800_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.225701 – volume: 97 start-page: 111101 year: 2005 ident: 2023061916332560800_c35 publication-title: J. Appl. Phys. doi: 10.1063/1.1927699 – volume: 94 start-page: 235703 year: 2005 ident: 2023061916332560800_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.235703 – volume: 8 start-page: 212 year: 1940 ident: 2023061916332560800_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.1750631 – volume: 89 start-page: 041919 year: 2006 ident: 2023061916332560800_c48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2243958 – volume: 5 start-page: 4327 year: 2014 ident: 2023061916332560800_c50 publication-title: Nat. Commun. doi: 10.1038/ncomms5327 – volume: 107 start-page: 055501 year: 2011 ident: 2023061916332560800_c36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.055501 – volume: 345 start-page: 34 year: 2012 ident: 2023061916332560800_c45 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.02.018 – volume: 95 start-page: 203101 year: 2009 ident: 2023061916332560800_c51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3263948 – volume: 69 start-page: 3887 year: 1996 ident: 2023061916332560800_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.117559 – volume: 69 start-page: 1228 year: 1992 ident: 2023061916332560800_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1228 – volume: 47 start-page: S141 year: 2006 ident: 2023061916332560800_c20 publication-title: J. Struct. Chem. doi: 10.1007/s10947-006-0388-3 – volume: 33 start-page: 3 year: 1998 ident: 2023061916332560800_c54 publication-title: Cryst. Res. Technol. doi: 10.1002/(SICI)1521-4079(1998)33:1%3C3::AID-CRAT3%3E3.0.CO;2-3 – volume: 85 start-page: 5049 year: 2004 ident: 2023061916332560800_c53 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1823042 – volume: 117 start-page: 10241 year: 2013 ident: 2023061916332560800_c57 publication-title: J. Phys. Chem. B doi: 10.1021/jp404403k – volume-title: Phase Transformations in Metals and Alloys year: 1981 ident: 2023061916332560800_c56 – volume: 63 start-page: 224106 year: 2001 ident: 2023061916332560800_c31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.224106 – volume: 112 start-page: 097602 year: 2014 ident: 2023061916332560800_c37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.097602 – volume: 85 start-page: 113902 year: 2014 ident: 2023061916332560800_c38 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4900861 – volume: 127 start-page: 164503 year: 2007 ident: 2023061916332560800_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.2790424 – volume: 120 start-page: 11640 year: 2004 ident: 2023061916332560800_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.1755655 – volume-title: Kinetic Theory of Liquids year: 1946 ident: 2023061916332560800_c39 – volume: 90 start-page: 085702 year: 2003 ident: 2023061916332560800_c22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.085702 – volume: 88 start-page: 562 year: 2000 ident: 2023061916332560800_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.373696 – volume: 140 start-page: 214317 year: 2014 ident: 2023061916332560800_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.4880960 – volume: 109 start-page: 21502 year: 2005 ident: 2023061916332560800_c44 publication-title: J. Phys. Chem. B doi: 10.1021/jp052904i – volume: 68 start-page: 134206 year: 2003 ident: 2023061916332560800_c14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.134206 – volume-title: The Physics of Phase Transitions year: 1999 ident: 2023061916332560800_c28 – volume: 13 start-page: 19807 year: 2011 ident: 2023061916332560800_c58 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22167a – volume: 17 start-page: 71 year: 1949 ident: 2023061916332560800_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.1747055 – volume: 20 start-page: 095220 year: 2008 ident: 2023061916332560800_c32 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/20/9/095220 |
SSID | ssj0001724 |
Score | 2.348408 |
Snippet | Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 064704 |
SubjectTerms | ATOMS COMPUTERIZED SIMULATION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal defects CRYSTALLIZATION Crystals FLUCTUATIONS GRAIN BOUNDARIES Ice INTERFACES Liquid-solid interfaces LIQUIDS Microstructure Molecular dynamics MOLECULAR DYNAMICS METHOD MONOCRYSTALS NANOSTRUCTURES NUCLEATION Probabilistic methods PROBABILITY Single crystals SOLIDS Stacking faults Statistical analysis SUPERCOOLING TWINNING Variation X-RAY DIFFRACTION |
Title | Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25681932 https://www.proquest.com/docview/2124908015 https://www.proquest.com/docview/1655730121 https://www.osti.gov/biblio/22416128 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKwQXBOW1UJBBHJBQlnXsOGtuVQCtgCIkWrW3KLEdWCndLNvkAL-emdh5FFoJuERRnMdqvon9zWzmG0KeZzwsDI-xoidTgRBRGGSqUAHEQ5Kh-IoqsFD44JNcHon3J9FJ1xLeV5fU-Uz_vLCu5H9QhWOAK1bJ_gOy_U3hAOwDvrAFhGH7Vxgn2x9A7srS11Ji7uKs2ditrqoSiGS5-t6szMukwbB_WZ1WcCPbKrKiiLG7BPPmXyEUr7-NaepQMNZSVd2pCrg8yEDDWx8YEq3HPvncJ5QT1-y6p8vHTbvU-QSqTzawtnjbFXnOrJsg5wsAUroWn_0MKsKRq4znQyxlde2F_5iqgRth1mAmIDyXTh9gBNnmtMUsRH005TOg53Wxu6GrZCeEECGckJ39Nwcfv_TrMFAz0WlJSf6qfxLqP_trz5GRSQWT6uWBRks4Dm-Rm978dN_Bfptcsetdcj3pGvTtkmufHRp3yIffHIGu1nTkCNQ5Ak2a13TkBnRwAwpuQJ0b3CVH794eJsvAd8kINATjdWCF5NqIeQ5kzJoozyBkLpjKtSoY53k8R4H-2GgTZtrGRjGuY2lz4G48y7TS_B6ZrKu1fUCo0EUR55bpmGsh58BUFrmKjMxixSIjzJS86MyVai8hj51MyrT9lEHylKXeyFPyrD9143RTLjppD22eAtlDxWKNn3bpOkVWCcR7AcMdFql_687SELulQ5jDoil52g-D5fGPrqw1X8pkFOHKFbIpue8w7H9EB_3DS0cekRuD6--RSb1t7GNgnnX-xLvYLzydf1k |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+in+supercooled+liquid+Cu%3A+Homogeneous+nucleation+and+growth&rft.jtitle=The+Journal+of+chemical+physics&rft.au=E%2C+J+C&rft.au=Wang%2C+L&rft.au=Cai%2C+Y&rft.au=Wu%2C+H+A&rft.date=2015-02-14&rft.eissn=1089-7690&rft.volume=142&rft.issue=6&rft.spage=064704&rft_id=info:doi/10.1063%2F1.4907627&rft_id=info%3Apmid%2F25681932&rft.externalDocID=25681932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |