The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson’s disease
•PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diag...
Saved in:
Published in | Physica medica Vol. 52; pp. 104 - 112 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1120-1797 1724-191X 1724-191X |
DOI | 10.1016/j.ejmp.2018.06.637 |
Cover
Abstract | •PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diagnosis and multicentre research.
The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson’s disease related pattern (PDRP).
FDG-PET brain scans of 20 Parkinson’s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient’s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.
The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.
PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable. |
---|---|
AbstractList | The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).
FDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.
The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.
PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable. The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).PURPOSEThe purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).FDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.METHODSFDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient's clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.RESULTSThe region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs' expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.CONCLUSIONPDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable. •PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient cohorts.•RA used in PDRP identification do not affect its ability in differential diagnosis.•PDRP is a robust biomarker of PD to improve diagnosis and multicentre research. The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson’s disease related pattern (PDRP). FDG-PET brain scans of 20 Parkinson’s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient’s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts. The region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups. PDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable. |
Author | Tomše, Petra Pirtošek, Zvezdan Peng, Shichun Eidelberg, David Zaletel, Katja Dhawan, Vijay Trošt, Maja Ma, Yilong |
Author_xml | – sequence: 1 givenname: Petra surname: Tomše fullname: Tomše, Petra email: petra.tomse@kclj.si organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia – sequence: 2 givenname: Shichun surname: Peng fullname: Peng, Shichun email: speng@northwell.edu organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA – sequence: 3 givenname: Zvezdan surname: Pirtošek fullname: Pirtošek, Zvezdan email: zvezdan.pirtosek@kclj.si organization: Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia – sequence: 4 givenname: Katja surname: Zaletel fullname: Zaletel, Katja email: katja.zaletel@kclj.si organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia – sequence: 5 givenname: Vijay orcidid: 0000-0002-2418-5674 surname: Dhawan fullname: Dhawan, Vijay email: vdhawan@northwell.edu organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA – sequence: 6 givenname: David surname: Eidelberg fullname: Eidelberg, David email: deidelbe@northwell.edu organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA – sequence: 7 givenname: Yilong surname: Ma fullname: Ma, Yilong email: yma@northwell.edu organization: Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA – sequence: 8 givenname: Maja surname: Trošt fullname: Trošt, Maja email: maja.trost@kclj.si organization: Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30139598$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtuFDEUhkcoiFzgBSiQSwpmsT0XjxFNFHGTIkERJDrrjH1m17sz9mB7QenyGnkO3ognwZvNNilC5WPp_47l_zstjpx3WBQvGV0wytq36wWup3nBKesWtF20lXhSnDDB65JJ9uMoz4zTkgkpjovTGNeUVpw3zbPiuKKsko3sToo_VyskOAyoUyR-IHaCJZKA2ruYwlYn6x2BcemDTaspRxxJfvbLAPPKaqJXEEAnDDYmq-MbYiwsnd9dyIxh8GECp5GAM0SP1lkNI9E-BBzhbnV-csIEvR8z0QewjjhMv33YRJLnbxA21kXv_t7cxrw8IkR8XjwdYIz44v48K75__HB18bm8_Prpy8X5ZalrKlJppOwNatbVrK9MI0UnkA-8bmQvjB5A1jXUXFaSQdtK3jWsYxS61oCgKJipzorX-71z8D-3GJOabNQ4juDQb6PiVFYVFayrcvTVfXTbT2jUHHKR4Vodis6Bbh_QwccYcFDaprsKUv70qBhVO6dqrXZO1c6poq3KTjPKH6CH7Y9C7_cQ5oJ-WQwqaotZhbFZblLG28fxdw_wg70NXv8P_gcdJdRi |
CitedBy_id | crossref_primary_10_1007_s00259_020_04785_z crossref_primary_10_1002_mds_28217 crossref_primary_10_1007_s00259_019_04570_7 crossref_primary_10_1016_j_nicl_2023_103475 crossref_primary_10_3233_JPD_202004 crossref_primary_10_1111_ene_15669 crossref_primary_10_3389_fneur_2019_01204 crossref_primary_10_1016_j_dadm_2019_04_002 |
Cites_doi | 10.1186/1471-2342-5-5 10.1016/j.neuroimage.2006.05.060 10.1016/S1474-4422(10)70002-8 10.1038/jcbfm.1994.99 10.2967/jnumed.116.183152 10.1097/MNM.0000000000000187 10.1002/mds.21933 10.1007/s00259-015-3098-2 10.1016/j.ejmp.2018.01.021 10.1371/journal.pone.0088119 10.1038/jcbfm.2011.166 10.1002/mds.23291 10.1016/j.cpet.2009.12.004 10.1016/j.neuroimage.2008.01.056 10.1016/j.tins.2009.06.003 10.1186/1471-2342-5-3 10.1212/WNL.0b013e31826c1b0a 10.1016/j.ejmp.2015.08.003 10.1007/s12021-016-9322-9 10.1002/mds.26302 10.1016/j.neuroimage.2010.10.025 10.1016/j.ejmp.2017.01.018 10.1093/brain/awu256 10.2967/jnumed.115.161513 10.1016/j.neuroimage.2005.12.024 10.1002/hbm.22295 10.1111/ene.13269 10.1007/s00234-017-1821-3 10.1038/jcbfm.1991.47 10.1016/S0959-8049(99)00229-4 10.1016/j.ejmp.2017.04.027 10.2174/156720501108140910114230 10.1016/j.neuroimage.2009.01.057 10.1016/j.parkreldis.2013.02.013 10.1002/mds.25361 10.1098/rstb.1999.0477 10.1093/brain/awl162 10.1002/hbm.460020108 10.1038/sj.jcbfm.9600358 10.1093/brain/awm086 10.1007/s00259-006-0224-1 10.1523/JNEUROSCI.4188-09.2010 10.1016/j.neuroimage.2008.12.063 10.1212/WNL.0b013e318250d7fd 10.1002/mds.26907 10.1073/pnas.0706006104 10.1016/j.neuroimage.2005.03.012 10.1016/S1353-8020(11)70020-7 10.1212/WNL.0000000000003285 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ejmp.2018.06.637 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1724-191X |
EndPage | 112 |
ExternalDocumentID | 30139598 10_1016_j_ejmp_2018_06_637 S1120179718311190 |
Genre | Journal Article |
GroupedDBID | --- --K --M -QF .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3J0 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABNEU ABXDB ACDAQ ACFVG ACGFS ACIEU ACRLP ACXCU ADBBV ADEZE ADVLN AEBSH AEFWE AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG AIVDX AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DC1 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 PC. Q38 RLW ROL RPZ SDF SDG SEL SES SJN SPC SPCBC SSH SSQ SSZ T5K UNMZH Z5R ~G- ~XS AACTN AAIAV ABLVK ABYKQ ACNNM AFCTW AFKWA AJBFU AJOXV AMFUW CLCPZ EFLBG LCYCR AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c407t-d99bdec1841b3d59787e2f2459b7dcfa944a429391a6692851810a86da70e71d3 |
IEDL.DBID | AIKHN |
ISSN | 1120-1797 1724-191X |
IngestDate | Fri Sep 05 12:59:55 EDT 2025 Thu Apr 03 07:04:57 EDT 2025 Tue Jul 01 03:14:30 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:28:26 EST 2024 Tue Aug 26 19:49:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FDG-PET Progressive supranuclear palsy Metabolic brain networks Multiple system atrophy Reconstruction algorithms Parkinson’s disease Principal component analysis |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-d99bdec1841b3d59787e2f2459b7dcfa944a429391a6692851810a86da70e71d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-2418-5674 |
PMID | 30139598 |
PQID | 2093307183 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2093307183 pubmed_primary_30139598 crossref_citationtrail_10_1016_j_ejmp_2018_06_637 crossref_primary_10_1016_j_ejmp_2018_06_637 elsevier_sciencedirect_doi_10_1016_j_ejmp_2018_06_637 elsevier_clinicalkey_doi_10_1016_j_ejmp_2018_06_637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 2018-Aug 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Physica medica |
PublicationTitleAlternate | Phys Med |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Zhang, Gao (b0015) 2012; 18 Teune, Strijkert, Renken, Izaks, de Vries, Segbers (b0095) 2014; 11 Niethammer, Tang, Feigin, Allen, Heinen, Hellwig (b0030) 2014; 137 Eckert, Tang, Ma, Brown, Lin, Frucht (b0025) 2008; 23 Razifar, Sandstrom, Schnieder, Langstrom, Maripuu, Bengtsson (b0240) 2005; 5 Westerterp, Pruim, Oyen, Hoekstra, Paans, Visser (b0160) 2007; 34 Tang, Poston, Eckert, Feigin, Frucht, Gudesblatt (b0080) 2010; 9 Prieto, García-Velloso, Rodríguez-Fraile, Morán, García-García, Guillén (b0155) 2018; 46 Ma, Johnston, Peng, Zuo, Koprich, Fox (b0220) 2015; 30 Poston, Tang, Eckert, Dhawan, Frucht, Vonsattel (b0075) 2012; 78 Eidelberg, Moeller, Dhawan, Spetsieris, Takikawa, Ishikawa (b0190) 1994; 14 Spetsieris, Eidelberg (b0085) 2011; 54 Trošt, Su, Su, Yen, Tseng, Barnes (b0140) 2006; 31 Alexander, Moeller (b0185) 1994; 2 Feigin, Kaplitt, Tang, Lin, Mattis, Dhawan (b0150) 2007; 104 Teune, Bartels, De Jong, Willemsen, Eshuis, De Vries (b0100) 2010; 25 Ma, Peng, Spetsieris, Sossi, Eidelberg, Doudet (b0210) 2012; 32 Strafella, Bohnen, Perlmutter, Eidelberg, Pavese, Van Eimeren (b0010) 2017; 32 Spetsieris, Ma, Dhawan, Eidelberg (b0005) 2009; 45 Razifar, Axelsson, Schneider, Långström, Bengtsson, Bergström (b0230) 2006; 33 Caminiti, Alongi, Majno, Volontè, Cerami, Gianolli (b0020) 2017; 24 Petersson, Nichols, Poline, Holmes (b0195) 1999; 354 Tomše, Jensterle, Grmek, Zaletel, Pirtošek, Dhawan (b0125) 2017; 5 Razifar, Lubberink, Schneider, Långström, Bengtsson, Bergström (b0235) 2005; 5 Peng, Ma, Flores, Cornfeldt, Mitrovic, Eidelberg (b0215) 2016 Tomše, Jensterle, Rep, Grmek, Zaletel, Eidelberg (b0180) 2017; 41 Kwon, Choi, Kim, Lee, Chung (b0055) 2008; 15 Prieto, Martí-Climent, Morán, Sancho, Barbés, Arbizu (b0250) 2015 Meles, Teune, de Jong, Dierckx, Leenders (b0035) 2017; 58 Ma, Tang, Spetsieris, Dhawan, Eidelberg (b0070) 2007; 27 Presotto, Ballarini, Caminiti, Bettinardi, Gianolli, Perani (b0170) 2017; 15 (b0225) 2012 Ko, Spetsieris, Ma, Dhawan, Eidelberg (b0205) 2014; 9 Asanuma, Tang, Ma, Dhawan, Mattis, Edwards (b0145) 2006; 129 Young, Baum, Cremerius, Herholz, Hoekstra, Lammertsma (b0165) 1999; 35 Hellwig, Amtage, Kreft, Buchert, Winz, Vach (b0040) 2012; 79 Booij, Teune, Verberne (b0045) 2012; 56 Huang, Tang, Feigin, Lesser, Ma, Pourfar (b0130) 2007; 130 Habeck, Foster, Perneczky, Kurz, Alexopoulos, Koeppe (b0200) 2008; 40 Mattis, Niethammer, Sako, Tang, Nazem, Gordon (b0105) 2016; 87 Smailagic, Vacante, Hyde, Martin, Ukoumunne, Sachpekidis (b0265) 2015 Moeller, Strother (b0065) 1991; 11 Peng, Ma, Spetsieris, Mattis, Feigin, Dhawan (b0175) 2014; 35 Poston, Eidelberg (b0050) 2010; 5 Eckert, Barnes, Dhawan, Frucht, Gordon, Feigin (b0060) 2005; 26 Inglese, Amoroso, Boccardi, Bocchetta, Bruno, Chincarini (b0255) 2015; 31 Morbelli, Garibotto, Van De Giessen, Arbizu, Chételat, Drezgza (b0270) 2015; 42 Tangaro, Fanizzi, Amoroso, Bellotti (b0260) 2017; 38 Nagaki, Onoguchi, Matsutomo (b0245) 2014; 35 Ikari, Akamatsu, Nishio, Ishii, Ito, Iwatsubo (b0280) 2016 Tang, Poston, Dhawan, Eidelberg (b0135) 2010; 30 Joshi, Koeppe, Fessler (b0275) 2009; 46 Teune, Renken, Mudali, De Jong, Dierckx, Roerdink (b0115) 2013; 28 Wu, Wang, Peng, Ma, Zhang, Guan (b0120) 2013; 19 Moeller, Nakamura, Mentis, Dhawan, Spetsieres, Antonini (b0090) 1999; 40 Eidelberg (b0110) 2009; 32 Booij (10.1016/j.ejmp.2018.06.637_b0045) 2012; 56 Tang (10.1016/j.ejmp.2018.06.637_b0080) 2010; 9 Smailagic (10.1016/j.ejmp.2018.06.637_b0265) 2015 Peng (10.1016/j.ejmp.2018.06.637_b0215) 2016 Caminiti (10.1016/j.ejmp.2018.06.637_b0020) 2017; 24 Huang (10.1016/j.ejmp.2018.06.637_b0130) 2007; 130 Poston (10.1016/j.ejmp.2018.06.637_b0075) 2012; 78 Inglese (10.1016/j.ejmp.2018.06.637_b0255) 2015; 31 Strafella (10.1016/j.ejmp.2018.06.637_b0010) 2017; 32 Prieto (10.1016/j.ejmp.2018.06.637_b0250) 2015 Prieto (10.1016/j.ejmp.2018.06.637_b0155) 2018; 46 Eidelberg (10.1016/j.ejmp.2018.06.637_b0110) 2009; 32 Ikari (10.1016/j.ejmp.2018.06.637_b0280) 2016 Kwon (10.1016/j.ejmp.2018.06.637_b0055) 2008; 15 Feigin (10.1016/j.ejmp.2018.06.637_b0150) 2007; 104 Presotto (10.1016/j.ejmp.2018.06.637_b0170) 2017; 15 Eidelberg (10.1016/j.ejmp.2018.06.637_b0190) 1994; 14 (10.1016/j.ejmp.2018.06.637_b0225) 2012 Poston (10.1016/j.ejmp.2018.06.637_b0050) 2010; 5 Ma (10.1016/j.ejmp.2018.06.637_b0220) 2015; 30 Ma (10.1016/j.ejmp.2018.06.637_b0070) 2007; 27 Eckert (10.1016/j.ejmp.2018.06.637_b0060) 2005; 26 Moeller (10.1016/j.ejmp.2018.06.637_b0090) 1999; 40 Razifar (10.1016/j.ejmp.2018.06.637_b0235) 2005; 5 Asanuma (10.1016/j.ejmp.2018.06.637_b0145) 2006; 129 Nagaki (10.1016/j.ejmp.2018.06.637_b0245) 2014; 35 Young (10.1016/j.ejmp.2018.06.637_b0165) 1999; 35 Westerterp (10.1016/j.ejmp.2018.06.637_b0160) 2007; 34 Peng (10.1016/j.ejmp.2018.06.637_b0175) 2014; 35 Niethammer (10.1016/j.ejmp.2018.06.637_b0030) 2014; 137 Zhao (10.1016/j.ejmp.2018.06.637_b0015) 2012; 18 Alexander (10.1016/j.ejmp.2018.06.637_b0185) 1994; 2 Razifar (10.1016/j.ejmp.2018.06.637_b0230) 2006; 33 Hellwig (10.1016/j.ejmp.2018.06.637_b0040) 2012; 79 Teune (10.1016/j.ejmp.2018.06.637_b0115) 2013; 28 Habeck (10.1016/j.ejmp.2018.06.637_b0200) 2008; 40 Teune (10.1016/j.ejmp.2018.06.637_b0100) 2010; 25 Moeller (10.1016/j.ejmp.2018.06.637_b0065) 1991; 11 Spetsieris (10.1016/j.ejmp.2018.06.637_b0085) 2011; 54 Trošt (10.1016/j.ejmp.2018.06.637_b0140) 2006; 31 Eckert (10.1016/j.ejmp.2018.06.637_b0025) 2008; 23 Mattis (10.1016/j.ejmp.2018.06.637_b0105) 2016; 87 Tomše (10.1016/j.ejmp.2018.06.637_b0180) 2017; 41 Ko (10.1016/j.ejmp.2018.06.637_b0205) 2014; 9 Petersson (10.1016/j.ejmp.2018.06.637_b0195) 1999; 354 Wu (10.1016/j.ejmp.2018.06.637_b0120) 2013; 19 Razifar (10.1016/j.ejmp.2018.06.637_b0240) 2005; 5 Meles (10.1016/j.ejmp.2018.06.637_b0035) 2017; 58 Morbelli (10.1016/j.ejmp.2018.06.637_b0270) 2015; 42 Ma (10.1016/j.ejmp.2018.06.637_b0210) 2012; 32 Tang (10.1016/j.ejmp.2018.06.637_b0135) 2010; 30 Teune (10.1016/j.ejmp.2018.06.637_b0095) 2014; 11 Joshi (10.1016/j.ejmp.2018.06.637_b0275) 2009; 46 Spetsieris (10.1016/j.ejmp.2018.06.637_b0005) 2009; 45 Tomše (10.1016/j.ejmp.2018.06.637_b0125) 2017; 5 Tangaro (10.1016/j.ejmp.2018.06.637_b0260) 2017; 38 |
References_xml | – volume: 56 start-page: 17 year: 2012 end-page: 26 ident: b0045 article-title: The role of molecular imaging in the differential diagnosis of parkinsonism publication-title: Q J Nucl Med Mol Imaging – volume: 35 start-page: 1773 year: 1999 end-page: 1782 ident: b0165 article-title: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations publication-title: Eur J Cancer – volume: 58 start-page: 23 year: 2017 end-page: 28 ident: b0035 article-title: Metabolic imaging in Parkinson disease publication-title: J Nucl Med – volume: 2 start-page: 79 year: 1994 end-page: 94 ident: b0185 article-title: Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease publication-title: Hum Brain Mapp – volume: 15 start-page: 1043 year: 2008 end-page: 1049 ident: b0055 article-title: Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease publication-title: Eur J Neurol Off J Eur Fed Neurol Soc – volume: 87 start-page: 1925 year: 2016 end-page: 1933 ident: b0105 article-title: Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases publication-title: Neurology – volume: 137 start-page: 3036 year: 2014 end-page: 3046 ident: b0030 article-title: A disease-specific metabolic brain network associated with corticobasal degeneration publication-title: Brain – volume: 30 start-page: 1049 year: 2010 end-page: 1056 ident: b0135 article-title: Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease publication-title: J Neurosci – year: 2012 ident: b0225 publication-title: Physics in nuclear medicine – volume: 354 start-page: 1239 year: 1999 end-page: 1260 ident: b0195 article-title: Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models publication-title: Philos Trans R Soc B Biol Sci – start-page: 1 year: 2015 ident: b0265 article-title: F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI) publication-title: Cochrane Database Syst Rev – volume: 41 start-page: 129 year: 2017 end-page: 135 ident: b0180 article-title: The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson’s disease publication-title: Phys Medica – volume: 40 start-page: 1503 year: 2008 end-page: 1515 ident: b0200 article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease publication-title: Neuroimage – volume: 35 start-page: 1801 year: 2014 end-page: 1814 ident: b0175 article-title: Characterization of disease-related covariance topographies with SSMPCA toolbox: Effects of spatial normalization and PET scanners publication-title: Hum Brain Mapp – volume: 11 start-page: A121 year: 1991 end-page: A135 ident: b0065 article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data publication-title: J Cereb Blood Flow Metab – volume: 14 start-page: 783 year: 1994 end-page: 801 ident: b0190 article-title: The metabolic topography of parkinsonism publication-title: J Cereb Blood Flow Metab – volume: 30 start-page: 1283 year: 2015 end-page: 1288 ident: b0220 article-title: Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: a descriptive pilot study with FDG PET publication-title: Mov Disord – volume: 9 year: 2014 ident: b0205 article-title: Quantifying significance of topographical similarities of disease-related brain metabolic patterns publication-title: PLoS One – year: 2016 ident: b0215 article-title: Modulation of abnormal metabolic brain networks by experimental therapies in a nonhuman primate model of Parkinson’s disease: an application to human retinal pigment epithelial (hRPE) cell implantation publication-title: J Nucl Med – volume: 5 start-page: 5 year: 2005 ident: b0240 article-title: Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM publication-title: BMC Med Imaging – volume: 11 start-page: 725 year: 2014 end-page: 732 ident: b0095 article-title: The Alzheimer’s disease-related glucose metabolic brain pattern publication-title: Curr Alzheimer Res – volume: 33 start-page: 588 year: 2006 end-page: 598 ident: b0230 article-title: A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies – clinical brain studies using [11C]-GR205171, [11C]-l-deuterium-deprenyl, [11C]-5-hydroxy-l-tryptophan, [11C]-L-DOPA and Pittsburgh compound-B publication-title: Neuroimage – volume: 19 start-page: 622 year: 2013 end-page: 627 ident: b0120 article-title: Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging publication-title: Parkinsonism Relat Disord – volume: 32 start-page: 548 year: 2009 end-page: 557 ident: b0110 article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach publication-title: Trends Neurosci – volume: 35 start-page: 1224 year: 2014 end-page: 1232 ident: b0245 article-title: Clinical validation of high-resolution image reconstruction algorithms in brain 18F-FDG-PET: effect of incorporating Gaussian filter, point spread function, and time-of-flight publication-title: Nucl Med Commun – volume: 23 start-page: 727 year: 2008 end-page: 733 ident: b0025 article-title: Abnormal metabolic networks in atypical parkinsonism publication-title: Mov Disord – volume: 54 start-page: 2899 year: 2011 end-page: 2914 ident: b0085 article-title: Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues publication-title: Neuroimage – volume: 28 start-page: 547 year: 2013 end-page: 551 ident: b0115 article-title: Validation of parkinsonian disease-related metabolic brain patterns publication-title: Mov Disord – volume: 46 start-page: 154 year: 2009 end-page: 159 ident: b0275 article-title: Reducing between scanner differences in multi-center PET studies publication-title: Neuroimage – volume: 5 start-page: 55 year: 2010 end-page: 64 ident: b0050 article-title: FDG PET in the evaluation of Parkinson’s disease publication-title: PET Clin – volume: 104 start-page: 19559 year: 2007 end-page: 19564 ident: b0150 article-title: Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 134 year: 2018 end-page: 139 ident: b0155 article-title: Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality publication-title: Phys Medica – volume: 129 start-page: 2667 year: 2006 end-page: 2678 ident: b0145 article-title: Network modulation in the treatment of Parkinson’s disease publication-title: Brain – volume: 27 start-page: 597 year: 2007 end-page: 605 ident: b0070 article-title: Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility publication-title: J Cereb Blood Flow Metab – volume: 130 start-page: 1834 year: 2007 end-page: 1846 ident: b0130 article-title: Changes in network activity with the progression of Parkinson’s disease publication-title: Brain – volume: 31 start-page: 301 year: 2006 end-page: 307 ident: b0140 article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease publication-title: Neuroimage – volume: 9 start-page: 149 year: 2010 end-page: 158 ident: b0080 article-title: Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis publication-title: Lancet Neurol – volume: 5 start-page: 3 year: 2005 ident: b0235 article-title: Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function publication-title: BMC Med Imaging – start-page: 1 year: 2015 end-page: 8 ident: b0250 article-title: Brain PET imaging optimization with time of flight and point spread function modelling publication-title: Phys Med – volume: 18 start-page: S60 year: 2012 end-page: S62 ident: b0015 article-title: 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes publication-title: Park Relat Disord – volume: 38 start-page: 36 year: 2017 end-page: 44 ident: b0260 article-title: A fuzzy-based system reveals Alzheimer’s Disease onset in subjects with Mild Cognitive Impairment publication-title: Phys Medica – volume: 32 start-page: 181 year: 2017 end-page: 192 ident: b0010 article-title: Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers publication-title: Mov Disord – start-page: 3 year: 2016 ident: b0280 article-title: Phantom criteria for qualification of brain FDG and amyloid PET across different cameras publication-title: EJNMMI Phys – volume: 26 start-page: 912 year: 2005 end-page: 921 ident: b0060 article-title: FDG PET in the differential diagnosis of parkinsonian disorders publication-title: Neuroimage – volume: 34 start-page: 392 year: 2007 end-page: 404 ident: b0160 article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters publication-title: Eur J Nucl Med Mol Imaging – volume: 32 start-page: 633 year: 2012 end-page: 642 ident: b0210 article-title: Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism publication-title: J Cereb Blood Flow Metab – volume: 45 start-page: 1241 year: 2009 end-page: 1252 ident: b0005 article-title: Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features publication-title: Neuroimage – volume: 5 start-page: 507 year: 2017 end-page: 515 ident: b0125 article-title: Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample publication-title: Neuroradiology – volume: 24 year: 2017 ident: b0020 article-title: Evaluation of an optimized [18F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders publication-title: Eur J Neurol – volume: 31 start-page: 1085 year: 2015 end-page: 1091 ident: b0255 article-title: Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI Harmonized Hippocampal Protocol publication-title: Phys Medica – volume: 78 start-page: 1237 year: 2012 end-page: 1244 ident: b0075 article-title: Network correlates of disease severity in multiple system atrophy publication-title: Neurology – volume: 40 start-page: 1264 year: 1999 end-page: 1269 ident: b0090 article-title: Reproducibility of regional metabolic covariance patterns: comparison of four populations publication-title: J Nucl Med – volume: 15 start-page: 151 year: 2017 end-page: 163 ident: b0170 article-title: Validation of18F–FDG-PET single-subject optimized SPM procedure with different PET scanners publication-title: Neuroinformatics – volume: 79 start-page: 1314 year: 2012 end-page: 1322 ident: b0040 article-title: [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism publication-title: Neurology – volume: 25 start-page: 2395 year: 2010 end-page: 2404 ident: b0100 article-title: Typical cerebral metabolic patterns in neurodegenerative brain diseases publication-title: Mov Disord – volume: 42 start-page: 1487 year: 2015 end-page: 1491 ident: b0270 article-title: A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives publication-title: Eur J Nucl Med Mol Imaging – volume: 5 start-page: 5 year: 2005 ident: 10.1016/j.ejmp.2018.06.637_b0240 article-title: Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM publication-title: BMC Med Imaging doi: 10.1186/1471-2342-5-5 – volume: 33 start-page: 588 year: 2006 ident: 10.1016/j.ejmp.2018.06.637_b0230 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.060 – volume: 56 start-page: 17 year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0045 article-title: The role of molecular imaging in the differential diagnosis of parkinsonism publication-title: Q J Nucl Med Mol Imaging – volume: 9 start-page: 149 year: 2010 ident: 10.1016/j.ejmp.2018.06.637_b0080 article-title: Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70002-8 – volume: 15 start-page: 1043 year: 2008 ident: 10.1016/j.ejmp.2018.06.637_b0055 article-title: Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease publication-title: Eur J Neurol Off J Eur Fed Neurol Soc – volume: 14 start-page: 783 year: 1994 ident: 10.1016/j.ejmp.2018.06.637_b0190 article-title: The metabolic topography of parkinsonism publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1994.99 – volume: 40 start-page: 1264 year: 1999 ident: 10.1016/j.ejmp.2018.06.637_b0090 article-title: Reproducibility of regional metabolic covariance patterns: comparison of four populations publication-title: J Nucl Med – volume: 58 start-page: 23 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0035 article-title: Metabolic imaging in Parkinson disease publication-title: J Nucl Med doi: 10.2967/jnumed.116.183152 – volume: 35 start-page: 1224 year: 2014 ident: 10.1016/j.ejmp.2018.06.637_b0245 article-title: Clinical validation of high-resolution image reconstruction algorithms in brain 18F-FDG-PET: effect of incorporating Gaussian filter, point spread function, and time-of-flight publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000187 – volume: 23 start-page: 727 year: 2008 ident: 10.1016/j.ejmp.2018.06.637_b0025 article-title: Abnormal metabolic networks in atypical parkinsonism publication-title: Mov Disord doi: 10.1002/mds.21933 – volume: 42 start-page: 1487 year: 2015 ident: 10.1016/j.ejmp.2018.06.637_b0270 article-title: A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-015-3098-2 – volume: 46 start-page: 134 year: 2018 ident: 10.1016/j.ejmp.2018.06.637_b0155 article-title: Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality publication-title: Phys Medica doi: 10.1016/j.ejmp.2018.01.021 – volume: 9 year: 2014 ident: 10.1016/j.ejmp.2018.06.637_b0205 article-title: Quantifying significance of topographical similarities of disease-related brain metabolic patterns publication-title: PLoS One doi: 10.1371/journal.pone.0088119 – volume: 32 start-page: 633 year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0210 article-title: Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.166 – volume: 25 start-page: 2395 year: 2010 ident: 10.1016/j.ejmp.2018.06.637_b0100 article-title: Typical cerebral metabolic patterns in neurodegenerative brain diseases publication-title: Mov Disord doi: 10.1002/mds.23291 – volume: 5 start-page: 55 year: 2010 ident: 10.1016/j.ejmp.2018.06.637_b0050 article-title: FDG PET in the evaluation of Parkinson’s disease publication-title: PET Clin doi: 10.1016/j.cpet.2009.12.004 – volume: 40 start-page: 1503 year: 2008 ident: 10.1016/j.ejmp.2018.06.637_b0200 article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.056 – volume: 32 start-page: 548 year: 2009 ident: 10.1016/j.ejmp.2018.06.637_b0110 article-title: Metabolic brain networks in neurodegenerative disorders: a functional imaging approach publication-title: Trends Neurosci doi: 10.1016/j.tins.2009.06.003 – volume: 5 start-page: 3 year: 2005 ident: 10.1016/j.ejmp.2018.06.637_b0235 article-title: Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function publication-title: BMC Med Imaging doi: 10.1186/1471-2342-5-3 – volume: 79 start-page: 1314 year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0040 article-title: [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism publication-title: Neurology doi: 10.1212/WNL.0b013e31826c1b0a – volume: 31 start-page: 1085 year: 2015 ident: 10.1016/j.ejmp.2018.06.637_b0255 article-title: Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI Harmonized Hippocampal Protocol publication-title: Phys Medica doi: 10.1016/j.ejmp.2015.08.003 – volume: 15 start-page: 151 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0170 article-title: Validation of18F–FDG-PET single-subject optimized SPM procedure with different PET scanners publication-title: Neuroinformatics doi: 10.1007/s12021-016-9322-9 – volume: 30 start-page: 1283 year: 2015 ident: 10.1016/j.ejmp.2018.06.637_b0220 article-title: Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: a descriptive pilot study with FDG PET publication-title: Mov Disord doi: 10.1002/mds.26302 – volume: 54 start-page: 2899 year: 2011 ident: 10.1016/j.ejmp.2018.06.637_b0085 article-title: Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.025 – volume: 41 start-page: 129 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0180 article-title: The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson’s disease publication-title: Phys Medica doi: 10.1016/j.ejmp.2017.01.018 – volume: 137 start-page: 3036 year: 2014 ident: 10.1016/j.ejmp.2018.06.637_b0030 article-title: A disease-specific metabolic brain network associated with corticobasal degeneration publication-title: Brain doi: 10.1093/brain/awu256 – year: 2016 ident: 10.1016/j.ejmp.2018.06.637_b0215 article-title: Modulation of abnormal metabolic brain networks by experimental therapies in a nonhuman primate model of Parkinson’s disease: an application to human retinal pigment epithelial (hRPE) cell implantation publication-title: J Nucl Med doi: 10.2967/jnumed.115.161513 – volume: 31 start-page: 301 year: 2006 ident: 10.1016/j.ejmp.2018.06.637_b0140 article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.024 – volume: 35 start-page: 1801 year: 2014 ident: 10.1016/j.ejmp.2018.06.637_b0175 article-title: Characterization of disease-related covariance topographies with SSMPCA toolbox: Effects of spatial normalization and PET scanners publication-title: Hum Brain Mapp doi: 10.1002/hbm.22295 – volume: 24 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0020 article-title: Evaluation of an optimized [18F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders publication-title: Eur J Neurol doi: 10.1111/ene.13269 – volume: 5 start-page: 507 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0125 article-title: Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample publication-title: Neuroradiology doi: 10.1007/s00234-017-1821-3 – volume: 11 start-page: A121 year: 1991 ident: 10.1016/j.ejmp.2018.06.637_b0065 article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1991.47 – start-page: 1 year: 2015 ident: 10.1016/j.ejmp.2018.06.637_b0250 article-title: Brain PET imaging optimization with time of flight and point spread function modelling publication-title: Phys Med – volume: 35 start-page: 1773 year: 1999 ident: 10.1016/j.ejmp.2018.06.637_b0165 article-title: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations publication-title: Eur J Cancer doi: 10.1016/S0959-8049(99)00229-4 – volume: 38 start-page: 36 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0260 article-title: A fuzzy-based system reveals Alzheimer’s Disease onset in subjects with Mild Cognitive Impairment publication-title: Phys Medica doi: 10.1016/j.ejmp.2017.04.027 – volume: 11 start-page: 725 year: 2014 ident: 10.1016/j.ejmp.2018.06.637_b0095 article-title: The Alzheimer’s disease-related glucose metabolic brain pattern publication-title: Curr Alzheimer Res doi: 10.2174/156720501108140910114230 – volume: 46 start-page: 154 year: 2009 ident: 10.1016/j.ejmp.2018.06.637_b0275 article-title: Reducing between scanner differences in multi-center PET studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.057 – volume: 19 start-page: 622 year: 2013 ident: 10.1016/j.ejmp.2018.06.637_b0120 article-title: Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2013.02.013 – volume: 28 start-page: 547 year: 2013 ident: 10.1016/j.ejmp.2018.06.637_b0115 article-title: Validation of parkinsonian disease-related metabolic brain patterns publication-title: Mov Disord doi: 10.1002/mds.25361 – volume: 354 start-page: 1239 year: 1999 ident: 10.1016/j.ejmp.2018.06.637_b0195 article-title: Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.1999.0477 – volume: 129 start-page: 2667 year: 2006 ident: 10.1016/j.ejmp.2018.06.637_b0145 article-title: Network modulation in the treatment of Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awl162 – volume: 2 start-page: 79 year: 1994 ident: 10.1016/j.ejmp.2018.06.637_b0185 article-title: Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.460020108 – start-page: 1 year: 2015 ident: 10.1016/j.ejmp.2018.06.637_b0265 article-title: 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI) publication-title: Cochrane Database Syst Rev – volume: 27 start-page: 597 year: 2007 ident: 10.1016/j.ejmp.2018.06.637_b0070 article-title: Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600358 – volume: 130 start-page: 1834 year: 2007 ident: 10.1016/j.ejmp.2018.06.637_b0130 article-title: Changes in network activity with the progression of Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awm086 – volume: 34 start-page: 392 year: 2007 ident: 10.1016/j.ejmp.2018.06.637_b0160 article-title: Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-006-0224-1 – start-page: 3 year: 2016 ident: 10.1016/j.ejmp.2018.06.637_b0280 article-title: Phantom criteria for qualification of brain FDG and amyloid PET across different cameras publication-title: EJNMMI Phys – volume: 30 start-page: 1049 year: 2010 ident: 10.1016/j.ejmp.2018.06.637_b0135 article-title: Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4188-09.2010 – volume: 45 start-page: 1241 year: 2009 ident: 10.1016/j.ejmp.2018.06.637_b0005 article-title: Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.063 – volume: 78 start-page: 1237 year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0075 article-title: Network correlates of disease severity in multiple system atrophy publication-title: Neurology doi: 10.1212/WNL.0b013e318250d7fd – volume: 32 start-page: 181 year: 2017 ident: 10.1016/j.ejmp.2018.06.637_b0010 article-title: Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers publication-title: Mov Disord doi: 10.1002/mds.26907 – year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0225 – volume: 104 start-page: 19559 year: 2007 ident: 10.1016/j.ejmp.2018.06.637_b0150 article-title: Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0706006104 – volume: 26 start-page: 912 year: 2005 ident: 10.1016/j.ejmp.2018.06.637_b0060 article-title: FDG PET in the differential diagnosis of parkinsonian disorders publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.012 – volume: 18 start-page: S60 issue: Suppl. 1 year: 2012 ident: 10.1016/j.ejmp.2018.06.637_b0015 article-title: 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes publication-title: Park Relat Disord doi: 10.1016/S1353-8020(11)70020-7 – volume: 87 start-page: 1925 year: 2016 ident: 10.1016/j.ejmp.2018.06.637_b0105 article-title: Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases publication-title: Neurology doi: 10.1212/WNL.0000000000003285 |
SSID | ssj0032255 |
Score | 2.160655 |
Snippet | •PDRPs identified with different reconstruction algorithms (RA) are highly similar.•RA generate highly reproducible PDRP subject scores in independent patient... The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | FDG-PET Metabolic brain networks Multiple system atrophy Parkinson’s disease Principal component analysis Progressive supranuclear palsy Reconstruction algorithms |
Title | The effects of image reconstruction algorithms on topographic characteristics, diagnostic performance and clinical correlation of metabolic brain networks in Parkinson’s disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1120179718311190 https://dx.doi.org/10.1016/j.ejmp.2018.06.637 https://www.ncbi.nlm.nih.gov/pubmed/30139598 https://www.proquest.com/docview/2093307183 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bitQwNKyzIL6Id8fLcATftM6kadPJ4zK4jJddRFzYt5A0qXaZaQen-7r4G36Hf-SXeE6TjizoCr41JYeEnHtyLow9R5VZpTNTJN6nGbUwc4nKKpMomaJ9Yslqpgv9o2O5PMnenuane2wx5MJQWGWU_UGm99I6_pnG05xu6nqKfJgSOaFwFciwCv32_VQomY_Y_sGbd8vjQSATyeZ9jxX0lAgg5s6EMC9_tqaylbwv4ympHfqf9dPf7M9eDx3eYjejAQkHYY-32Z5v7rDrR_GJ_C77gYiHGKUBbQX1GiUG9H7vrlYsmNXn9mvdfVnjlAa6dhMKV9cllJcLOL8EF2LxcACb30kGYBoHQ1YllNTiIwTV0ZJr3yFprRDCUgMKaEKo-Rbwm7Ks-4Szn9--byE-D91jJ4evPy2WSezMkJToAHaJU8o6X6J3yK1w6JPMC59WaZYrW7iyMirLDCo6obiRUqVo1c35zMylM8XMF9yJ-2zUtI1_yMCKzOeVtUKZiqrjG2GMVVLxikuVGT9mfMCHLmPZcuqesdJDfNqZJhxqwqGeSY04HLMXO5hNKNpx5WwxoFkPB4cCVKNOuRIq30FdIth_wj0bKEkjJ9PzjGl8e77FSXS5ROQ8Zg8Cie12L8hSz9X80X-u-pjdoFGIXHzCRkhv_ilaU52dsGuvLvgEeWbx8f2HSeSdXycCJF8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgEXVP6XFhgkbhB2EzvO-ogqqgW6PbVSb5YdO5BqN1mx4Yp4DZ6DN-JJOhM7QZWgSNzy45Ejz3h-4m9mGHuJJrPKZqZIvM8EtTBziRKVSZTM0D-x5DXTD_3liVyciQ_n-fkOOxxyYQhWGXV_0Om9to5PpnE1p5u6nuI-zEicULly3LAK4_YbIucF4frefBtxHiSwed9hBeMkGh4zZwLIy1-sqWhl2hfxlNQM_c_W6W_eZ2-FjvbYneg-wtvwhXfZjm_usZvLeEB-n_1EtkPEaEBbQb1GfQF91DtWigWz-tR-qbvPaxzSQNduQtnquoTyavnm1-ACEg9vYPM7xQBM42DIqYSSGnwESB1NufYdCtYKKSy1n4AmAM23gNeUY92nm_36_mML8XDoATs7end6uEhiX4akxPCvS5xS1vkSY8PUcocRybzwWZWJXNnClZVRQhg0c1ylRkqVoU83T2dmLp0pZr5IHX_Idpu28Y8ZWC58XlnLlamoNr7hxlglVVqlUgnjJywd-KHLWLScemes9IBOu9DEQ0081DOpkYcT9mqk2YSSHdeO5gOb9bBwqD41WpRrqfKR6oq4_pPuxSBJGvcxHc6YxrdftziIfi2RME_YoyBi49dz8tNzNX_yn7M-Z7cWp8tjffz-5OM-u01vAobxgO2i7Pmn6Fd19lm_by4Bjz0jlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+image+reconstruction+algorithms+on+topographic+characteristics%2C+diagnostic+performance+and+clinical+correlation+of+metabolic+brain+networks+in+Parkinson%27s+disease&rft.jtitle=Physica+medica&rft.au=Tom%C5%A1e%2C+Petra&rft.au=Peng%2C+Shichun&rft.au=Pirto%C5%A1ek%2C+Zvezdan&rft.au=Zaletel%2C+Katja&rft.date=2018-08-01&rft.eissn=1724-191X&rft.volume=52&rft.spage=104&rft_id=info:doi/10.1016%2Fj.ejmp.2018.06.637&rft_id=info%3Apmid%2F30139598&rft.externalDocID=30139598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon |