The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson’s disease

•PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diag...

Full description

Saved in:
Bibliographic Details
Published inPhysica medica Vol. 52; pp. 104 - 112
Main Authors Tomše, Petra, Peng, Shichun, Pirtošek, Zvezdan, Zaletel, Katja, Dhawan, Vijay, Eidelberg, David, Ma, Yilong, Trošt, Maja
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text
ISSN1120-1797
1724-191X
1724-191X
DOI10.1016/j.ejmp.2018.06.637

Cover

Abstract •PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diagnosis and multicentre research. The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson’s disease related pattern (PDRP). FDG-PET brain scans of 20 Parkinson’s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient’s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts. The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups. PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.
AbstractList The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP). FDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts. The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups. PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.
The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).PURPOSEThe purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).FDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.METHODSFDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.RESULTSThe region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.CONCLUSIONPDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.
•PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diagnosis and multicentre research. The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson’s disease related pattern (PDRP). FDG-PET brain scans of 20 Parkinson’s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient’s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts. The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups. PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.
Author Tomše, Petra
Pirtošek, Zvezdan
Peng, Shichun
Eidelberg, David
Zaletel, Katja
Dhawan, Vijay
Trošt, Maja
Ma, Yilong
Author_xml – sequence: 1
  givenname: Petra
  surname: Tomše
  fullname: Tomše, Petra
  email: petra.tomse@kclj.si
  organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
– sequence: 2
  givenname: Shichun
  surname: Peng
  fullname: Peng, Shichun
  email: speng@northwell.edu
  organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
– sequence: 3
  givenname: Zvezdan
  surname: Pirtošek
  fullname: Pirtošek, Zvezdan
  email: zvezdan.pirtosek@kclj.si
  organization: Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
– sequence: 4
  givenname: Katja
  surname: Zaletel
  fullname: Zaletel, Katja
  email: katja.zaletel@kclj.si
  organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
– sequence: 5
  givenname: Vijay
  orcidid: 0000-0002-2418-5674
  surname: Dhawan
  fullname: Dhawan, Vijay
  email: vdhawan@northwell.edu
  organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
– sequence: 6
  givenname: David
  surname: Eidelberg
  fullname: Eidelberg, David
  email: deidelbe@northwell.edu
  organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
– sequence: 7
  givenname: Yilong
  surname: Ma
  fullname: Ma, Yilong
  email: yma@northwell.edu
  organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
– sequence: 8
  givenname: Maja
  surname: Trošt
  fullname: Trošt, Maja
  email: maja.trost@kclj.si
  organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30139598$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUhkcoiFzgBSiQSwpmsT0XjxFNFHGTIkERJDrrjH1m17sz9mB7QenyGnkO3ognwZvNNilC5WPp_47l_zstjpx3WBQvGV0wytq36wWup3nBKesWtF20lXhSnDDB65JJ9uMoz4zTkgkpjovTGNeUVpw3zbPiuKKsko3sToo_VyskOAyoUyR-IHaCJZKA2ruYwlYn6x2BcemDTaspRxxJfvbLAPPKaqJXEEAnDDYmq-MbYiwsnd9dyIxh8GECp5GAM0SP1lkNI9E-BBzhbnV-csIEvR8z0QewjjhMv33YRJLnbxA21kXv_t7cxrw8IkR8XjwdYIz44v48K75__HB18bm8_Prpy8X5ZalrKlJppOwNatbVrK9MI0UnkA-8bmQvjB5A1jXUXFaSQdtK3jWsYxS61oCgKJipzorX-71z8D-3GJOabNQ4juDQb6PiVFYVFayrcvTVfXTbT2jUHHKR4Vodis6Bbh_QwccYcFDaprsKUv70qBhVO6dqrXZO1c6poq3KTjPKH6CH7Y9C7_cQ5oJ-WQwqaotZhbFZblLG28fxdw_wg70NXv8P_gcdJdRi
CitedBy_id crossref_primary_10_1007_s00259_020_04785_z
crossref_primary_10_1002_mds_28217
crossref_primary_10_1007_s00259_019_04570_7
crossref_primary_10_1016_j_nicl_2023_103475
crossref_primary_10_3233_JPD_202004
crossref_primary_10_1111_ene_15669
crossref_primary_10_3389_fneur_2019_01204
crossref_primary_10_1016_j_dadm_2019_04_002
Cites_doi 10.1186/1471-2342-5-5
10.1016/j.neuroimage.2006.05.060
10.1016/S1474-4422(10)70002-8
10.1038/jcbfm.1994.99
10.2967/jnumed.116.183152
10.1097/MNM.0000000000000187
10.1002/mds.21933
10.1007/s00259-015-3098-2
10.1016/j.ejmp.2018.01.021
10.1371/journal.pone.0088119
10.1038/jcbfm.2011.166
10.1002/mds.23291
10.1016/j.cpet.2009.12.004
10.1016/j.neuroimage.2008.01.056
10.1016/j.tins.2009.06.003
10.1186/1471-2342-5-3
10.1212/WNL.0b013e31826c1b0a
10.1016/j.ejmp.2015.08.003
10.1007/s12021-016-9322-9
10.1002/mds.26302
10.1016/j.neuroimage.2010.10.025
10.1016/j.ejmp.2017.01.018
10.1093/brain/awu256
10.2967/jnumed.115.161513
10.1016/j.neuroimage.2005.12.024
10.1002/hbm.22295
10.1111/ene.13269
10.1007/s00234-017-1821-3
10.1038/jcbfm.1991.47
10.1016/S0959-8049(99)00229-4
10.1016/j.ejmp.2017.04.027
10.2174/156720501108140910114230
10.1016/j.neuroimage.2009.01.057
10.1016/j.parkreldis.2013.02.013
10.1002/mds.25361
10.1098/rstb.1999.0477
10.1093/brain/awl162
10.1002/hbm.460020108
10.1038/sj.jcbfm.9600358
10.1093/brain/awm086
10.1007/s00259-006-0224-1
10.1523/JNEUROSCI.4188-09.2010
10.1016/j.neuroimage.2008.12.063
10.1212/WNL.0b013e318250d7fd
10.1002/mds.26907
10.1073/pnas.0706006104
10.1016/j.neuroimage.2005.03.012
10.1016/S1353-8020(11)70020-7
10.1212/WNL.0000000000003285
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Ltd.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ejmp.2018.06.637
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1724-191X
EndPage 112
ExternalDocumentID 30139598
10_1016_j_ejmp_2018_06_637
S1120179718311190
Genre Journal Article
GroupedDBID ---
--K
--M
-QF
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3J0
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACRLP
ACXCU
ADBBV
ADEZE
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DC1
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
PC.
Q38
RLW
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPC
SPCBC
SSH
SSQ
SSZ
T5K
UNMZH
Z5R
~G-
~XS
AACTN
AAIAV
ABLVK
ABYKQ
ACNNM
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
CLCPZ
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c407t-d99bdec1841b3d59787e2f2459b7dcfa944a429391a6692851810a86da70e71d3
IEDL.DBID AIKHN
ISSN 1120-1797
1724-191X
IngestDate Fri Sep 05 12:59:55 EDT 2025
Thu Apr 03 07:04:57 EDT 2025
Tue Jul 01 03:14:30 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:28:26 EST 2024
Tue Aug 26 19:49:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords FDG-PET
Progressive supranuclear palsy
Metabolic brain networks
Multiple system atrophy
Reconstruction algorithms
Parkinson’s disease
Principal component analysis
Language English
License Copyright © 2018. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-d99bdec1841b3d59787e2f2459b7dcfa944a429391a6692851810a86da70e71d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-2418-5674
PMID 30139598
PQID 2093307183
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2093307183
pubmed_primary_30139598
crossref_citationtrail_10_1016_j_ejmp_2018_06_637
crossref_primary_10_1016_j_ejmp_2018_06_637
elsevier_sciencedirect_doi_10_1016_j_ejmp_2018_06_637
elsevier_clinicalkey_doi_10_1016_j_ejmp_2018_06_637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
2018-Aug
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Physica medica
PublicationTitleAlternate Phys Med
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Zhang, Gao (b0015) 2012; 18
Teune, Strijkert, Renken, Izaks, de Vries, Segbers (b0095) 2014; 11
Niethammer, Tang, Feigin, Allen, Heinen, Hellwig (b0030) 2014; 137
Eckert, Tang, Ma, Brown, Lin, Frucht (b0025) 2008; 23
Razifar, Sandstrom, Schnieder, Langstrom, Maripuu, Bengtsson (b0240) 2005; 5
Westerterp, Pruim, Oyen, Hoekstra, Paans, Visser (b0160) 2007; 34
Tang, Poston, Eckert, Feigin, Frucht, Gudesblatt (b0080) 2010; 9
Prieto, García-Velloso, Rodríguez-Fraile, Morán, García-García, Guillén (b0155) 2018; 46
Ma, Johnston, Peng, Zuo, Koprich, Fox (b0220) 2015; 30
Poston, Tang, Eckert, Dhawan, Frucht, Vonsattel (b0075) 2012; 78
Eidelberg, Moeller, Dhawan, Spetsieris, Takikawa, Ishikawa (b0190) 1994; 14
Spetsieris, Eidelberg (b0085) 2011; 54
Trošt, Su, Su, Yen, Tseng, Barnes (b0140) 2006; 31
Alexander, Moeller (b0185) 1994; 2
Feigin, Kaplitt, Tang, Lin, Mattis, Dhawan (b0150) 2007; 104
Teune, Bartels, De Jong, Willemsen, Eshuis, De Vries (b0100) 2010; 25
Ma, Peng, Spetsieris, Sossi, Eidelberg, Doudet (b0210) 2012; 32
Strafella, Bohnen, Perlmutter, Eidelberg, Pavese, Van Eimeren (b0010) 2017; 32
Spetsieris, Ma, Dhawan, Eidelberg (b0005) 2009; 45
Razifar, Axelsson, Schneider, Långström, Bengtsson, Bergström (b0230) 2006; 33
Caminiti, Alongi, Majno, Volontè, Cerami, Gianolli (b0020) 2017; 24
Petersson, Nichols, Poline, Holmes (b0195) 1999; 354
Tomše, Jensterle, Grmek, Zaletel, Pirtošek, Dhawan (b0125) 2017; 5
Razifar, Lubberink, Schneider, Långström, Bengtsson, Bergström (b0235) 2005; 5
Peng, Ma, Flores, Cornfeldt, Mitrovic, Eidelberg (b0215) 2016
Tomše, Jensterle, Rep, Grmek, Zaletel, Eidelberg (b0180) 2017; 41
Kwon, Choi, Kim, Lee, Chung (b0055) 2008; 15
Prieto, Martí-Climent, Morán, Sancho, Barbés, Arbizu (b0250) 2015
Meles, Teune, de Jong, Dierckx, Leenders (b0035) 2017; 58
Ma, Tang, Spetsieris, Dhawan, Eidelberg (b0070) 2007; 27
Presotto, Ballarini, Caminiti, Bettinardi, Gianolli, Perani (b0170) 2017; 15
(b0225) 2012
Ko, Spetsieris, Ma, Dhawan, Eidelberg (b0205) 2014; 9
Asanuma, Tang, Ma, Dhawan, Mattis, Edwards (b0145) 2006; 129
Young, Baum, Cremerius, Herholz, Hoekstra, Lammertsma (b0165) 1999; 35
Hellwig, Amtage, Kreft, Buchert, Winz, Vach (b0040) 2012; 79
Booij, Teune, Verberne (b0045) 2012; 56
Huang, Tang, Feigin, Lesser, Ma, Pourfar (b0130) 2007; 130
Habeck, Foster, Perneczky, Kurz, Alexopoulos, Koeppe (b0200) 2008; 40
Mattis, Niethammer, Sako, Tang, Nazem, Gordon (b0105) 2016; 87
Smailagic, Vacante, Hyde, Martin, Ukoumunne, Sachpekidis (b0265) 2015
Moeller, Strother (b0065) 1991; 11
Peng, Ma, Spetsieris, Mattis, Feigin, Dhawan (b0175) 2014; 35
Poston, Eidelberg (b0050) 2010; 5
Eckert, Barnes, Dhawan, Frucht, Gordon, Feigin (b0060) 2005; 26
Inglese, Amoroso, Boccardi, Bocchetta, Bruno, Chincarini (b0255) 2015; 31
Morbelli, Garibotto, Van De Giessen, Arbizu, Chételat, Drezgza (b0270) 2015; 42
Tangaro, Fanizzi, Amoroso, Bellotti (b0260) 2017; 38
Nagaki, Onoguchi, Matsutomo (b0245) 2014; 35
Ikari, Akamatsu, Nishio, Ishii, Ito, Iwatsubo (b0280) 2016
Tang, Poston, Dhawan, Eidelberg (b0135) 2010; 30
Joshi, Koeppe, Fessler (b0275) 2009; 46
Teune, Renken, Mudali, De Jong, Dierckx, Roerdink (b0115) 2013; 28
Wu, Wang, Peng, Ma, Zhang, Guan (b0120) 2013; 19
Moeller, Nakamura, Mentis, Dhawan, Spetsieres, Antonini (b0090) 1999; 40
Eidelberg (b0110) 2009; 32
Booij (10.1016/j.ejmp.2018.06.637_b0045) 2012; 56
Tang (10.1016/j.ejmp.2018.06.637_b0080) 2010; 9
Smailagic (10.1016/j.ejmp.2018.06.637_b0265) 2015
Peng (10.1016/j.ejmp.2018.06.637_b0215) 2016
Caminiti (10.1016/j.ejmp.2018.06.637_b0020) 2017; 24
Huang (10.1016/j.ejmp.2018.06.637_b0130) 2007; 130
Poston (10.1016/j.ejmp.2018.06.637_b0075) 2012; 78
Inglese (10.1016/j.ejmp.2018.06.637_b0255) 2015; 31
Strafella (10.1016/j.ejmp.2018.06.637_b0010) 2017; 32
Prieto (10.1016/j.ejmp.2018.06.637_b0250) 2015
Prieto (10.1016/j.ejmp.2018.06.637_b0155) 2018; 46
Eidelberg (10.1016/j.ejmp.2018.06.637_b0110) 2009; 32
Ikari (10.1016/j.ejmp.2018.06.637_b0280) 2016
Kwon (10.1016/j.ejmp.2018.06.637_b0055) 2008; 15
Feigin (10.1016/j.ejmp.2018.06.637_b0150) 2007; 104
Presotto (10.1016/j.ejmp.2018.06.637_b0170) 2017; 15
Eidelberg (10.1016/j.ejmp.2018.06.637_b0190) 1994; 14
(10.1016/j.ejmp.2018.06.637_b0225) 2012
Poston (10.1016/j.ejmp.2018.06.637_b0050) 2010; 5
Ma (10.1016/j.ejmp.2018.06.637_b0220) 2015; 30
Ma (10.1016/j.ejmp.2018.06.637_b0070) 2007; 27
Eckert (10.1016/j.ejmp.2018.06.637_b0060) 2005; 26
Moeller (10.1016/j.ejmp.2018.06.637_b0090) 1999; 40
Razifar (10.1016/j.ejmp.2018.06.637_b0235) 2005; 5
Asanuma (10.1016/j.ejmp.2018.06.637_b0145) 2006; 129
Nagaki (10.1016/j.ejmp.2018.06.637_b0245) 2014; 35
Young (10.1016/j.ejmp.2018.06.637_b0165) 1999; 35
Westerterp (10.1016/j.ejmp.2018.06.637_b0160) 2007; 34
Peng (10.1016/j.ejmp.2018.06.637_b0175) 2014; 35
Niethammer (10.1016/j.ejmp.2018.06.637_b0030) 2014; 137
Zhao (10.1016/j.ejmp.2018.06.637_b0015) 2012; 18
Alexander (10.1016/j.ejmp.2018.06.637_b0185) 1994; 2
Razifar (10.1016/j.ejmp.2018.06.637_b0230) 2006; 33
Hellwig (10.1016/j.ejmp.2018.06.637_b0040) 2012; 79
Teune (10.1016/j.ejmp.2018.06.637_b0115) 2013; 28
Habeck (10.1016/j.ejmp.2018.06.637_b0200) 2008; 40
Teune (10.1016/j.ejmp.2018.06.637_b0100) 2010; 25
Moeller (10.1016/j.ejmp.2018.06.637_b0065) 1991; 11
Spetsieris (10.1016/j.ejmp.2018.06.637_b0085) 2011; 54
Trošt (10.1016/j.ejmp.2018.06.637_b0140) 2006; 31
Eckert (10.1016/j.ejmp.2018.06.637_b0025) 2008; 23
Mattis (10.1016/j.ejmp.2018.06.637_b0105) 2016; 87
Tomše (10.1016/j.ejmp.2018.06.637_b0180) 2017; 41
Ko (10.1016/j.ejmp.2018.06.637_b0205) 2014; 9
Petersson (10.1016/j.ejmp.2018.06.637_b0195) 1999; 354
Wu (10.1016/j.ejmp.2018.06.637_b0120) 2013; 19
Razifar (10.1016/j.ejmp.2018.06.637_b0240) 2005; 5
Meles (10.1016/j.ejmp.2018.06.637_b0035) 2017; 58
Morbelli (10.1016/j.ejmp.2018.06.637_b0270) 2015; 42
Ma (10.1016/j.ejmp.2018.06.637_b0210) 2012; 32
Tang (10.1016/j.ejmp.2018.06.637_b0135) 2010; 30
Teune (10.1016/j.ejmp.2018.06.637_b0095) 2014; 11
Joshi (10.1016/j.ejmp.2018.06.637_b0275) 2009; 46
Spetsieris (10.1016/j.ejmp.2018.06.637_b0005) 2009; 45
Tomše (10.1016/j.ejmp.2018.06.637_b0125) 2017; 5
Tangaro (10.1016/j.ejmp.2018.06.637_b0260) 2017; 38
References_xml – volume: 56
  start-page: 17
  year: 2012
  end-page: 26
  ident: b0045
  article-title: The role of molecular imaging in the differential diagnosis of parkinsonism
  publication-title: Q J Nucl Med Mol Imaging
– volume: 35
  start-page: 1773
  year: 1999
  end-page: 1782
  ident: b0165
  article-title: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations
  publication-title: Eur J Cancer
– volume: 58
  start-page: 23
  year: 2017
  end-page: 28
  ident: b0035
  article-title: Metabolic imaging in Parkinson disease
  publication-title: J Nucl Med
– volume: 2
  start-page: 79
  year: 1994
  end-page: 94
  ident: b0185
  article-title: Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease
  publication-title: Hum Brain Mapp
– volume: 15
  start-page: 1043
  year: 2008
  end-page: 1049
  ident: b0055
  article-title: Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease
  publication-title: Eur J Neurol Off J Eur Fed Neurol Soc
– volume: 87
  start-page: 1925
  year: 2016
  end-page: 1933
  ident: b0105
  article-title: Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases
  publication-title: Neurology
– volume: 137
  start-page: 3036
  year: 2014
  end-page: 3046
  ident: b0030
  article-title: A disease-specific metabolic brain network associated with corticobasal degeneration
  publication-title: Brain
– volume: 30
  start-page: 1049
  year: 2010
  end-page: 1056
  ident: b0135
  article-title: Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease
  publication-title: J Neurosci
– year: 2012
  ident: b0225
  publication-title: Physics in nuclear medicine
– volume: 354
  start-page: 1239
  year: 1999
  end-page: 1260
  ident: b0195
  article-title: Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models
  publication-title: Philos Trans R Soc B Biol Sci
– start-page: 1
  year: 2015
  ident: b0265
  article-title: F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI)
  publication-title: Cochrane Database Syst Rev
– volume: 41
  start-page: 129
  year: 2017
  end-page: 135
  ident: b0180
  article-title: The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson’s disease
  publication-title: Phys Medica
– volume: 40
  start-page: 1503
  year: 2008
  end-page: 1515
  ident: b0200
  article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease
  publication-title: Neuroimage
– volume: 35
  start-page: 1801
  year: 2014
  end-page: 1814
  ident: b0175
  article-title: Characterization of disease-related covariance topographies with SSMPCA toolbox: Effects of spatial normalization and PET scanners
  publication-title: Hum Brain Mapp
– volume: 11
  start-page: A121
  year: 1991
  end-page: A135
  ident: b0065
  article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data
  publication-title: J Cereb Blood Flow Metab
– volume: 14
  start-page: 783
  year: 1994
  end-page: 801
  ident: b0190
  article-title: The metabolic topography of parkinsonism
  publication-title: J Cereb Blood Flow Metab
– volume: 30
  start-page: 1283
  year: 2015
  end-page: 1288
  ident: b0220
  article-title: Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: a descriptive pilot study with FDG PET
  publication-title: Mov Disord
– volume: 9
  year: 2014
  ident: b0205
  article-title: Quantifying significance of topographical similarities of disease-related brain metabolic patterns
  publication-title: PLoS One
– year: 2016
  ident: b0215
  article-title: Modulation of abnormal metabolic brain networks by experimental therapies in a nonhuman primate model of Parkinson’s disease: an application to human retinal pigment epithelial (hRPE) cell implantation
  publication-title: J Nucl Med
– volume: 5
  start-page: 5
  year: 2005
  ident: b0240
  article-title: Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM
  publication-title: BMC Med Imaging
– volume: 11
  start-page: 725
  year: 2014
  end-page: 732
  ident: b0095
  article-title: The Alzheimer’s disease-related glucose metabolic brain pattern
  publication-title: Curr Alzheimer Res
– volume: 33
  start-page: 588
  year: 2006
  end-page: 598
  ident: b0230
  article-title: A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies – clinical brain studies using [11C]-GR205171, [11C]-l-deuterium-deprenyl, [11C]-5-hydroxy-l-tryptophan, [11C]-L-DOPA and Pittsburgh compound-B
  publication-title: Neuroimage
– volume: 19
  start-page: 622
  year: 2013
  end-page: 627
  ident: b0120
  article-title: Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging
  publication-title: Parkinsonism Relat Disord
– volume: 32
  start-page: 548
  year: 2009
  end-page: 557
  ident: b0110
  article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach
  publication-title: Trends Neurosci
– volume: 35
  start-page: 1224
  year: 2014
  end-page: 1232
  ident: b0245
  article-title: Clinical validation of high-resolution image reconstruction algorithms in brain 18F-FDG-PET: effect of incorporating Gaussian filter, point spread function, and time-of-flight
  publication-title: Nucl Med Commun
– volume: 23
  start-page: 727
  year: 2008
  end-page: 733
  ident: b0025
  article-title: Abnormal metabolic networks in atypical parkinsonism
  publication-title: Mov Disord
– volume: 54
  start-page: 2899
  year: 2011
  end-page: 2914
  ident: b0085
  article-title: Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues
  publication-title: Neuroimage
– volume: 28
  start-page: 547
  year: 2013
  end-page: 551
  ident: b0115
  article-title: Validation of parkinsonian disease-related metabolic brain patterns
  publication-title: Mov Disord
– volume: 46
  start-page: 154
  year: 2009
  end-page: 159
  ident: b0275
  article-title: Reducing between scanner differences in multi-center PET studies
  publication-title: Neuroimage
– volume: 5
  start-page: 55
  year: 2010
  end-page: 64
  ident: b0050
  article-title: FDG PET in the evaluation of Parkinson’s disease
  publication-title: PET Clin
– volume: 104
  start-page: 19559
  year: 2007
  end-page: 19564
  ident: b0150
  article-title: Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 134
  year: 2018
  end-page: 139
  ident: b0155
  article-title: Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality
  publication-title: Phys Medica
– volume: 129
  start-page: 2667
  year: 2006
  end-page: 2678
  ident: b0145
  article-title: Network modulation in the treatment of Parkinson’s disease
  publication-title: Brain
– volume: 27
  start-page: 597
  year: 2007
  end-page: 605
  ident: b0070
  article-title: Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility
  publication-title: J Cereb Blood Flow Metab
– volume: 130
  start-page: 1834
  year: 2007
  end-page: 1846
  ident: b0130
  article-title: Changes in network activity with the progression of Parkinson’s disease
  publication-title: Brain
– volume: 31
  start-page: 301
  year: 2006
  end-page: 307
  ident: b0140
  article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease
  publication-title: Neuroimage
– volume: 9
  start-page: 149
  year: 2010
  end-page: 158
  ident: b0080
  article-title: Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis
  publication-title: Lancet Neurol
– volume: 5
  start-page: 3
  year: 2005
  ident: b0235
  article-title: Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function
  publication-title: BMC Med Imaging
– start-page: 1
  year: 2015
  end-page: 8
  ident: b0250
  article-title: Brain PET imaging optimization with time of flight and point spread function modelling
  publication-title: Phys Med
– volume: 18
  start-page: S60
  year: 2012
  end-page: S62
  ident: b0015
  article-title: 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes
  publication-title: Park Relat Disord
– volume: 38
  start-page: 36
  year: 2017
  end-page: 44
  ident: b0260
  article-title: A fuzzy-based system reveals Alzheimer’s Disease onset in subjects with Mild Cognitive Impairment
  publication-title: Phys Medica
– volume: 32
  start-page: 181
  year: 2017
  end-page: 192
  ident: b0010
  article-title: Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers
  publication-title: Mov Disord
– start-page: 3
  year: 2016
  ident: b0280
  article-title: Phantom criteria for qualification of brain FDG and amyloid PET across different cameras
  publication-title: EJNMMI Phys
– volume: 26
  start-page: 912
  year: 2005
  end-page: 921
  ident: b0060
  article-title: FDG PET in the differential diagnosis of parkinsonian disorders
  publication-title: Neuroimage
– volume: 34
  start-page: 392
  year: 2007
  end-page: 404
  ident: b0160
  article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 32
  start-page: 633
  year: 2012
  end-page: 642
  ident: b0210
  article-title: Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism
  publication-title: J Cereb Blood Flow Metab
– volume: 45
  start-page: 1241
  year: 2009
  end-page: 1252
  ident: b0005
  article-title: Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features
  publication-title: Neuroimage
– volume: 5
  start-page: 507
  year: 2017
  end-page: 515
  ident: b0125
  article-title: Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample
  publication-title: Neuroradiology
– volume: 24
  year: 2017
  ident: b0020
  article-title: Evaluation of an optimized [18F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders
  publication-title: Eur J Neurol
– volume: 31
  start-page: 1085
  year: 2015
  end-page: 1091
  ident: b0255
  article-title: Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI Harmonized Hippocampal Protocol
  publication-title: Phys Medica
– volume: 78
  start-page: 1237
  year: 2012
  end-page: 1244
  ident: b0075
  article-title: Network correlates of disease severity in multiple system atrophy
  publication-title: Neurology
– volume: 40
  start-page: 1264
  year: 1999
  end-page: 1269
  ident: b0090
  article-title: Reproducibility of regional metabolic covariance patterns: comparison of four populations
  publication-title: J Nucl Med
– volume: 15
  start-page: 151
  year: 2017
  end-page: 163
  ident: b0170
  article-title: Validation of18F–FDG-PET single-subject optimized SPM procedure with different PET scanners
  publication-title: Neuroinformatics
– volume: 79
  start-page: 1314
  year: 2012
  end-page: 1322
  ident: b0040
  article-title: [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism
  publication-title: Neurology
– volume: 25
  start-page: 2395
  year: 2010
  end-page: 2404
  ident: b0100
  article-title: Typical cerebral metabolic patterns in neurodegenerative brain diseases
  publication-title: Mov Disord
– volume: 42
  start-page: 1487
  year: 2015
  end-page: 1491
  ident: b0270
  article-title: A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 5
  start-page: 5
  year: 2005
  ident: 10.1016/j.ejmp.2018.06.637_b0240
  article-title: Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-5-5
– volume: 33
  start-page: 588
  year: 2006
  ident: 10.1016/j.ejmp.2018.06.637_b0230
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.05.060
– volume: 56
  start-page: 17
  year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0045
  article-title: The role of molecular imaging in the differential diagnosis of parkinsonism
  publication-title: Q J Nucl Med Mol Imaging
– volume: 9
  start-page: 149
  year: 2010
  ident: 10.1016/j.ejmp.2018.06.637_b0080
  article-title: Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70002-8
– volume: 15
  start-page: 1043
  year: 2008
  ident: 10.1016/j.ejmp.2018.06.637_b0055
  article-title: Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease
  publication-title: Eur J Neurol Off J Eur Fed Neurol Soc
– volume: 14
  start-page: 783
  year: 1994
  ident: 10.1016/j.ejmp.2018.06.637_b0190
  article-title: The metabolic topography of parkinsonism
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1994.99
– volume: 40
  start-page: 1264
  year: 1999
  ident: 10.1016/j.ejmp.2018.06.637_b0090
  article-title: Reproducibility of regional metabolic covariance patterns: comparison of four populations
  publication-title: J Nucl Med
– volume: 58
  start-page: 23
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0035
  article-title: Metabolic imaging in Parkinson disease
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.116.183152
– volume: 35
  start-page: 1224
  year: 2014
  ident: 10.1016/j.ejmp.2018.06.637_b0245
  article-title: Clinical validation of high-resolution image reconstruction algorithms in brain 18F-FDG-PET: effect of incorporating Gaussian filter, point spread function, and time-of-flight
  publication-title: Nucl Med Commun
  doi: 10.1097/MNM.0000000000000187
– volume: 23
  start-page: 727
  year: 2008
  ident: 10.1016/j.ejmp.2018.06.637_b0025
  article-title: Abnormal metabolic networks in atypical parkinsonism
  publication-title: Mov Disord
  doi: 10.1002/mds.21933
– volume: 42
  start-page: 1487
  year: 2015
  ident: 10.1016/j.ejmp.2018.06.637_b0270
  article-title: A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-015-3098-2
– volume: 46
  start-page: 134
  year: 2018
  ident: 10.1016/j.ejmp.2018.06.637_b0155
  article-title: Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2018.01.021
– volume: 9
  year: 2014
  ident: 10.1016/j.ejmp.2018.06.637_b0205
  article-title: Quantifying significance of topographical similarities of disease-related brain metabolic patterns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0088119
– volume: 32
  start-page: 633
  year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0210
  article-title: Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.166
– volume: 25
  start-page: 2395
  year: 2010
  ident: 10.1016/j.ejmp.2018.06.637_b0100
  article-title: Typical cerebral metabolic patterns in neurodegenerative brain diseases
  publication-title: Mov Disord
  doi: 10.1002/mds.23291
– volume: 5
  start-page: 55
  year: 2010
  ident: 10.1016/j.ejmp.2018.06.637_b0050
  article-title: FDG PET in the evaluation of Parkinson’s disease
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2009.12.004
– volume: 40
  start-page: 1503
  year: 2008
  ident: 10.1016/j.ejmp.2018.06.637_b0200
  article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.056
– volume: 32
  start-page: 548
  year: 2009
  ident: 10.1016/j.ejmp.2018.06.637_b0110
  article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2009.06.003
– volume: 5
  start-page: 3
  year: 2005
  ident: 10.1016/j.ejmp.2018.06.637_b0235
  article-title: Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-5-3
– volume: 79
  start-page: 1314
  year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0040
  article-title: [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31826c1b0a
– volume: 31
  start-page: 1085
  year: 2015
  ident: 10.1016/j.ejmp.2018.06.637_b0255
  article-title: Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI Harmonized Hippocampal Protocol
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2015.08.003
– volume: 15
  start-page: 151
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0170
  article-title: Validation of18F–FDG-PET single-subject optimized SPM procedure with different PET scanners
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9322-9
– volume: 30
  start-page: 1283
  year: 2015
  ident: 10.1016/j.ejmp.2018.06.637_b0220
  article-title: Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: a descriptive pilot study with FDG PET
  publication-title: Mov Disord
  doi: 10.1002/mds.26302
– volume: 54
  start-page: 2899
  year: 2011
  ident: 10.1016/j.ejmp.2018.06.637_b0085
  article-title: Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.025
– volume: 41
  start-page: 129
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0180
  article-title: The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson’s disease
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2017.01.018
– volume: 137
  start-page: 3036
  year: 2014
  ident: 10.1016/j.ejmp.2018.06.637_b0030
  article-title: A disease-specific metabolic brain network associated with corticobasal degeneration
  publication-title: Brain
  doi: 10.1093/brain/awu256
– year: 2016
  ident: 10.1016/j.ejmp.2018.06.637_b0215
  article-title: Modulation of abnormal metabolic brain networks by experimental therapies in a nonhuman primate model of Parkinson’s disease: an application to human retinal pigment epithelial (hRPE) cell implantation
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.161513
– volume: 31
  start-page: 301
  year: 2006
  ident: 10.1016/j.ejmp.2018.06.637_b0140
  article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.024
– volume: 35
  start-page: 1801
  year: 2014
  ident: 10.1016/j.ejmp.2018.06.637_b0175
  article-title: Characterization of disease-related covariance topographies with SSMPCA toolbox: Effects of spatial normalization and PET scanners
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22295
– volume: 24
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0020
  article-title: Evaluation of an optimized [18F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders
  publication-title: Eur J Neurol
  doi: 10.1111/ene.13269
– volume: 5
  start-page: 507
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0125
  article-title: Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample
  publication-title: Neuroradiology
  doi: 10.1007/s00234-017-1821-3
– volume: 11
  start-page: A121
  year: 1991
  ident: 10.1016/j.ejmp.2018.06.637_b0065
  article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1991.47
– start-page: 1
  year: 2015
  ident: 10.1016/j.ejmp.2018.06.637_b0250
  article-title: Brain PET imaging optimization with time of flight and point spread function modelling
  publication-title: Phys Med
– volume: 35
  start-page: 1773
  year: 1999
  ident: 10.1016/j.ejmp.2018.06.637_b0165
  article-title: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations
  publication-title: Eur J Cancer
  doi: 10.1016/S0959-8049(99)00229-4
– volume: 38
  start-page: 36
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0260
  article-title: A fuzzy-based system reveals Alzheimer’s Disease onset in subjects with Mild Cognitive Impairment
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2017.04.027
– volume: 11
  start-page: 725
  year: 2014
  ident: 10.1016/j.ejmp.2018.06.637_b0095
  article-title: The Alzheimer’s disease-related glucose metabolic brain pattern
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720501108140910114230
– volume: 46
  start-page: 154
  year: 2009
  ident: 10.1016/j.ejmp.2018.06.637_b0275
  article-title: Reducing between scanner differences in multi-center PET studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.057
– volume: 19
  start-page: 622
  year: 2013
  ident: 10.1016/j.ejmp.2018.06.637_b0120
  article-title: Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2013.02.013
– volume: 28
  start-page: 547
  year: 2013
  ident: 10.1016/j.ejmp.2018.06.637_b0115
  article-title: Validation of parkinsonian disease-related metabolic brain patterns
  publication-title: Mov Disord
  doi: 10.1002/mds.25361
– volume: 354
  start-page: 1239
  year: 1999
  ident: 10.1016/j.ejmp.2018.06.637_b0195
  article-title: Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.1999.0477
– volume: 129
  start-page: 2667
  year: 2006
  ident: 10.1016/j.ejmp.2018.06.637_b0145
  article-title: Network modulation in the treatment of Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awl162
– volume: 2
  start-page: 79
  year: 1994
  ident: 10.1016/j.ejmp.2018.06.637_b0185
  article-title: Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460020108
– start-page: 1
  year: 2015
  ident: 10.1016/j.ejmp.2018.06.637_b0265
  article-title: 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI)
  publication-title: Cochrane Database Syst Rev
– volume: 27
  start-page: 597
  year: 2007
  ident: 10.1016/j.ejmp.2018.06.637_b0070
  article-title: Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600358
– volume: 130
  start-page: 1834
  year: 2007
  ident: 10.1016/j.ejmp.2018.06.637_b0130
  article-title: Changes in network activity with the progression of Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm086
– volume: 34
  start-page: 392
  year: 2007
  ident: 10.1016/j.ejmp.2018.06.637_b0160
  article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-006-0224-1
– start-page: 3
  year: 2016
  ident: 10.1016/j.ejmp.2018.06.637_b0280
  article-title: Phantom criteria for qualification of brain FDG and amyloid PET across different cameras
  publication-title: EJNMMI Phys
– volume: 30
  start-page: 1049
  year: 2010
  ident: 10.1016/j.ejmp.2018.06.637_b0135
  article-title: Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4188-09.2010
– volume: 45
  start-page: 1241
  year: 2009
  ident: 10.1016/j.ejmp.2018.06.637_b0005
  article-title: Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.063
– volume: 78
  start-page: 1237
  year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0075
  article-title: Network correlates of disease severity in multiple system atrophy
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318250d7fd
– volume: 32
  start-page: 181
  year: 2017
  ident: 10.1016/j.ejmp.2018.06.637_b0010
  article-title: Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers
  publication-title: Mov Disord
  doi: 10.1002/mds.26907
– year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0225
– volume: 104
  start-page: 19559
  year: 2007
  ident: 10.1016/j.ejmp.2018.06.637_b0150
  article-title: Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706006104
– volume: 26
  start-page: 912
  year: 2005
  ident: 10.1016/j.ejmp.2018.06.637_b0060
  article-title: FDG PET in the differential diagnosis of parkinsonian disorders
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.012
– volume: 18
  start-page: S60
  issue: Suppl. 1
  year: 2012
  ident: 10.1016/j.ejmp.2018.06.637_b0015
  article-title: 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes
  publication-title: Park Relat Disord
  doi: 10.1016/S1353-8020(11)70020-7
– volume: 87
  start-page: 1925
  year: 2016
  ident: 10.1016/j.ejmp.2018.06.637_b0105
  article-title: Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003285
SSID ssj0032255
Score 2.160655
Snippet •PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient...
The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms FDG-PET
Metabolic brain networks
Multiple system atrophy
Parkinson’s disease
Principal component analysis
Progressive supranuclear palsy
Reconstruction algorithms
Title The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson’s disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1120179718311190
https://dx.doi.org/10.1016/j.ejmp.2018.06.637
https://www.ncbi.nlm.nih.gov/pubmed/30139598
https://www.proquest.com/docview/2093307183
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bitQwNKyzIL6Id8fLcATftM6kadPJ4zK4jJddRFzYt5A0qXaZaQen-7r4G36Hf-SXeE6TjizoCr41JYeEnHtyLow9R5VZpTNTJN6nGbUwc4nKKpMomaJ9Yslqpgv9o2O5PMnenuane2wx5MJQWGWU_UGm99I6_pnG05xu6nqKfJgSOaFwFciwCv32_VQomY_Y_sGbd8vjQSATyeZ9jxX0lAgg5s6EMC9_tqaylbwv4ympHfqf9dPf7M9eDx3eYjejAQkHYY-32Z5v7rDrR_GJ_C77gYiHGKUBbQX1GiUG9H7vrlYsmNXn9mvdfVnjlAa6dhMKV9cllJcLOL8EF2LxcACb30kGYBoHQ1YllNTiIwTV0ZJr3yFprRDCUgMKaEKo-Rbwm7Ks-4Szn9--byE-D91jJ4evPy2WSezMkJToAHaJU8o6X6J3yK1w6JPMC59WaZYrW7iyMirLDCo6obiRUqVo1c35zMylM8XMF9yJ-2zUtI1_yMCKzOeVtUKZiqrjG2GMVVLxikuVGT9mfMCHLmPZcuqesdJDfNqZJhxqwqGeSY04HLMXO5hNKNpx5WwxoFkPB4cCVKNOuRIq30FdIth_wj0bKEkjJ9PzjGl8e77FSXS5ROQ8Zg8Cie12L8hSz9X80X-u-pjdoFGIXHzCRkhv_ilaU52dsGuvLvgEeWbx8f2HSeSdXycCJF8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgEXVP6XFhgkbhB2EzvO-ogqqgW6PbVSb5YdO5BqN1mx4Yp4DZ6DN-JJOhM7QZWgSNzy45Ejz3h-4m9mGHuJJrPKZqZIvM8EtTBziRKVSZTM0D-x5DXTD_3liVyciQ_n-fkOOxxyYQhWGXV_0Om9to5PpnE1p5u6nuI-zEicULly3LAK4_YbIucF4frefBtxHiSwed9hBeMkGh4zZwLIy1-sqWhl2hfxlNQM_c_W6W_eZ2-FjvbYneg-wtvwhXfZjm_usZvLeEB-n_1EtkPEaEBbQb1GfQF91DtWigWz-tR-qbvPaxzSQNduQtnquoTyavnm1-ACEg9vYPM7xQBM42DIqYSSGnwESB1NufYdCtYKKSy1n4AmAM23gNeUY92nm_36_mML8XDoATs7end6uEhiX4akxPCvS5xS1vkSY8PUcocRybzwWZWJXNnClZVRQhg0c1ylRkqVoU83T2dmLp0pZr5IHX_Idpu28Y8ZWC58XlnLlamoNr7hxlglVVqlUgnjJywd-KHLWLScemes9IBOu9DEQ0081DOpkYcT9mqk2YSSHdeO5gOb9bBwqD41WpRrqfKR6oq4_pPuxSBJGvcxHc6YxrdftziIfi2RME_YoyBi49dz8tNzNX_yn7M-Z7cWp8tjffz-5OM-u01vAobxgO2i7Pmn6Fd19lm_by4Bjz0jlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+image+reconstruction+algorithms+on+topographic+characteristics%2C+diagnostic+performance+and+clinical+correlation+of+metabolic+brain+networks+in+Parkinson%27s+disease&rft.jtitle=Physica+medica&rft.au=Tom%C5%A1e%2C+Petra&rft.au=Peng%2C+Shichun&rft.au=Pirto%C5%A1ek%2C+Zvezdan&rft.au=Zaletel%2C+Katja&rft.date=2018-08-01&rft.eissn=1724-191X&rft.volume=52&rft.spage=104&rft_id=info:doi/10.1016%2Fj.ejmp.2018.06.637&rft_id=info%3Apmid%2F30139598&rft.externalDocID=30139598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon