Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation
•This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limit...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 151; pp. 1 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2017.08.005 |
Cover
Loading…
Abstract | •This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limited sample using the DBN-DNN regression estimator.•Our approach can mitigate overfitting and unstable estimation through the DBN-DNN regression estimator.
Background and Objective: This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.
Method: This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.
Results: The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57 mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.
Conclusion: The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. |
---|---|
AbstractList | This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.
This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.
The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57 mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.
The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. •This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limited sample using the DBN-DNN regression estimator.•Our approach can mitigate overfitting and unstable estimation through the DBN-DNN regression estimator. Background and Objective: This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. Method: This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. Results: The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57 mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. Conclusion: The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.BACKGROUND AND OBJECTIVEThis paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.METHODThis work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57 mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.RESULTSThe proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57 mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.CONCLUSIONThe proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. |
Author | Lee, Soojeong Chang, Joon-Hyuk |
Author_xml | – sequence: 1 givenname: Soojeong surname: Lee fullname: Lee, Soojeong – sequence: 2 givenname: Joon-Hyuk surname: Chang fullname: Chang, Joon-Hyuk email: jchang@hanyang.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28946991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1v1DAQQC3Uim4Lf4AD8pFLgh07joO4oJYvqVIvcESW7UyoF8cOthe0_75etnDooZzmMO-NRu8cnYQYAKEXlLSUUPF629plNW1H6NAS2RLSP0EbKoeuGXrRn6BNhcamE2Q4Q-c5bwkhXd-Lp-iskyMX40g36NsVwIo96BRc-I4hZFiMB_zblVus835ZSyzO4gL2NrifO8h4jgnHbJ33cYGS6tL4GCe8Jsh5lwBDLm7RxcXwDJ3O2md4fj8v0NcP779cfmqubz5-vnx33VhOhtJYA5Qxa-d5kqybBm1gHsVoWN9PYqASJjNJMnAqNZvHGQRnjDPBKyzNSHt2gV4d764pHn4sanHZgvc6QNxlRUdeUS4pr-jLe3RnFpjUmuqvaa_-JqlAdwRsijknmP8hlKhDd7VVh-7q0F0RqWr3KskHknXlT4KStPOPq2-PKtRAvxwkVdtCsDC5BLaoKbrH9TcPdOtdcFb7H7D_n3wH8PezNA |
CitedBy_id | crossref_primary_10_3389_fpls_2022_897883 crossref_primary_10_1007_s11906_020_01056_y crossref_primary_10_3390_s22020536 crossref_primary_10_1016_j_cmpb_2018_01_019 crossref_primary_10_1109_RBME_2020_3040715 crossref_primary_10_1109_TIM_2019_2937074 crossref_primary_10_1109_TIM_2019_2941037 crossref_primary_10_1007_s10916_018_0913_x crossref_primary_10_1007_s13246_019_00813_x crossref_primary_10_1109_ACCESS_2019_2933498 crossref_primary_10_1109_JBHI_2023_3310868 crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_1016_j_wees_2024_05_004 crossref_primary_10_1109_JSEN_2019_2961411 crossref_primary_10_1109_TIM_2025_3545993 crossref_primary_10_1007_s12274_022_4172_2 crossref_primary_10_1016_j_apacoust_2020_107256 crossref_primary_10_3390_su142215088 crossref_primary_10_1016_j_apacoust_2020_107279 crossref_primary_10_1109_ACCESS_2022_3177539 crossref_primary_10_1109_JBHI_2024_3455100 |
Cites_doi | 10.1109/TASL.2012.2229986 10.1214/aos/1031689014 10.1162/neco.2006.18.7.1527 10.1214/ss/1177013815 10.1109/MPUL.2011.940568 10.1109/RBME.2015.2434215 10.1016/S0893-6080(05)80056-5 10.1109/TII.2016.2612640 10.1007/BF02368225 10.1007/BF00058655 10.5812/ijem.3505 10.1109/TIM.2011.2123210 10.1016/j.cmpb.2017.03.007 10.1006/jcss.1997.1504 10.1109/TIM.2011.2161926 10.1109/TII.2015.2484278 10.1016/j.neucom.2006.03.016 10.1561/2200000006 10.1016/j.jash.2014.08.014 10.1097/MBP.0b013e32834af752 10.1017/S0265021506000688 10.1097/MBP.0b013e328330056a 10.1016/j.compbiomed.2015.04.015 10.1109/TIM.2013.2273612 10.1109/TBME.2016.2580904 10.1109/TIM.2010.2057571 10.1007/s10439-012-0700-7 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2017.08.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 13 |
ExternalDocumentID | 28946991 10_1016_j_cmpb_2017_08_005 S0169260717303279 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c407t-cbe133ccffd832d7abef969b355d6718edbd807418a3f9fe643343648328b9153 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Tue Aug 05 09:32:03 EDT 2025 Wed Feb 19 02:41:20 EST 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 02:40:50 EDT 2025 Fri Feb 23 02:25:58 EST 2024 Tue Aug 26 16:33:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bootstrap Blood pressure Oscillometric measurement Deep neural networks Confidence interval |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-cbe133ccffd832d7abef969b355d6718edbd807418a3f9fe643343648328b9153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28946991 |
PQID | 1943284814 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1943284814 pubmed_primary_28946991 crossref_primary_10_1016_j_cmpb_2017_08_005 crossref_citationtrail_10_1016_j_cmpb_2017_08_005 elsevier_sciencedirect_doi_10_1016_j_cmpb_2017_08_005 elsevier_clinicalkey_doi_10_1016_j_cmpb_2017_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-11-00 2017-Nov 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Drzewiecki, Hood, Apple (bib0017) 1994; 22 Theodoridis (bib0031) 2015 BIPM (bib0039) 1993 Efron, Tibshirani (bib0020) 1986; 1 P.D. Baker, Method for determining blood pressure utilizing a neural network, U.S. Patent 5 339 818, Aug. 23, 1994. Lee, Bolic, Groza, Dajani, Rajan (bib0002) 2011; 60 Lee, Rajan, Park, Chang, Dajani, Groza (bib0015) 2015; 62 Ahmad, Bolic, Dajani, Groza, Batkin, Rajan (bib0024) 2010; 59 Alpert, Quinn, Gallick (bib0026) 2014; 8 Forouzanfar, Dajani, Groza, Bolic, Rajan (bib0009) 2011; 60 Landau, Binder (bib0021) 2014 O’Brien, Petrie, Littler, Swiet, Padfield, Altman, Bland, Coate, Atkins (bib0038) 1993; 11 Hinton, Osindero, Teh (bib0018) 2006; 18 Raamat, Talts, Jagomagi, Kivastik (bib0006) 2011; 16 Ghasemi, Zahediasl (bib0028) 2012; 10 Lee, Park, Chang (bib0005) 2016; 12 Lee, Chang (bib0019) 2017; 13 Kachuee, Kiani, Mohammadzade, Shabany (bib0012) 2017; 64 World Health Organization, 2013 Rakotomamonjy (bib0037) 2007; 70 Liu, Cheng, Sung, Hahn, Mukkamala (bib0003) 2017; 5 Forouzanfar, Dajani, Groza, Bolic, Rajan, Batkin (bib0025) 2015; 8 Krakoff (bib0016) 2009; 14 Freund, Schapire (bib0034) 1997; 55 Neuman (bib0023) 2011; 2 Chen (bib0022) 2010 Lin (bib0027) 2007 Assiociation for the advancement of medical instrumentation (AAMI)(AAMI), American national standard manual, electronic or automated sphygmonanometers, AASI/AAMI SP 10:2002, 2003. . Liu, Hahn, Mukkamala (bib0007) 2013; 41 Jones, Hall (bib0014) 2008; 51 Breiman (bib0032) 1996; 24 Buhlmann, Yu (bib0033) 2002; 30 Hansen, Staber (bib0011) 2006; 23 Zhang, Wu (bib0035) 2013; 21 Lee, Nam, Lim, Rajan, Dajani, Groza (bib0004) 2013; 62 Bishop (bib0029) 2006 Bengio (bib0036) 2009; 2 Moller (bib0030) 1993; 6 Abderahman, Dajani, Bolic, Groza (bib0013) 2017; 145 Neuman (10.1016/j.cmpb.2017.08.005_bib0023) 2011; 2 Lee (10.1016/j.cmpb.2017.08.005_bib0015) 2015; 62 Lee (10.1016/j.cmpb.2017.08.005_bib0019) 2017; 13 Krakoff (10.1016/j.cmpb.2017.08.005_bib0016) 2009; 14 10.1016/j.cmpb.2017.08.005_bib0008 Landau (10.1016/j.cmpb.2017.08.005_bib0021) 2014 Theodoridis (10.1016/j.cmpb.2017.08.005_bib0031) 2015 10.1016/j.cmpb.2017.08.005_bib0001 Forouzanfar (10.1016/j.cmpb.2017.08.005_bib0009) 2011; 60 Alpert (10.1016/j.cmpb.2017.08.005_bib0026) 2014; 8 Kachuee (10.1016/j.cmpb.2017.08.005_bib0012) 2017; 64 Hinton (10.1016/j.cmpb.2017.08.005_bib0018) 2006; 18 Lee (10.1016/j.cmpb.2017.08.005_bib0002) 2011; 60 Lee (10.1016/j.cmpb.2017.08.005_bib0004) 2013; 62 Bishop (10.1016/j.cmpb.2017.08.005_bib0029) 2006 Freund (10.1016/j.cmpb.2017.08.005_bib0034) 1997; 55 Moller (10.1016/j.cmpb.2017.08.005_bib0030) 1993; 6 Jones (10.1016/j.cmpb.2017.08.005_bib0014) 2008; 51 Efron (10.1016/j.cmpb.2017.08.005_bib0020) 1986; 1 Liu (10.1016/j.cmpb.2017.08.005_bib0007) 2013; 41 Ahmad (10.1016/j.cmpb.2017.08.005_bib0024) 2010; 59 Liu (10.1016/j.cmpb.2017.08.005_bib0003) 2017; 5 O’Brien (10.1016/j.cmpb.2017.08.005_bib0038) 1993; 11 Drzewiecki (10.1016/j.cmpb.2017.08.005_bib0017) 1994; 22 Rakotomamonjy (10.1016/j.cmpb.2017.08.005_bib0037) 2007; 70 Lee (10.1016/j.cmpb.2017.08.005_bib0005) 2016; 12 10.1016/j.cmpb.2017.08.005_bib0010 Abderahman (10.1016/j.cmpb.2017.08.005_bib0013) 2017; 145 Ghasemi (10.1016/j.cmpb.2017.08.005_bib0028) 2012; 10 Breiman (10.1016/j.cmpb.2017.08.005_bib0032) 1996; 24 BIPM (10.1016/j.cmpb.2017.08.005_bib0039) 1993 Buhlmann (10.1016/j.cmpb.2017.08.005_bib0033) 2002; 30 Raamat (10.1016/j.cmpb.2017.08.005_bib0006) 2011; 16 Hansen (10.1016/j.cmpb.2017.08.005_bib0011) 2006; 23 Bengio (10.1016/j.cmpb.2017.08.005_bib0036) 2009; 2 Forouzanfar (10.1016/j.cmpb.2017.08.005_bib0025) 2015; 8 Lin (10.1016/j.cmpb.2017.08.005_bib0027) 2007 Zhang (10.1016/j.cmpb.2017.08.005_bib0035) 2013; 21 Chen (10.1016/j.cmpb.2017.08.005_bib0022) 2010 |
References_xml | – volume: 62 start-page: 154 year: 2015 end-page: 163 ident: bib0015 article-title: Estimated confidence interval from single blood pressure measurement based on algorithm fusion publication-title: Comput. Biol. Med. – volume: 14 start-page: 172 year: 2009 end-page: 177 ident: bib0016 article-title: Confidence limits for interpretation of home blood pressure recordings publication-title: Blood Press. Monit. – volume: 5 start-page: 1 year: 2017 end-page: 10 ident: bib0003 article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability publication-title: IEEE J. Transl. Eng. Health. Med. – volume: 1 start-page: 54 year: 1986 end-page: 77 ident: bib0020 article-title: Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy publication-title: Statist. Sci. – volume: 41 start-page: 587 year: 2013 end-page: 597 ident: bib0007 article-title: Error mechanisms of the oscillometric fixed-ratio blood pressure measurement method publication-title: Ann. Biomed. Eng. – volume: 59 start-page: 2575 year: 2010 end-page: 2590 ident: bib0024 article-title: Measurement of heart rate variability using an oscillometric blood pressure monitor publication-title: IEEE Trans. Instumen. Meas. – volume: 70 start-page: 1489 year: 2007 end-page: 1491 ident: bib0037 article-title: Analysis of SVM regression bound for variable ranking publication-title: Neurocomputing – reference: Assiociation for the advancement of medical instrumentation (AAMI)(AAMI), American national standard manual, electronic or automated sphygmonanometers, AASI/AAMI SP 10:2002, 2003. – volume: 60 start-page: 3405 year: 2011 end-page: 3415 ident: bib0002 article-title: Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approach publication-title: IEEE Trans. Instumen. Meas. – volume: 22 start-page: 88 year: 1994 end-page: 96 ident: bib0017 article-title: Theory of the oscillometric maximum and the systolic and diastolic ratios publication-title: ANN. Biomed. Eng. – volume: 145 start-page: 1 year: 2017 end-page: 10 ident: bib0013 article-title: An integrated blood pressure measurement system for suppression of motion artifacts publication-title: Comput. Meth. Prog. Bio. – volume: 64 start-page: 859 year: 2017 end-page: 869 ident: bib0012 article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring publication-title: IEEE Trans. Biomed. Eng. – volume: 51 start-page: 1249 year: 2008 end-page: 1251 ident: bib0014 article-title: Hypertension-pathways to success, hypertens publication-title: Editorial – volume: 21 start-page: 697 year: 2013 end-page: 710 ident: bib0035 article-title: Deep belief networks based voice activity detection publication-title: IEEE Trans. Audio, Speech, Lang. Process. – year: 2015 ident: bib0031 article-title: Machine learning – year: 1993 ident: bib0039 publication-title: IEC, IFCC, ISO, IUPAC, and OIML, Guide to the expression of uncertainty in measurement – volume: 12 start-page: 2269 year: 2016 end-page: 2280 ident: bib0005 article-title: Improved gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure measurement publication-title: IEEE Trans. Ind. Informat. – volume: 60 start-page: 2786 year: 2011 end-page: 2796 ident: bib0009 article-title: Feature-based neural network approach for oscillometric blood pressure estimation publication-title: IEEE Trans. Instumen. Meas. – volume: 11 start-page: 43 year: 1993 end-page: 62 ident: bib0038 article-title: The British hypertension society protocol for the evaluation of blood pressure measuring devices publication-title: J. of Hypertension – volume: 10 start-page: 486 year: 2012 end-page: 489 ident: bib0028 article-title: Normality tests for statistical analysis: a guide for non-statisticians publication-title: Int. J. Endocrinol. Metab. – year: 2014 ident: bib0021 article-title: A guide to Monte Carlo simulations in statistical physics Cambridge university press – reference: World Health Organization, 2013, – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib0034 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 2 start-page: 1 year: 2009 end-page: 55 ident: bib0036 article-title: Learning deep architectures for AI publication-title: Foundat. Trends in Mach. Learn. – volume: 13 start-page: 461 year: 2017 end-page: 472 ident: bib0019 article-title: Oscillometric blood pressure estimation based on deep learning publication-title: IEEE Trans. Ind. Informat. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0032 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 62 start-page: 3387 year: 2013 end-page: 3389 ident: bib0004 article-title: Oscillometric blood pressure estimation based on maximum amplitude algorithm employing gaussin mixture regression publication-title: IEEE Trans. Instumen. Meas. – reference: P.D. Baker, Method for determining blood pressure utilizing a neural network, U.S. Patent 5 339 818, Aug. 23, 1994. – reference: . – volume: 16 start-page: 73 year: 2011 end-page: 76 ident: bib0006 article-title: Errors of oscillometric blood pressure measurement as predicted by simulation publication-title: Blood Press. Monit. – volume: 30 start-page: 927 year: 2002 end-page: 961 ident: bib0033 article-title: Analyzing bagging publication-title: ANN. STAT. – year: 2010 ident: bib0022 publication-title: Improving algorithms for oscillometric blood pressure estimation by suppressing breathing effects – volume: 8 start-page: 930 year: 2014 end-page: 938 ident: bib0026 article-title: Oscillometric blood pressure: a review for clinicians publication-title: J. Am. Soc. Hypertens. – volume: 2 start-page: 39 year: 2011 end-page: 43 ident: bib0023 article-title: Measurement of blood pressure publication-title: IEEE Pulse – year: 2007 ident: bib0027 publication-title: Specialised non-invasive blood pressure measurement algorithm – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bib0030 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. – volume: 23 start-page: 781 year: 2006 end-page: 787 ident: bib0011 article-title: Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error publication-title: Eur. J. Anaesthesiol. – year: 2006 ident: bib0029 article-title: Pattern recognition and machine learning – volume: 8 start-page: 44 year: 2015 end-page: 62 ident: bib0025 article-title: Oscillometric blood pressure estimation: past, present, and future publication-title: IEEE Rev. Biomed. Eng. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0018 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 21 start-page: 697 issue: 4 year: 2013 ident: 10.1016/j.cmpb.2017.08.005_bib0035 article-title: Deep belief networks based voice activity detection publication-title: IEEE Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASL.2012.2229986 – volume: 11 start-page: 43 issue: 2 year: 1993 ident: 10.1016/j.cmpb.2017.08.005_bib0038 article-title: The British hypertension society protocol for the evaluation of blood pressure measuring devices publication-title: J. of Hypertension – volume: 30 start-page: 927 issue: 4 year: 2002 ident: 10.1016/j.cmpb.2017.08.005_bib0033 article-title: Analyzing bagging publication-title: ANN. STAT. doi: 10.1214/aos/1031689014 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.cmpb.2017.08.005_bib0018 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – year: 2015 ident: 10.1016/j.cmpb.2017.08.005_bib0031 – volume: 1 start-page: 54 issue: 1 year: 1986 ident: 10.1016/j.cmpb.2017.08.005_bib0020 article-title: Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy publication-title: Statist. Sci. doi: 10.1214/ss/1177013815 – volume: 2 start-page: 39 issue: 2 year: 2011 ident: 10.1016/j.cmpb.2017.08.005_bib0023 article-title: Measurement of blood pressure publication-title: IEEE Pulse doi: 10.1109/MPUL.2011.940568 – volume: 8 start-page: 44 year: 2015 ident: 10.1016/j.cmpb.2017.08.005_bib0025 article-title: Oscillometric blood pressure estimation: past, present, and future publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2015.2434215 – year: 2007 ident: 10.1016/j.cmpb.2017.08.005_bib0027 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.cmpb.2017.08.005_bib0030 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 13 start-page: 461 issue: 2 year: 2017 ident: 10.1016/j.cmpb.2017.08.005_bib0019 article-title: Oscillometric blood pressure estimation based on deep learning publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2016.2612640 – volume: 22 start-page: 88 issue: 1 year: 1994 ident: 10.1016/j.cmpb.2017.08.005_bib0017 article-title: Theory of the oscillometric maximum and the systolic and diastolic ratios publication-title: ANN. Biomed. Eng. doi: 10.1007/BF02368225 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.cmpb.2017.08.005_bib0032 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 10 start-page: 486 year: 2012 ident: 10.1016/j.cmpb.2017.08.005_bib0028 article-title: Normality tests for statistical analysis: a guide for non-statisticians publication-title: Int. J. Endocrinol. Metab. doi: 10.5812/ijem.3505 – volume: 60 start-page: 2786 issue: 8 year: 2011 ident: 10.1016/j.cmpb.2017.08.005_bib0009 article-title: Feature-based neural network approach for oscillometric blood pressure estimation publication-title: IEEE Trans. Instumen. Meas. doi: 10.1109/TIM.2011.2123210 – year: 2010 ident: 10.1016/j.cmpb.2017.08.005_bib0022 – volume: 145 start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2017.08.005_bib0013 article-title: An integrated blood pressure measurement system for suppression of motion artifacts publication-title: Comput. Meth. Prog. Bio. doi: 10.1016/j.cmpb.2017.03.007 – year: 2006 ident: 10.1016/j.cmpb.2017.08.005_bib0029 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.cmpb.2017.08.005_bib0034 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 60 start-page: 3405 issue: 10 year: 2011 ident: 10.1016/j.cmpb.2017.08.005_bib0002 article-title: Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approach publication-title: IEEE Trans. Instumen. Meas. doi: 10.1109/TIM.2011.2161926 – ident: 10.1016/j.cmpb.2017.08.005_bib0008 – volume: 12 start-page: 2269 issue: 6 year: 2016 ident: 10.1016/j.cmpb.2017.08.005_bib0005 article-title: Improved gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure measurement publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2015.2484278 – volume: 70 start-page: 1489 year: 2007 ident: 10.1016/j.cmpb.2017.08.005_bib0037 article-title: Analysis of SVM regression bound for variable ranking publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.03.016 – year: 1993 ident: 10.1016/j.cmpb.2017.08.005_bib0039 publication-title: IEC, IFCC, ISO, IUPAC, and OIML, Guide to the expression of uncertainty in measurement – ident: 10.1016/j.cmpb.2017.08.005_bib0010 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2017.08.005_bib0036 article-title: Learning deep architectures for AI publication-title: Foundat. Trends in Mach. Learn. doi: 10.1561/2200000006 – volume: 8 start-page: 930 issue: 12 year: 2014 ident: 10.1016/j.cmpb.2017.08.005_bib0026 article-title: Oscillometric blood pressure: a review for clinicians publication-title: J. Am. Soc. Hypertens. doi: 10.1016/j.jash.2014.08.014 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2017.08.005_bib0003 article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability publication-title: IEEE J. Transl. Eng. Health. Med. – volume: 16 start-page: 73 issue: 5 year: 2011 ident: 10.1016/j.cmpb.2017.08.005_bib0006 article-title: Errors of oscillometric blood pressure measurement as predicted by simulation publication-title: Blood Press. Monit. doi: 10.1097/MBP.0b013e32834af752 – volume: 23 start-page: 781 year: 2006 ident: 10.1016/j.cmpb.2017.08.005_bib0011 article-title: Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error publication-title: Eur. J. Anaesthesiol. doi: 10.1017/S0265021506000688 – volume: 14 start-page: 172 issue: 4 year: 2009 ident: 10.1016/j.cmpb.2017.08.005_bib0016 article-title: Confidence limits for interpretation of home blood pressure recordings publication-title: Blood Press. Monit. doi: 10.1097/MBP.0b013e328330056a – volume: 51 start-page: 1249 year: 2008 ident: 10.1016/j.cmpb.2017.08.005_bib0014 article-title: Hypertension-pathways to success, hypertens publication-title: Editorial – ident: 10.1016/j.cmpb.2017.08.005_bib0001 – volume: 62 start-page: 154 year: 2015 ident: 10.1016/j.cmpb.2017.08.005_bib0015 article-title: Estimated confidence interval from single blood pressure measurement based on algorithm fusion publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.04.015 – volume: 62 start-page: 3387 issue: 12 year: 2013 ident: 10.1016/j.cmpb.2017.08.005_bib0004 article-title: Oscillometric blood pressure estimation based on maximum amplitude algorithm employing gaussin mixture regression publication-title: IEEE Trans. Instumen. Meas. doi: 10.1109/TIM.2013.2273612 – year: 2014 ident: 10.1016/j.cmpb.2017.08.005_bib0021 – volume: 64 start-page: 859 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2017.08.005_bib0012 article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2580904 – volume: 59 start-page: 2575 issue: 10 year: 2010 ident: 10.1016/j.cmpb.2017.08.005_bib0024 article-title: Measurement of heart rate variability using an oscillometric blood pressure monitor publication-title: IEEE Trans. Instumen. Meas. doi: 10.1109/TIM.2010.2057571 – volume: 41 start-page: 587 issue: 3 year: 2013 ident: 10.1016/j.cmpb.2017.08.005_bib0007 article-title: Error mechanisms of the oscillometric fixed-ratio blood pressure measurement method publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0700-7 |
SSID | ssj0002556 |
Score | 2.2914453 |
Snippet | •This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a... This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Blood Pressure Blood Pressure Determination - methods Bootstrap Confidence interval Deep neural networks Humans Machine Learning Monte Carlo Method Neural Networks (Computer) Oscillometric measurement Oscillometry |
Title | Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260717303279 https://dx.doi.org/10.1016/j.cmpb.2017.08.005 https://www.ncbi.nlm.nih.gov/pubmed/28946991 https://www.proquest.com/docview/1943284814 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhgZJLaNo83DxQobewtXZX3scx5IHbklwSgy9F6DEKDn4ssX3IJb89M7tah0DrQo9aNKwYjUYzmplvGPsGOtGl9SISVvtIFs5HOHSRzJ0QWkDPA71D3txm_YH8OewNN9hFWwtDaZVB9zc6vdbW4Us3cLNbjUbdO8IRSbI6jCzSJKciPkKvQ5n-_vKW5kEQWw2-dxnR7FA40-R42UllKL0rr2E8qYXdny-nvxmf9SV0_ZHtBOuRnzcL3GUbMP3EPtyE-Phn9vsSoOKhE8QDRxcVJmYMnF5buZ4_T6rFDEn5Crl1ztFo5QRoOR7PJtRdy_I6l53XCbLLJ-AEw9HUN-6xwfXV_UU_Cg0UIot-2iKyBtAFtdZ7hwfX5dqAL7PSoI3hMryUwBlHYDhxoVNfekDrJJVpJnFyYUrUhftsczqbwiHjWWwhBvAEhCTzHIzwMnW2kKVOnBZJh8Ut55QN6OLU5GKs2jSyR0XcVsRtRZ0vRa_DzlY0VYOtsXZ22m6IaqtGUc8pVP1rqXorqndy9U-6r-2eKzxwFEXRU5gt5youJbJHFrHssINGGFarR-9VZmhxf_nPvx6xbRo1tY7HbHPxtIQTNHoW5rSW6lO2df7jV__2FVqAAoA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcEG-Wp5G4oWjz8CbxsSpUW9rdC63UC7L8GKOifUTd3QP_npnEiYQEReKYxKNYY3v8jT3zDcAHNLlRLqRJ6kxIZO1DQo8-kZVPU5PiNCCfQ84X5exSfrmaXh3AcZ8Lw2GV0fZ3Nr211vHNJGpz0lxfT74yj0hettfIaZFX6g4cMjuVHMHh0enZbDEYZGbZ6ii-VcICMXemC_Nyq8ZyhFfVMnlyFbs_709_w5_tPnTyEB5EACmOuj4-ggNcP4a783hF_gS-fUJsRCwG8V2Ql4oru0TBB67CbH-umt2GRMVA3roVhFsFc1oul5sVF9hyog1nF22M7P4GBTNxdCmOT-Hy5PPF8SyJNRQSR67aLnEWyQt1LgRPa9dXxmJQpbIEM3xJ-xJ665kPJ6tNEVRAAiiFLEpJjWuryBw-g9F6s8YXIMrMYYYYmAtJVhXaNMjCu1oqk3uT5mPIes1pFwnGuc7FUveRZD80a1uztjUXv0ynY_g4yDQdvcatrYt-QHSfOEqmTpP1v1VqOkj9NrX-Kfe-H3NNa44vUswaN_utzpQk9cg6k2N43k2GoffkwMqSQPfL__zrO7g3u5if6_PTxdkruM9futTH1zDa3ezxDWGgnX0b5_gvL9sFMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+ensemble+with+asymptotic+techniques+for+oscillometric+blood+pressure+estimation&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Lee%2C+Soojeong&rft.au=Chang%2C+Joon-Hyuk&rft.date=2017-11-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=151&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cmpb.2017.08.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |