Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers

The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in th...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 96; no. 454; pp. 429 - 439
Main Authors Skates, Steven J, Pauler, Donna K, Jacobs, Ian J
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.06.2001
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/016214501753168145

Cover

Loading…
Abstract The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease. In this article we derive a Bayesian approach to screening based on calculation of the posterior probability of disease given longitudinal marker levels. The method is motivated by a randomized ovarian cancer screening trial in the United Kingdom comprising 22,000 women screened over 4 years with an additional 5 years of follow-up on average. Levels of the antigen CA125 were recorded annually in the screened arm. CA125 profiles of cases and controls from the U.K. trial are modeled using hierarchical changepoint and mixture models, posterior distributions are calculated using Markov chain Monte Carlo methods, and the model is used to calculate the Bayesian posterior risk of having ovarian cancer given a new subject's single or multiple longitudinal CA125 levels. A screening strategy based on the risk calculation is then evaluated using data from an independent screening trial of 5,550 women performed in Sweden. A longitudinal CA125 screening strategy based on calculation of the risk of ovarian cancer is proposed. Simulations of a prospective trial using a strategy based on the risk calculated from longitudinal CA125 values indicate potentially large increases in sensitivity for a given specificity compared to the standard approach based on a fixed CA125 reference level for all subjects.
AbstractList The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease. In this article we derive a Bayesian approach to screening based on calculation of the posterior probability of disease given longitudinal marker levels. The method is motivated by a randomized ovarian cancer screening trial in the United Kingdom comprising 22,000 women screened over 4 years with an additional 5 years of follow-up on average. Levels of the antigen CA125 were recorded annually in the screened arm. CA125 profiles of cases and controls from the U.K. trial are modeled using hierarchical changepoint and mixture models, posterior distributions are calculated using Markov chain Monte Carlo methods, and the model is used to calculate the Bayesian posterior risk of having ovarian cancer given a new subject's single or multiple longitudinal CA125 levels. A screening strategy based on the risk calculation is then evaluated using data from an independent screening trial of 5,550 women performed in Sweden. A longitudinal CA125 screening strategy based on calculation of the risk of ovarian cancer is proposed. Simulations of a prospective trial using a strategy based on the risk calculated from longitudinal CA125 values indicate potentially large increases in sensitivity for a given specificity compared to the standard approach based on a fixed CA125 reference level for all subjects.
The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional information is contained in the subject-specific temporal behavior of the marker, which exhibits a characteristic alteration early in the course of the disease.
Author Pauler, Donna K
Skates, Steven J
Jacobs, Ian J
Author_xml – sequence: 1
  givenname: Steven J
  surname: Skates
  fullname: Skates, Steven J
– sequence: 2
  givenname: Donna K
  surname: Pauler
  fullname: Pauler, Donna K
– sequence: 3
  givenname: Ian J
  surname: Jacobs
  fullname: Jacobs, Ian J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1059690$$DView record in Pascal Francis
BookMark eNp9kctuEzEUhi1UJNLCCyAWFkLsBnzm7gULiCitlAiJi8Ru5HjOJE4dOxx7BFnz4jidFqFWqhe25fP9v8_llJ0475Cx5yDeAMj2rYA6h7IS0FQF1G26PmIzqIomy5vyxwmbHYEsPcsn7DSErUiradsZ-_NVE6Izbs0_qIA9947HDfIvJlxxP_C5chopHVaPVkWTwufkdwk-YDDK8QuDpEhvjFaWzzfKrXHvjYtcuZ4vze84EvKl79GGo9_Cu7WJY29cwpeKrpDCU_Z4UDbgs5vzjH0___htfpEtPn-6nL9fZLoUTcz0IFfQAgy6kTnkslKrpkh1FH1eSomwgrqSNfRYpK1q8mIoW6ERcFUpXUpVnLHXk--e_M8RQ-x2Jmi0Vjn0Y-iKNhlVIBP48g649SOljEOX2lmLaoJe3UAqpNoHSp0yoduT2Sk6dCBSMlIkLJ8wTT4EwuE_ojvOrrs_uyRq74i0idfdj6SMfVj6YpJuQ_T077O8bkTeQgq_m8LGDZ526pcn23dRHayn2xKKB-z_Ap1AuvM
CODEN JSTNAL
CitedBy_id crossref_primary_10_1038_bjc_2017_72
crossref_primary_10_1111_j_1541_0420_2005_00323_x
crossref_primary_10_1155_2021_1455812
crossref_primary_10_3390_cancers12071931
crossref_primary_10_1002_bimj_201100062
crossref_primary_10_1016_j_bpobgyn_2005_10_012
crossref_primary_10_1155_2015_681416
crossref_primary_10_1016_j_bspc_2018_07_001
crossref_primary_10_1016_j_cgh_2015_07_049
crossref_primary_10_1016_S0090_8258_03_00051_9
crossref_primary_10_1200_JCO_2005_12_156
crossref_primary_10_1158_1078_0432_CCR_16_1391
crossref_primary_10_1200_JCO_2005_02_2582
crossref_primary_10_1783_147118906777888440
crossref_primary_10_1002_sim_8731
crossref_primary_10_1016_j_bpobgyn_2011_11_006
crossref_primary_10_1158_1078_0432_CCR_15_2750
crossref_primary_10_1093_jnci_djv012
crossref_primary_10_1155_2010_932371
crossref_primary_10_1158_1055_9965_EPI_07_2703
crossref_primary_10_2139_ssrn_3238216
crossref_primary_10_1158_1055_9965_EPI_20_0240
crossref_primary_10_2165_11314830_000000000_00000
crossref_primary_10_1080_19488300_2013_820241
crossref_primary_10_1200_JCO_2008_19_2484
crossref_primary_10_1002_cam4_7163
crossref_primary_10_1038_sj_bjc_6603407
crossref_primary_10_1007_s10255_017_0674_1
crossref_primary_10_1016_S0140_6736_15_01224_6
crossref_primary_10_1002_sim_6445
crossref_primary_10_3310_CLDC7214
crossref_primary_10_5301_JBM_2011_8616
crossref_primary_10_1016_j_ebiom_2024_105554
crossref_primary_10_3389_fnagi_2020_00136
crossref_primary_10_1002_sim_1392
crossref_primary_10_3390_nu11102416
crossref_primary_10_1007_s40300_019_00151_8
crossref_primary_10_1016_j_bpobgyn_2016_10_017
crossref_primary_10_1136_ijgc_00009577_200309000_00021
crossref_primary_10_1586_eog_12_4
crossref_primary_10_25259_JRHM_6_2024
crossref_primary_10_1038_nrc1041
crossref_primary_10_1080_02664760903563668
crossref_primary_10_1007_s11424_014_2205_y
crossref_primary_10_1080_01443615_2020_1732892
crossref_primary_10_3233_CBM_210307
crossref_primary_10_1136_ijgc_00009577_200107001_00002
crossref_primary_10_1186_1476_4598_13_129
crossref_primary_10_1158_1078_0432_CCR_17_0284
crossref_primary_10_1200_JCO_2005_01_6642
crossref_primary_10_1016_S0090_8258_03_00254_3
crossref_primary_10_1016_j_ygyno_2020_02_027
crossref_primary_10_1177_1742271X0301100204
crossref_primary_10_1080_02664763_2011_644523
crossref_primary_10_1191_1740774506cn130oa
crossref_primary_10_18027_2224_5057_2022_12_4_22_35
crossref_primary_10_1002_gepi_21815
crossref_primary_10_1200_JCO_2015_63_7843
crossref_primary_10_1586_eog_13_5
crossref_primary_10_1016_j_ygyno_2007_03_007
crossref_primary_10_1093_jnci_dju076
crossref_primary_10_1016_j_ygyno_2011_12_440
crossref_primary_10_1006_gyno_2002_6689
crossref_primary_10_1016_j_hoc_2018_07_003
crossref_primary_10_1200_JCO_2014_59_4945
crossref_primary_10_1158_1078_0432_CCR_07_4534
crossref_primary_10_2196_22033
crossref_primary_10_1080_03610918_2011_575510
crossref_primary_10_1074_mcp_R400006_MCP200
crossref_primary_10_1186_s13048_024_01535_9
crossref_primary_10_1111_1471_0528_13154
crossref_primary_10_1016_j_ygyno_2020_09_021
crossref_primary_10_1016_S0140_6736_21_00731_5
crossref_primary_10_1111_j_1541_0420_2009_01261_x
crossref_primary_10_3310_BHBR5832
crossref_primary_10_1158_1940_6207_CAPR_11_0048
crossref_primary_10_1002_cncr_28183
crossref_primary_10_1158_1078_0432_CCR_06_2224
crossref_primary_10_1155_2017_9879135
crossref_primary_10_1053_beog_2002_0297
crossref_primary_10_1158_1078_0432_CCR_14_0365
crossref_primary_10_1007_s11425_012_4475_y
crossref_primary_10_1016_S0889_8588_03_00063_7
crossref_primary_10_1037_1082_989X_7_1_41
crossref_primary_10_1002_sim_9358
crossref_primary_10_1186_s12874_017_0458_6
crossref_primary_10_1016_j_bspc_2016_11_015
crossref_primary_10_1158_1940_6207_CAPR_10_0402
crossref_primary_10_1200_JCO_2012_43_6691
crossref_primary_10_1093_geronb_63_5_S282
crossref_primary_10_1016_j_ygyno_2004_07_039
crossref_primary_10_1158_0008_5472_CAN_04_0746
crossref_primary_10_1002_sim_5964
crossref_primary_10_1177_107327481101800103
crossref_primary_10_1093_biostatistics_kxs018
crossref_primary_10_1016_j_jeconom_2009_10_020
crossref_primary_10_1046_j_1525_1438_2003_t01_1_13050_x
crossref_primary_10_1016_j_ajog_2008_04_009
crossref_primary_10_1016_S1470_2045_09_70026_9
crossref_primary_10_1046_j_0035_9254_2003_05116_x
crossref_primary_10_3390_cancers12123730
crossref_primary_10_1016_j_rigp_2005_09_006
crossref_primary_10_1158_1078_0432_CCR_18_0208
crossref_primary_10_1002_sim_5736
crossref_primary_10_1016_j_ygyno_2016_03_007
crossref_primary_10_12677_PM_2023_1311323
crossref_primary_10_17116_profmed202124071103
crossref_primary_10_1097_IGC_0b013e318256488a
Cites_doi 10.1002/cncr.2820710418
10.1093/ajcp/79.1.98
10.1093/biomet/62.2.407
10.1093/biomet/56.3.601
10.1093/biomet/82.4.711
10.2307/2532497
10.1006/gyno.1997.4760
10.2307/2530739
10.2307/3213911
10.2307/2986304
10.2307/2986119
10.1093/biomet/78.3.557
10.2307/2289768
10.2307/2291125
10.1136/bmj.306.6884.1030
10.2307/2530355
10.1016/0090-8258(90)90130-D
10.2307/2347570
10.2307/2289776
10.1093/biomet/80.1.223
10.1111/j.2517-6161.1989.tb01766.x
10.1063/1.1699114
10.1016/0304-4076(82)90048-3
ContentType Journal Article
Copyright American Statistical Association 2001
Copyright 2001 American Statistical Association
2001 INIST-CNRS
Copyright American Statistical Association Jun 2001
Copyright_xml – notice: American Statistical Association 2001
– notice: Copyright 2001 American Statistical Association
– notice: 2001 INIST-CNRS
– notice: Copyright American Statistical Association Jun 2001
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AF
8BJ
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JBE
K60
K6~
K9-
K9.
L.-
L6V
M0C
M0R
M0S
M0T
M1P
M2O
M2P
M7S
MBDVC
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
S0X
DOI 10.1198/016214501753168145
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
International Bibliography of the Social Sciences (IBSS)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
ProQuest Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Proquest Medical Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Family Health (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ABI/INFORM China
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 439
ExternalDocumentID 74274695
1059690
10_1198_016214501753168145
2670281
10708900
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFKRA
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BVXVI
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KYCEM
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NHB
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UKHRP
UPT
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
PHGZM
PHGZT
.-4
07G
1OL
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABRLO
ACGEE
ADXHL
AEUMN
AFQQW
AGCQS
AGLEN
AMATQ
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
E.L
IPNFZ
IVXBP
KQ8
LJTGL
NUSFT
TAQ
TFMCV
UB9
UQL
ZUP
ZXP
IQODW
PJZUB
PPXIY
PQGLB
TASJS
7XB
8BJ
8FK
FQK
JBE
K9.
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c407t-cf9b1811fc7921295ab730003d2499e1b165961de361d5723f480ce1eb5ac49a3
IEDL.DBID 7X7
ISSN 0162-1459
IngestDate Fri Jul 11 11:18:37 EDT 2025
Wed Aug 13 11:10:48 EDT 2025
Mon Jul 21 09:12:13 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 01:32:54 EDT 2025
Thu Jun 19 14:56:23 EDT 2025
Wed Dec 25 09:01:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 454
Keywords Biometrics
Parameter estimation
Risk
Multivariate analysis
Markov chain
Posterior distribution
Bayes estimation
Mixed distribution
Monte Carlo method
Data analysis
Factor analysis
Prior distribution
Decision making
Statistical estimation
Marker
Markov model
Malignant tumor
Mean estimation
Cancer screening
Statistical method
Screening
Ovarian diseases
Sensitivity
Posterior probability
CA 125 antigen
Hierarchical model
Hierarchical system
Application
Principal component analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-cf9b1811fc7921295ab730003d2499e1b165961de361d5723f480ce1eb5ac49a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274605519
PQPubID 41715
PageCount 11
ParticipantIDs proquest_journals_274605519
proquest_miscellaneous_38249519
crossref_citationtrail_10_1198_016214501753168145
pascalfrancis_primary_1059690
jstor_primary_2670281
crossref_primary_10_1198_016214501753168145
informaworld_taylorfrancis_310_1198_016214501753168145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2001
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_29
p_24
p_25
p_26
Campbell S. (p_3) 1992; 70
Kabawat S. E. (p_15) 1983; 79
van Nagell J. R. (p_28) 1993; 71
Riedinger J. M. (p_20) 1997; 84
Turkman K. F. (p_27) 1989; 51
p_21
Einhorn N. (p_7) 1992; 70
p_16
p_17
p_2
p_1
p_19
p_4
p_12
p_13
p_6
p_5
p_8
p_30
p_10
p_32
p_11
References_xml – volume: 71
  start-page: 1523
  year: 1993
  ident: p_28
  publication-title: Cancer
  doi: 10.1002/cncr.2820710418
– volume: 79
  start-page: 98
  year: 1983
  ident: p_15
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/79.1.98
– ident: p_24
  doi: 10.1093/biomet/62.2.407
– ident: p_30
  doi: 10.1093/biomet/56.3.601
– ident: p_11
  doi: 10.1093/biomet/82.4.711
– volume: 84
  start-page: 855
  year: 1997
  ident: p_20
  publication-title: Bulletin of Cancer
– ident: p_16
  doi: 10.2307/2532497
– ident: p_6
  doi: 10.1006/gyno.1997.4760
– ident: p_5
  doi: 10.2307/2530739
– ident: p_19
  doi: 10.2307/3213911
– ident: p_25
  doi: 10.2307/2986304
– ident: p_26
  doi: 10.2307/2986119
– ident: p_1
  doi: 10.1093/biomet/78.3.557
– ident: p_10
  doi: 10.2307/2289768
– ident: p_12
  doi: 10.2307/2291125
– ident: p_13
  doi: 10.1136/bmj.306.6884.1030
– volume: 70
  start-page: 41
  year: 1992
  ident: p_3
  publication-title: British Medical Journal
– ident: p_29
  doi: 10.2307/2530355
– ident: p_32
  doi: 10.1016/0090-8258(90)90130-D
– ident: p_4
  doi: 10.2307/2347570
– ident: p_8
  doi: 10.2307/2289776
– ident: p_21
  doi: 10.1093/biomet/80.1.223
– volume: 51
  start-page: 287
  year: 1989
  ident: p_27
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1989.tb01766.x
– volume: 70
  start-page: 41
  year: 1992
  ident: p_7
  publication-title: Obstetrics and Gynecology
– ident: p_17
  doi: 10.1063/1.1699114
– ident: p_2
  doi: 10.1016/0304-4076(82)90048-3
SSID ssj0000788
Score 2.037719
Snippet The standard approach to early detection of disease with a quantitative marker is to set a population-based fixed reference level for making further individual...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 429
SubjectTerms Applications
Applications and Case Studies
Bayesian analysis
Biological markers
Cancer
Cancer screening
Disease
Disease models
Disease risk
Exact sciences and technology
Longitudinal CA125
Markov chain Monte Carlo
Markovian processes
Mathematical models
Mathematics
Medical sciences
Medical screening
Medical treatment
Mixtures
Multivariate analysis
Ovarian cancer
Ovarian diseases
Parametric inference
Probability and statistics
Risk
Sciences and techniques of general use
Screening
Screening tests
Statistical models
Statistics
Tumors
Ultrasonography
Title Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers
URI https://www.tandfonline.com/doi/abs/10.1198/016214501753168145
https://www.jstor.org/stable/2670281
https://www.proquest.com/docview/274605519
https://www.proquest.com/docview/38249519
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdbe-llrFvHvK6dDrsNUyuWLOk02tKsDFbGtkJuxvowFFI7jR1oz_3H-54sZymFQFDAtmyjJ78P6ffej5CvTDrlhTCpk4VLuapFanLGUuHVxHFpDA_lmn5dFZfX_OdMzCI2p4uwylEnBkXtWotr5CcQPYHnDf7G98VdiqRRuLkaGTRek12sXIaILjmT_xWxDLST4NRMUsaFHnNmtDrBY3AowzqVrFAMs5k27NKzqqUjUhFhk1UHI1cPlBcvtHcwSdO35E30JenpIPx98so378geuo9D9eX35PGvRVwNmCeK5srRtqHg8VEElNO2phZlvoS_uY00XhTzTehZ9eAxu5IiU3bYa4BL6JAkvGhvmp5WjaO3N_e4_0ADm06H95u3SH-0cki1RW8R-bPsDsj19OLf-WUaaRdSC9Fdn9paG7D7rLZSg2HTojJY1D7LHYRq2jPDCqEL5nwOjZCTvOYqs555IyrLdZV_IDtN2_iPhDJXZ7ngFfwg7IR71U5LU9SegxsCsV5C2DjopY01yZEaY16G2ESr8qWgEvJt3WcxVOTYenWxKcuyD-sgUYJlvq3jQZD6-hmTQoIvxhJy9GwWbLwDjIrOEnI4zooyqoOuXE_ehHxZn4XvGDdnqsa3K3gVhSzgTH_a2v-Q7A0gOFwG-kx2-uXKH4FX1JvjMPehVecM2-mPY7J7dnH1-88ToLAJ7A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAXRKGItLT1AU4oapzEcXxAiFe1pY8LrbS3ED8iVdomy25W0DO_h__IjJMsW1XaW6UokZzYiTLjedgz8wG84dLmTggdWpnZMM0rEeqE81C4PLap1Dr15ZrOL7LRVfptLMYb8HfIhaGwykEmekFtG0Nr5EfoPaHljfbGh-nPkECjaHN1QNDouOLU3f5Cj23-_uQLkvdtHB9_vfw8CntQgdCg79KGplIatRqvjFQotpUoNZVsjxKLjohyXPNMqIxbl-BJyDip0jwyjjstSpOqMsFxH8Fj1LsRTSg5lv8Fv_Qwl2hExSFPhRpydFR-RG3YFFFdTJ7lnLKnVvTgnSqpQ2QkhWmWc6RU1UFs3NMWXgUeP4Onve3KPnbMtg0brn4OW2SudtWeX8Cf74bieFAdMlKPljU1QwuTUQA7aypmiMdmeJmYHjaMUX4L-1TeOsrmZITM7fc28BHWJSVPm-u6ZWVt2c31b9rvYB69Z07jTRqCW1pYgvZiNxRpNJvvwNWDUOQlbNZN7V4B47aKEpGWeKCbi2NVVkmdVS5Fswd9ywD48NML09dAJyiOSeF9IZUX9wkVwLtln2lXAWTt09kqLYvWr7v0FCySdR13PNWX74gzibYfD2D_DhesfAP-FRUFsDdwRdGLn3mxnCwBHC7votygzaCyds0CPyUn1HGudtf2P4Qno8vzs-Ls5OJ0D7a6ADxagnoNm-1s4fbRImv1gZ8HDH489MT7B0CvQgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIaG9cB0i7OYH3lBG3MRx_AgbVYGtQsCkvVlxbEvVSlI1qQS88sc5J5eybmgPk6q2Uh3HcY_PxT7n-wBec2kzJ4QJrUxtmGRehCbmPBQuG9lEGpO0cE1n03Rynny6EBf9hlvdp1VSDO07oIhWV9PiXljfLXCVvUUvhfC1IwKZ5GmGX-_Dg5SQw6mEI5r-08Sy5Z2k9iG2UkPRzH_72DBMG7ClQ6oi5U3mNU6d7zgvbqjv1iaNH4MenqZLRbk8WjXmqPh9Dejx7o_7BB717ip718nXU7jnymewTR5qB_D8HP58Kyh1By0ge48W0bKqZOhUsq-z-pJVnh2TWC3xY170TGFsvKx-YONfjgo42WRGNdAtJcucdcUOi2pWNgwHzM5mP-mIgxFl27ym_k4rYlhaWWLzYlRphP7rDpyPP3w_noQ9s0NYYADZhIVXBl0L7gup0HYqkRvCzY9ii9GgctzwVKiUWxfjm5Cj2CdZVDjujMiLROXxC9gqq9K9BMatj2KR5PjCyBb78lZJk3qXoKeD4WQAfPhbddHDnhP7xly34Y_K9M35DeDN-ppFB_pxa-v0qrTopt1q6WVEx7dduNPK1foeo1Siu8cD2N-QsytjwFlRUQC7g9zpXuPUeiTphBv98QAO17-iqqDzn7x01QqHkhHROFev7jrgQ3j45WSsTz9OP-_CdpeNR_tRe7DVLFduH92zxhy0a_AvG-MrDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+based+on+the+risk+of+cancer+calculation+from+Bayesian+hierarchical+changepoint+and+mixture+models+of+longitudinal+markers&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Skates%2C+Steven+J&rft.au=Pauler%2C+Donna+K&rft.au=Jacobs%2C+Ian+J&rft.date=2001-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=96&rft.issue=454&rft.spage=429&rft_id=info:doi/10.1198%2F016214501753168145&rft.externalDocID=74274695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon