Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers
The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in th...
Saved in:
Published in | Journal of the American Statistical Association Vol. 96; no. 454; pp. 429 - 439 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.06.2001
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0162-1459 1537-274X |
DOI | 10.1198/016214501753168145 |
Cover
Loading…
Abstract | The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease. In this article we derive a Bayesian approach to screening based on calculation of the posterior probability of disease given longitudinal marker levels. The method is motivated by a randomized ovarian cancer screening trial in the United Kingdom comprising 22,000 women screened over 4 years with an additional 5 years of follow-up on average. Levels of the antigen CA125 were recorded annually in the screened arm. CA125 profiles of cases and controls from the U.K. trial are modeled using hierarchical changepoint and mixture models, posterior distributions are calculated using Markov chain Monte Carlo methods, and the model is used to calculate the Bayesian posterior risk of having ovarian cancer given a new subject's single or multiple longitudinal CA125 levels. A screening strategy based on the risk calculation is then evaluated using data from an independent screening trial of 5,550 women performed in Sweden. A longitudinal CA125 screening strategy based on calculation of the risk of ovarian cancer is proposed. Simulations of a prospective trial using a strategy based on the risk calculated from longitudinal CA125 values indicate potentially large increases in sensitivity for a given specificity compared to the standard approach based on a fixed CA125 reference level for all subjects. |
---|---|
AbstractList | The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease. In this article we derive a Bayesian approach to screening based on calculation of the posterior probability of disease given longitudinal marker levels. The method is motivated by a randomized ovarian cancer screening trial in the United Kingdom comprising 22,000 women screened over 4 years with an additional 5 years of follow-up on average. Levels of the antigen CA125 were recorded annually in the screened arm. CA125 profiles of cases and controls from the U.K. trial are modeled using hierarchical changepoint and mixture models, posterior distributions are calculated using Markov chain Monte Carlo methods, and the model is used to calculate the Bayesian posterior risk of having ovarian cancer given a new subject's single or multiple longitudinal CA125 levels. A screening strategy based on the risk calculation is then evaluated using data from an independent screening trial of 5,550 women performed in Sweden. A longitudinal CA125 screening strategy based on calculation of the risk of ovarian cancer is proposed. Simulations of a prospective trial using a strategy based on the risk calculated from longitudinal CA125 values indicate potentially large increases in sensitivity for a given specificity compared to the standard approach based on a fixed CA125 reference level for all subjects. The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease. |
Author | Pauler, Donna K Skates, Steven J Jacobs, Ian J |
Author_xml | – sequence: 1 givenname: Steven J surname: Skates fullname: Skates, Steven J – sequence: 2 givenname: Donna K surname: Pauler fullname: Pauler, Donna K – sequence: 3 givenname: Ian J surname: Jacobs fullname: Jacobs, Ian J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1059690$$DView record in Pascal Francis |
BookMark | eNp9kctuEzEUhi1UJNLCCyAWFkLsBnzm7gULiCitlAiJi8Ru5HjOJE4dOxx7BFnz4jidFqFWqhe25fP9v8_llJ0475Cx5yDeAMj2rYA6h7IS0FQF1G26PmIzqIomy5vyxwmbHYEsPcsn7DSErUiradsZ-_NVE6Izbs0_qIA9947HDfIvJlxxP_C5chopHVaPVkWTwufkdwk-YDDK8QuDpEhvjFaWzzfKrXHvjYtcuZ4vze84EvKl79GGo9_Cu7WJY29cwpeKrpDCU_Z4UDbgs5vzjH0___htfpEtPn-6nL9fZLoUTcz0IFfQAgy6kTnkslKrpkh1FH1eSomwgrqSNfRYpK1q8mIoW6ERcFUpXUpVnLHXk--e_M8RQ-x2Jmi0Vjn0Y-iKNhlVIBP48g649SOljEOX2lmLaoJe3UAqpNoHSp0yoduT2Sk6dCBSMlIkLJ8wTT4EwuE_ojvOrrs_uyRq74i0idfdj6SMfVj6YpJuQ_T077O8bkTeQgq_m8LGDZ526pcn23dRHayn2xKKB-z_Ap1AuvM |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1038_bjc_2017_72 crossref_primary_10_1111_j_1541_0420_2005_00323_x crossref_primary_10_1155_2021_1455812 crossref_primary_10_3390_cancers12071931 crossref_primary_10_1002_bimj_201100062 crossref_primary_10_1016_j_bpobgyn_2005_10_012 crossref_primary_10_1155_2015_681416 crossref_primary_10_1016_j_bspc_2018_07_001 crossref_primary_10_1016_j_cgh_2015_07_049 crossref_primary_10_1016_S0090_8258_03_00051_9 crossref_primary_10_1200_JCO_2005_12_156 crossref_primary_10_1158_1078_0432_CCR_16_1391 crossref_primary_10_1200_JCO_2005_02_2582 crossref_primary_10_1783_147118906777888440 crossref_primary_10_1002_sim_8731 crossref_primary_10_1016_j_bpobgyn_2011_11_006 crossref_primary_10_1158_1078_0432_CCR_15_2750 crossref_primary_10_1093_jnci_djv012 crossref_primary_10_1155_2010_932371 crossref_primary_10_1158_1055_9965_EPI_07_2703 crossref_primary_10_2139_ssrn_3238216 crossref_primary_10_1158_1055_9965_EPI_20_0240 crossref_primary_10_2165_11314830_000000000_00000 crossref_primary_10_1080_19488300_2013_820241 crossref_primary_10_1200_JCO_2008_19_2484 crossref_primary_10_1002_cam4_7163 crossref_primary_10_1038_sj_bjc_6603407 crossref_primary_10_1007_s10255_017_0674_1 crossref_primary_10_1016_S0140_6736_15_01224_6 crossref_primary_10_1002_sim_6445 crossref_primary_10_3310_CLDC7214 crossref_primary_10_5301_JBM_2011_8616 crossref_primary_10_1016_j_ebiom_2024_105554 crossref_primary_10_3389_fnagi_2020_00136 crossref_primary_10_1002_sim_1392 crossref_primary_10_3390_nu11102416 crossref_primary_10_1007_s40300_019_00151_8 crossref_primary_10_1016_j_bpobgyn_2016_10_017 crossref_primary_10_1136_ijgc_00009577_200309000_00021 crossref_primary_10_1586_eog_12_4 crossref_primary_10_25259_JRHM_6_2024 crossref_primary_10_1038_nrc1041 crossref_primary_10_1080_02664760903563668 crossref_primary_10_1007_s11424_014_2205_y crossref_primary_10_1080_01443615_2020_1732892 crossref_primary_10_3233_CBM_210307 crossref_primary_10_1136_ijgc_00009577_200107001_00002 crossref_primary_10_1186_1476_4598_13_129 crossref_primary_10_1158_1078_0432_CCR_17_0284 crossref_primary_10_1200_JCO_2005_01_6642 crossref_primary_10_1016_S0090_8258_03_00254_3 crossref_primary_10_1016_j_ygyno_2020_02_027 crossref_primary_10_1177_1742271X0301100204 crossref_primary_10_1080_02664763_2011_644523 crossref_primary_10_1191_1740774506cn130oa crossref_primary_10_18027_2224_5057_2022_12_4_22_35 crossref_primary_10_1002_gepi_21815 crossref_primary_10_1200_JCO_2015_63_7843 crossref_primary_10_1586_eog_13_5 crossref_primary_10_1016_j_ygyno_2007_03_007 crossref_primary_10_1093_jnci_dju076 crossref_primary_10_1016_j_ygyno_2011_12_440 crossref_primary_10_1006_gyno_2002_6689 crossref_primary_10_1016_j_hoc_2018_07_003 crossref_primary_10_1200_JCO_2014_59_4945 crossref_primary_10_1158_1078_0432_CCR_07_4534 crossref_primary_10_2196_22033 crossref_primary_10_1080_03610918_2011_575510 crossref_primary_10_1074_mcp_R400006_MCP200 crossref_primary_10_1186_s13048_024_01535_9 crossref_primary_10_1111_1471_0528_13154 crossref_primary_10_1016_j_ygyno_2020_09_021 crossref_primary_10_1016_S0140_6736_21_00731_5 crossref_primary_10_1111_j_1541_0420_2009_01261_x crossref_primary_10_3310_BHBR5832 crossref_primary_10_1158_1940_6207_CAPR_11_0048 crossref_primary_10_1002_cncr_28183 crossref_primary_10_1158_1078_0432_CCR_06_2224 crossref_primary_10_1155_2017_9879135 crossref_primary_10_1053_beog_2002_0297 crossref_primary_10_1158_1078_0432_CCR_14_0365 crossref_primary_10_1007_s11425_012_4475_y crossref_primary_10_1016_S0889_8588_03_00063_7 crossref_primary_10_1037_1082_989X_7_1_41 crossref_primary_10_1002_sim_9358 crossref_primary_10_1186_s12874_017_0458_6 crossref_primary_10_1016_j_bspc_2016_11_015 crossref_primary_10_1158_1940_6207_CAPR_10_0402 crossref_primary_10_1200_JCO_2012_43_6691 crossref_primary_10_1093_geronb_63_5_S282 crossref_primary_10_1016_j_ygyno_2004_07_039 crossref_primary_10_1158_0008_5472_CAN_04_0746 crossref_primary_10_1002_sim_5964 crossref_primary_10_1177_107327481101800103 crossref_primary_10_1093_biostatistics_kxs018 crossref_primary_10_1016_j_jeconom_2009_10_020 crossref_primary_10_1046_j_1525_1438_2003_t01_1_13050_x crossref_primary_10_1016_j_ajog_2008_04_009 crossref_primary_10_1016_S1470_2045_09_70026_9 crossref_primary_10_1046_j_0035_9254_2003_05116_x crossref_primary_10_3390_cancers12123730 crossref_primary_10_1016_j_rigp_2005_09_006 crossref_primary_10_1158_1078_0432_CCR_18_0208 crossref_primary_10_1002_sim_5736 crossref_primary_10_1016_j_ygyno_2016_03_007 crossref_primary_10_12677_PM_2023_1311323 crossref_primary_10_17116_profmed202124071103 crossref_primary_10_1097_IGC_0b013e318256488a |
Cites_doi | 10.1002/cncr.2820710418 10.1093/ajcp/79.1.98 10.1093/biomet/62.2.407 10.1093/biomet/56.3.601 10.1093/biomet/82.4.711 10.2307/2532497 10.1006/gyno.1997.4760 10.2307/2530739 10.2307/3213911 10.2307/2986304 10.2307/2986119 10.1093/biomet/78.3.557 10.2307/2289768 10.2307/2291125 10.1136/bmj.306.6884.1030 10.2307/2530355 10.1016/0090-8258(90)90130-D 10.2307/2347570 10.2307/2289776 10.1093/biomet/80.1.223 10.1111/j.2517-6161.1989.tb01766.x 10.1063/1.1699114 10.1016/0304-4076(82)90048-3 |
ContentType | Journal Article |
Copyright | American Statistical Association 2001 Copyright 2001 American Statistical Association 2001 INIST-CNRS Copyright American Statistical Association Jun 2001 |
Copyright_xml | – notice: American Statistical Association 2001 – notice: Copyright 2001 American Statistical Association – notice: 2001 INIST-CNRS – notice: Copyright American Statistical Association Jun 2001 |
DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AF 8BJ 8C1 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JBE K60 K6~ K9- K9. L.- L6V M0C M0R M0S M0T M1P M2O M2P M7S MBDVC PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0X |
DOI | 10.1198/016214501753168145 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database International Bibliography of the Social Sciences (IBSS) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global ProQuest Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Proquest Medical Database Research Library Science Database Engineering Database Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Family Health (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ABI/INFORM China ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 439 |
ExternalDocumentID | 74274695 1059690 10_1198_016214501753168145 2670281 10708900 |
Genre | Article Feature |
GroupedDBID | -DZ -~X ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUWG ABXSQ ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFKRA AFSUE AFVYC AFXHP AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AQUVI AVBZW AWYRJ AZQEC BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BVXVI CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD E~A E~B F5P FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KYCEM L6V LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NHB NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UKHRP UPT UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV PHGZM PHGZT .-4 07G 1OL AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABEFU ABRLO ACGEE ADXHL AEUMN AFQQW AGCQS AGLEN AMATQ AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK E.L IPNFZ IVXBP KQ8 LJTGL NUSFT TAQ TFMCV UB9 UQL ZUP ZXP IQODW PJZUB PPXIY PQGLB TASJS 7XB 8BJ 8FK FQK JBE K9. L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c407t-cf9b1811fc7921295ab730003d2499e1b165961de361d5723f480ce1eb5ac49a3 |
IEDL.DBID | 7X7 |
ISSN | 0162-1459 |
IngestDate | Fri Jul 11 11:18:37 EDT 2025 Wed Aug 13 11:10:48 EDT 2025 Mon Jul 21 09:12:13 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 01:32:54 EDT 2025 Thu Jun 19 14:56:23 EDT 2025 Wed Dec 25 09:01:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 454 |
Keywords | Biometrics Parameter estimation Risk Multivariate analysis Markov chain Posterior distribution Bayes estimation Mixed distribution Monte Carlo method Data analysis Factor analysis Prior distribution Decision making Statistical estimation Marker Markov model Malignant tumor Mean estimation Cancer screening Statistical method Screening Ovarian diseases Sensitivity Posterior probability CA 125 antigen Hierarchical model Hierarchical system Application Principal component analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-cf9b1811fc7921295ab730003d2499e1b165961de361d5723f480ce1eb5ac49a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274605519 |
PQPubID | 41715 |
PageCount | 11 |
ParticipantIDs | proquest_journals_274605519 proquest_miscellaneous_38249519 crossref_citationtrail_10_1198_016214501753168145 pascalfrancis_primary_1059690 jstor_primary_2670281 crossref_primary_10_1198_016214501753168145 informaworld_taylorfrancis_310_1198_016214501753168145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-06-01 |
PublicationDateYYYYMMDD | 2001-06-01 |
PublicationDate_xml | – month: 06 year: 2001 text: 2001-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2001 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | p_29 p_24 p_25 p_26 Campbell S. (p_3) 1992; 70 Kabawat S. E. (p_15) 1983; 79 van Nagell J. R. (p_28) 1993; 71 Riedinger J. M. (p_20) 1997; 84 Turkman K. F. (p_27) 1989; 51 p_21 Einhorn N. (p_7) 1992; 70 p_16 p_17 p_2 p_1 p_19 p_4 p_12 p_13 p_6 p_5 p_8 p_30 p_10 p_32 p_11 |
References_xml | – volume: 71 start-page: 1523 year: 1993 ident: p_28 publication-title: Cancer doi: 10.1002/cncr.2820710418 – volume: 79 start-page: 98 year: 1983 ident: p_15 publication-title: American Journal of Clinical Pathology doi: 10.1093/ajcp/79.1.98 – ident: p_24 doi: 10.1093/biomet/62.2.407 – ident: p_30 doi: 10.1093/biomet/56.3.601 – ident: p_11 doi: 10.1093/biomet/82.4.711 – volume: 84 start-page: 855 year: 1997 ident: p_20 publication-title: Bulletin of Cancer – ident: p_16 doi: 10.2307/2532497 – ident: p_6 doi: 10.1006/gyno.1997.4760 – ident: p_5 doi: 10.2307/2530739 – ident: p_19 doi: 10.2307/3213911 – ident: p_25 doi: 10.2307/2986304 – ident: p_26 doi: 10.2307/2986119 – ident: p_1 doi: 10.1093/biomet/78.3.557 – ident: p_10 doi: 10.2307/2289768 – ident: p_12 doi: 10.2307/2291125 – ident: p_13 doi: 10.1136/bmj.306.6884.1030 – volume: 70 start-page: 41 year: 1992 ident: p_3 publication-title: British Medical Journal – ident: p_29 doi: 10.2307/2530355 – ident: p_32 doi: 10.1016/0090-8258(90)90130-D – ident: p_4 doi: 10.2307/2347570 – ident: p_8 doi: 10.2307/2289776 – ident: p_21 doi: 10.1093/biomet/80.1.223 – volume: 51 start-page: 287 year: 1989 ident: p_27 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.1111/j.2517-6161.1989.tb01766.x – volume: 70 start-page: 41 year: 1992 ident: p_7 publication-title: Obstetrics and Gynecology – ident: p_17 doi: 10.1063/1.1699114 – ident: p_2 doi: 10.1016/0304-4076(82)90048-3 |
SSID | ssj0000788 |
Score | 2.037719 |
Snippet | The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 429 |
SubjectTerms | Applications Applications and Case Studies Bayesian analysis Biological markers Cancer Cancer screening Disease Disease models Disease risk Exact sciences and technology Longitudinal CA125 Markov chain Monte Carlo Markovian processes Mathematical models Mathematics Medical sciences Medical screening Medical treatment Mixtures Multivariate analysis Ovarian cancer Ovarian diseases Parametric inference Probability and statistics Risk Sciences and techniques of general use Screening Screening tests Statistical models Statistics Tumors Ultrasonography |
Title | Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214501753168145 https://www.jstor.org/stable/2670281 https://www.proquest.com/docview/274605519 https://www.proquest.com/docview/38249519 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdbe-llrFvHvK6dDrsNUyuWLOk02tKsDFbGtkJuxvowFFI7jR1oz_3H-54sZymFQFDAtmyjJ78P6ffej5CvTDrlhTCpk4VLuapFanLGUuHVxHFpDA_lmn5dFZfX_OdMzCI2p4uwylEnBkXtWotr5CcQPYHnDf7G98VdiqRRuLkaGTRek12sXIaILjmT_xWxDLST4NRMUsaFHnNmtDrBY3AowzqVrFAMs5k27NKzqqUjUhFhk1UHI1cPlBcvtHcwSdO35E30JenpIPx98so378geuo9D9eX35PGvRVwNmCeK5srRtqHg8VEElNO2phZlvoS_uY00XhTzTehZ9eAxu5IiU3bYa4BL6JAkvGhvmp5WjaO3N_e4_0ADm06H95u3SH-0cki1RW8R-bPsDsj19OLf-WUaaRdSC9Fdn9paG7D7rLZSg2HTojJY1D7LHYRq2jPDCqEL5nwOjZCTvOYqs555IyrLdZV_IDtN2_iPhDJXZ7ngFfwg7IR71U5LU9SegxsCsV5C2DjopY01yZEaY16G2ESr8qWgEvJt3WcxVOTYenWxKcuyD-sgUYJlvq3jQZD6-hmTQoIvxhJy9GwWbLwDjIrOEnI4zooyqoOuXE_ehHxZn4XvGDdnqsa3K3gVhSzgTH_a2v-Q7A0gOFwG-kx2-uXKH4FX1JvjMPehVecM2-mPY7J7dnH1-88ToLAJ7A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAXRKGItLT1AU4oapzEcXxAiFe1pY8LrbS3ED8iVdomy25W0DO_h__IjJMsW1XaW6UokZzYiTLjedgz8wG84dLmTggdWpnZMM0rEeqE81C4PLap1Dr15ZrOL7LRVfptLMYb8HfIhaGwykEmekFtG0Nr5EfoPaHljfbGh-nPkECjaHN1QNDouOLU3f5Cj23-_uQLkvdtHB9_vfw8CntQgdCg79KGplIatRqvjFQotpUoNZVsjxKLjohyXPNMqIxbl-BJyDip0jwyjjstSpOqMsFxH8Fj1LsRTSg5lv8Fv_Qwl2hExSFPhRpydFR-RG3YFFFdTJ7lnLKnVvTgnSqpQ2QkhWmWc6RU1UFs3NMWXgUeP4Onve3KPnbMtg0brn4OW2SudtWeX8Cf74bieFAdMlKPljU1QwuTUQA7aypmiMdmeJmYHjaMUX4L-1TeOsrmZITM7fc28BHWJSVPm-u6ZWVt2c31b9rvYB69Z07jTRqCW1pYgvZiNxRpNJvvwNWDUOQlbNZN7V4B47aKEpGWeKCbi2NVVkmdVS5Fswd9ywD48NML09dAJyiOSeF9IZUX9wkVwLtln2lXAWTt09kqLYvWr7v0FCySdR13PNWX74gzibYfD2D_DhesfAP-FRUFsDdwRdGLn3mxnCwBHC7votygzaCyds0CPyUn1HGudtf2P4Qno8vzs-Ls5OJ0D7a6ADxagnoNm-1s4fbRImv1gZ8HDH489MT7B0CvQgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIaG9cB0i7OYH3lBG3MRx_AgbVYGtQsCkvVlxbEvVSlI1qQS88sc5J5eybmgPk6q2Uh3HcY_PxT7n-wBec2kzJ4QJrUxtmGRehCbmPBQuG9lEGpO0cE1n03Rynny6EBf9hlvdp1VSDO07oIhWV9PiXljfLXCVvUUvhfC1IwKZ5GmGX-_Dg5SQw6mEI5r-08Sy5Z2k9iG2UkPRzH_72DBMG7ClQ6oi5U3mNU6d7zgvbqjv1iaNH4MenqZLRbk8WjXmqPh9Dejx7o_7BB717ip718nXU7jnymewTR5qB_D8HP58Kyh1By0ge48W0bKqZOhUsq-z-pJVnh2TWC3xY170TGFsvKx-YONfjgo42WRGNdAtJcucdcUOi2pWNgwHzM5mP-mIgxFl27ym_k4rYlhaWWLzYlRphP7rDpyPP3w_noQ9s0NYYADZhIVXBl0L7gup0HYqkRvCzY9ii9GgctzwVKiUWxfjm5Cj2CdZVDjujMiLROXxC9gqq9K9BMatj2KR5PjCyBb78lZJk3qXoKeD4WQAfPhbddHDnhP7xly34Y_K9M35DeDN-ppFB_pxa-v0qrTopt1q6WVEx7dduNPK1foeo1Siu8cD2N-QsytjwFlRUQC7g9zpXuPUeiTphBv98QAO17-iqqDzn7x01QqHkhHROFev7jrgQ3j45WSsTz9OP-_CdpeNR_tRe7DVLFduH92zxhy0a_AvG-MrDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+based+on+the+risk+of+cancer+calculation+from+Bayesian+hierarchical+changepoint+and+mixture+models+of+longitudinal+markers&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Skates%2C+Steven+J&rft.au=Pauler%2C+Donna+K&rft.au=Jacobs%2C+Ian+J&rft.date=2001-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=96&rft.issue=454&rft.spage=429&rft_id=info:doi/10.1198%2F016214501753168145&rft.externalDocID=74274695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |