Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation

•This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limit...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 151; pp. 1 - 13
Main Authors Lee, Soojeong, Chang, Joon-Hyuk
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.11.2017
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2017.08.005

Cover

Loading…
Abstract •This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limited sample using the DBN-DNN regression estimator.•Our approach can mitigate overfitting and unstable estimation through the DBN-DNN regression estimator. Background and Objective: This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. Method: This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. Results: The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. Conclusion: The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.
AbstractList This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.
•This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a solution that decrease uncertainty for oscillometric BP measurements.•A novel approach is proposed to acquire accurate BP estimates from a limited sample using the DBN-DNN regression estimator.•Our approach can mitigate overfitting and unstable estimation through the DBN-DNN regression estimator. Background and Objective: This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. Method: This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. Results: The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. Conclusion: The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.
This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.BACKGROUND AND OBJECTIVEThis paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements.This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.METHODThis work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage.The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.RESULTSThe proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator.The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.CONCLUSIONThe proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation.
Author Lee, Soojeong
Chang, Joon-Hyuk
Author_xml – sequence: 1
  givenname: Soojeong
  surname: Lee
  fullname: Lee, Soojeong
– sequence: 2
  givenname: Joon-Hyuk
  surname: Chang
  fullname: Chang, Joon-Hyuk
  email: jchang@hanyang.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28946991$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQQC3Uim4Lf4AD8pFLgh07joO4oJYvqVIvcESW7UyoF8cOthe0_75etnDooZzmMO-NRu8cnYQYAKEXlLSUUPF629plNW1H6NAS2RLSP0EbKoeuGXrRn6BNhcamE2Q4Q-c5bwkhXd-Lp-iskyMX40g36NsVwIo96BRc-I4hZFiMB_zblVus835ZSyzO4gL2NrifO8h4jgnHbJ33cYGS6tL4GCe8Jsh5lwBDLm7RxcXwDJ3O2md4fj8v0NcP779cfmqubz5-vnx33VhOhtJYA5Qxa-d5kqybBm1gHsVoWN9PYqASJjNJMnAqNZvHGQRnjDPBKyzNSHt2gV4d764pHn4sanHZgvc6QNxlRUdeUS4pr-jLe3RnFpjUmuqvaa_-JqlAdwRsijknmP8hlKhDd7VVh-7q0F0RqWr3KskHknXlT4KStPOPq2-PKtRAvxwkVdtCsDC5BLaoKbrH9TcPdOtdcFb7H7D_n3wH8PezNA
CitedBy_id crossref_primary_10_3389_fpls_2022_897883
crossref_primary_10_1007_s11906_020_01056_y
crossref_primary_10_3390_s22020536
crossref_primary_10_1016_j_cmpb_2018_01_019
crossref_primary_10_1109_RBME_2020_3040715
crossref_primary_10_1109_TIM_2019_2937074
crossref_primary_10_1109_TIM_2019_2941037
crossref_primary_10_1007_s10916_018_0913_x
crossref_primary_10_1007_s13246_019_00813_x
crossref_primary_10_1109_ACCESS_2019_2933498
crossref_primary_10_1109_JBHI_2023_3310868
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1016_j_wees_2024_05_004
crossref_primary_10_1109_JSEN_2019_2961411
crossref_primary_10_1109_TIM_2025_3545993
crossref_primary_10_1007_s12274_022_4172_2
crossref_primary_10_1016_j_apacoust_2020_107256
crossref_primary_10_3390_su142215088
crossref_primary_10_1016_j_apacoust_2020_107279
crossref_primary_10_1109_ACCESS_2022_3177539
crossref_primary_10_1109_JBHI_2024_3455100
Cites_doi 10.1109/TASL.2012.2229986
10.1214/aos/1031689014
10.1162/neco.2006.18.7.1527
10.1214/ss/1177013815
10.1109/MPUL.2011.940568
10.1109/RBME.2015.2434215
10.1016/S0893-6080(05)80056-5
10.1109/TII.2016.2612640
10.1007/BF02368225
10.1007/BF00058655
10.5812/ijem.3505
10.1109/TIM.2011.2123210
10.1016/j.cmpb.2017.03.007
10.1006/jcss.1997.1504
10.1109/TIM.2011.2161926
10.1109/TII.2015.2484278
10.1016/j.neucom.2006.03.016
10.1561/2200000006
10.1016/j.jash.2014.08.014
10.1097/MBP.0b013e32834af752
10.1017/S0265021506000688
10.1097/MBP.0b013e328330056a
10.1016/j.compbiomed.2015.04.015
10.1109/TIM.2013.2273612
10.1109/TBME.2016.2580904
10.1109/TIM.2010.2057571
10.1007/s10439-012-0700-7
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2017.08.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 13
ExternalDocumentID 28946991
10_1016_j_cmpb_2017_08_005
S0169260717303279
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-cbe133ccffd832d7abef969b355d6718edbd807418a3f9fe643343648328b9153
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Tue Aug 05 09:32:03 EDT 2025
Wed Feb 19 02:41:20 EST 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 02:40:50 EDT 2025
Fri Feb 23 02:25:58 EST 2024
Tue Aug 26 16:33:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bootstrap
Blood pressure
Oscillometric measurement
Deep neural networks
Confidence interval
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-cbe133ccffd832d7abef969b355d6718edbd807418a3f9fe643343648328b9153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28946991
PQID 1943284814
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1943284814
pubmed_primary_28946991
crossref_primary_10_1016_j_cmpb_2017_08_005
crossref_citationtrail_10_1016_j_cmpb_2017_08_005
elsevier_sciencedirect_doi_10_1016_j_cmpb_2017_08_005
elsevier_clinicalkey_doi_10_1016_j_cmpb_2017_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Drzewiecki, Hood, Apple (bib0017) 1994; 22
Theodoridis (bib0031) 2015
BIPM (bib0039) 1993
Efron, Tibshirani (bib0020) 1986; 1
P.D. Baker, Method for determining blood pressure utilizing a neural network, U.S. Patent 5 339 818, Aug. 23, 1994.
Lee, Bolic, Groza, Dajani, Rajan (bib0002) 2011; 60
Lee, Rajan, Park, Chang, Dajani, Groza (bib0015) 2015; 62
Ahmad, Bolic, Dajani, Groza, Batkin, Rajan (bib0024) 2010; 59
Alpert, Quinn, Gallick (bib0026) 2014; 8
Forouzanfar, Dajani, Groza, Bolic, Rajan (bib0009) 2011; 60
Landau, Binder (bib0021) 2014
O’Brien, Petrie, Littler, Swiet, Padfield, Altman, Bland, Coate, Atkins (bib0038) 1993; 11
Hinton, Osindero, Teh (bib0018) 2006; 18
Raamat, Talts, Jagomagi, Kivastik (bib0006) 2011; 16
Ghasemi, Zahediasl (bib0028) 2012; 10
Lee, Park, Chang (bib0005) 2016; 12
Lee, Chang (bib0019) 2017; 13
Kachuee, Kiani, Mohammadzade, Shabany (bib0012) 2017; 64
World Health Organization, 2013
Rakotomamonjy (bib0037) 2007; 70
Liu, Cheng, Sung, Hahn, Mukkamala (bib0003) 2017; 5
Forouzanfar, Dajani, Groza, Bolic, Rajan, Batkin (bib0025) 2015; 8
Krakoff (bib0016) 2009; 14
Freund, Schapire (bib0034) 1997; 55
Neuman (bib0023) 2011; 2
Chen (bib0022) 2010
Lin (bib0027) 2007
Assiociation for the advancement of medical instrumentation (AAMI)(AAMI), American national standard manual, electronic or automated sphygmonanometers, AASI/AAMI SP 10:2002, 2003.
.
Liu, Hahn, Mukkamala (bib0007) 2013; 41
Jones, Hall (bib0014) 2008; 51
Breiman (bib0032) 1996; 24
Buhlmann, Yu (bib0033) 2002; 30
Hansen, Staber (bib0011) 2006; 23
Zhang, Wu (bib0035) 2013; 21
Lee, Nam, Lim, Rajan, Dajani, Groza (bib0004) 2013; 62
Bishop (bib0029) 2006
Bengio (bib0036) 2009; 2
Moller (bib0030) 1993; 6
Abderahman, Dajani, Bolic, Groza (bib0013) 2017; 145
Neuman (10.1016/j.cmpb.2017.08.005_bib0023) 2011; 2
Lee (10.1016/j.cmpb.2017.08.005_bib0015) 2015; 62
Lee (10.1016/j.cmpb.2017.08.005_bib0019) 2017; 13
Krakoff (10.1016/j.cmpb.2017.08.005_bib0016) 2009; 14
10.1016/j.cmpb.2017.08.005_bib0008
Landau (10.1016/j.cmpb.2017.08.005_bib0021) 2014
Theodoridis (10.1016/j.cmpb.2017.08.005_bib0031) 2015
10.1016/j.cmpb.2017.08.005_bib0001
Forouzanfar (10.1016/j.cmpb.2017.08.005_bib0009) 2011; 60
Alpert (10.1016/j.cmpb.2017.08.005_bib0026) 2014; 8
Kachuee (10.1016/j.cmpb.2017.08.005_bib0012) 2017; 64
Hinton (10.1016/j.cmpb.2017.08.005_bib0018) 2006; 18
Lee (10.1016/j.cmpb.2017.08.005_bib0002) 2011; 60
Lee (10.1016/j.cmpb.2017.08.005_bib0004) 2013; 62
Bishop (10.1016/j.cmpb.2017.08.005_bib0029) 2006
Freund (10.1016/j.cmpb.2017.08.005_bib0034) 1997; 55
Moller (10.1016/j.cmpb.2017.08.005_bib0030) 1993; 6
Jones (10.1016/j.cmpb.2017.08.005_bib0014) 2008; 51
Efron (10.1016/j.cmpb.2017.08.005_bib0020) 1986; 1
Liu (10.1016/j.cmpb.2017.08.005_bib0007) 2013; 41
Ahmad (10.1016/j.cmpb.2017.08.005_bib0024) 2010; 59
Liu (10.1016/j.cmpb.2017.08.005_bib0003) 2017; 5
O’Brien (10.1016/j.cmpb.2017.08.005_bib0038) 1993; 11
Drzewiecki (10.1016/j.cmpb.2017.08.005_bib0017) 1994; 22
Rakotomamonjy (10.1016/j.cmpb.2017.08.005_bib0037) 2007; 70
Lee (10.1016/j.cmpb.2017.08.005_bib0005) 2016; 12
10.1016/j.cmpb.2017.08.005_bib0010
Abderahman (10.1016/j.cmpb.2017.08.005_bib0013) 2017; 145
Ghasemi (10.1016/j.cmpb.2017.08.005_bib0028) 2012; 10
Breiman (10.1016/j.cmpb.2017.08.005_bib0032) 1996; 24
BIPM (10.1016/j.cmpb.2017.08.005_bib0039) 1993
Buhlmann (10.1016/j.cmpb.2017.08.005_bib0033) 2002; 30
Raamat (10.1016/j.cmpb.2017.08.005_bib0006) 2011; 16
Hansen (10.1016/j.cmpb.2017.08.005_bib0011) 2006; 23
Bengio (10.1016/j.cmpb.2017.08.005_bib0036) 2009; 2
Forouzanfar (10.1016/j.cmpb.2017.08.005_bib0025) 2015; 8
Lin (10.1016/j.cmpb.2017.08.005_bib0027) 2007
Zhang (10.1016/j.cmpb.2017.08.005_bib0035) 2013; 21
Chen (10.1016/j.cmpb.2017.08.005_bib0022) 2010
References_xml – volume: 62
  start-page: 154
  year: 2015
  end-page: 163
  ident: bib0015
  article-title: Estimated confidence interval from single blood pressure measurement based on algorithm fusion
  publication-title: Comput. Biol. Med.
– volume: 14
  start-page: 172
  year: 2009
  end-page: 177
  ident: bib0016
  article-title: Confidence limits for interpretation of home blood pressure recordings
  publication-title: Blood Press. Monit.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0003
  article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability
  publication-title: IEEE J. Transl. Eng. Health. Med.
– volume: 1
  start-page: 54
  year: 1986
  end-page: 77
  ident: bib0020
  article-title: Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy
  publication-title: Statist. Sci.
– volume: 41
  start-page: 587
  year: 2013
  end-page: 597
  ident: bib0007
  article-title: Error mechanisms of the oscillometric fixed-ratio blood pressure measurement method
  publication-title: Ann. Biomed. Eng.
– volume: 59
  start-page: 2575
  year: 2010
  end-page: 2590
  ident: bib0024
  article-title: Measurement of heart rate variability using an oscillometric blood pressure monitor
  publication-title: IEEE Trans. Instumen. Meas.
– volume: 70
  start-page: 1489
  year: 2007
  end-page: 1491
  ident: bib0037
  article-title: Analysis of SVM regression bound for variable ranking
  publication-title: Neurocomputing
– reference: Assiociation for the advancement of medical instrumentation (AAMI)(AAMI), American national standard manual, electronic or automated sphygmonanometers, AASI/AAMI SP 10:2002, 2003.
– volume: 60
  start-page: 3405
  year: 2011
  end-page: 3415
  ident: bib0002
  article-title: Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approach
  publication-title: IEEE Trans. Instumen. Meas.
– volume: 22
  start-page: 88
  year: 1994
  end-page: 96
  ident: bib0017
  article-title: Theory of the oscillometric maximum and the systolic and diastolic ratios
  publication-title: ANN. Biomed. Eng.
– volume: 145
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0013
  article-title: An integrated blood pressure measurement system for suppression of motion artifacts
  publication-title: Comput. Meth. Prog. Bio.
– volume: 64
  start-page: 859
  year: 2017
  end-page: 869
  ident: bib0012
  article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 51
  start-page: 1249
  year: 2008
  end-page: 1251
  ident: bib0014
  article-title: Hypertension-pathways to success, hypertens
  publication-title: Editorial
– volume: 21
  start-page: 697
  year: 2013
  end-page: 710
  ident: bib0035
  article-title: Deep belief networks based voice activity detection
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
– year: 2015
  ident: bib0031
  article-title: Machine learning
– year: 1993
  ident: bib0039
  publication-title: IEC, IFCC, ISO, IUPAC, and OIML, Guide to the expression of uncertainty in measurement
– volume: 12
  start-page: 2269
  year: 2016
  end-page: 2280
  ident: bib0005
  article-title: Improved gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure measurement
  publication-title: IEEE Trans. Ind. Informat.
– volume: 60
  start-page: 2786
  year: 2011
  end-page: 2796
  ident: bib0009
  article-title: Feature-based neural network approach for oscillometric blood pressure estimation
  publication-title: IEEE Trans. Instumen. Meas.
– volume: 11
  start-page: 43
  year: 1993
  end-page: 62
  ident: bib0038
  article-title: The British hypertension society protocol for the evaluation of blood pressure measuring devices
  publication-title: J. of Hypertension
– volume: 10
  start-page: 486
  year: 2012
  end-page: 489
  ident: bib0028
  article-title: Normality tests for statistical analysis: a guide for non-statisticians
  publication-title: Int. J. Endocrinol. Metab.
– year: 2014
  ident: bib0021
  article-title: A guide to Monte Carlo simulations in statistical physics Cambridge university press
– reference: World Health Organization, 2013,
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib0034
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 55
  ident: bib0036
  article-title: Learning deep architectures for AI
  publication-title: Foundat. Trends in Mach. Learn.
– volume: 13
  start-page: 461
  year: 2017
  end-page: 472
  ident: bib0019
  article-title: Oscillometric blood pressure estimation based on deep learning
  publication-title: IEEE Trans. Ind. Informat.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0032
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 62
  start-page: 3387
  year: 2013
  end-page: 3389
  ident: bib0004
  article-title: Oscillometric blood pressure estimation based on maximum amplitude algorithm employing gaussin mixture regression
  publication-title: IEEE Trans. Instumen. Meas.
– reference: P.D. Baker, Method for determining blood pressure utilizing a neural network, U.S. Patent 5 339 818, Aug. 23, 1994.
– reference: .
– volume: 16
  start-page: 73
  year: 2011
  end-page: 76
  ident: bib0006
  article-title: Errors of oscillometric blood pressure measurement as predicted by simulation
  publication-title: Blood Press. Monit.
– volume: 30
  start-page: 927
  year: 2002
  end-page: 961
  ident: bib0033
  article-title: Analyzing bagging
  publication-title: ANN. STAT.
– year: 2010
  ident: bib0022
  publication-title: Improving algorithms for oscillometric blood pressure estimation by suppressing breathing effects
– volume: 8
  start-page: 930
  year: 2014
  end-page: 938
  ident: bib0026
  article-title: Oscillometric blood pressure: a review for clinicians
  publication-title: J. Am. Soc. Hypertens.
– volume: 2
  start-page: 39
  year: 2011
  end-page: 43
  ident: bib0023
  article-title: Measurement of blood pressure
  publication-title: IEEE Pulse
– year: 2007
  ident: bib0027
  publication-title: Specialised non-invasive blood pressure measurement algorithm
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib0030
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
– volume: 23
  start-page: 781
  year: 2006
  end-page: 787
  ident: bib0011
  article-title: Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error
  publication-title: Eur. J. Anaesthesiol.
– year: 2006
  ident: bib0029
  article-title: Pattern recognition and machine learning
– volume: 8
  start-page: 44
  year: 2015
  end-page: 62
  ident: bib0025
  article-title: Oscillometric blood pressure estimation: past, present, and future
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0018
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 21
  start-page: 697
  issue: 4
  year: 2013
  ident: 10.1016/j.cmpb.2017.08.005_bib0035
  article-title: Deep belief networks based voice activity detection
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2012.2229986
– volume: 11
  start-page: 43
  issue: 2
  year: 1993
  ident: 10.1016/j.cmpb.2017.08.005_bib0038
  article-title: The British hypertension society protocol for the evaluation of blood pressure measuring devices
  publication-title: J. of Hypertension
– volume: 30
  start-page: 927
  issue: 4
  year: 2002
  ident: 10.1016/j.cmpb.2017.08.005_bib0033
  article-title: Analyzing bagging
  publication-title: ANN. STAT.
  doi: 10.1214/aos/1031689014
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.cmpb.2017.08.005_bib0018
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– year: 2015
  ident: 10.1016/j.cmpb.2017.08.005_bib0031
– volume: 1
  start-page: 54
  issue: 1
  year: 1986
  ident: 10.1016/j.cmpb.2017.08.005_bib0020
  article-title: Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1177013815
– volume: 2
  start-page: 39
  issue: 2
  year: 2011
  ident: 10.1016/j.cmpb.2017.08.005_bib0023
  article-title: Measurement of blood pressure
  publication-title: IEEE Pulse
  doi: 10.1109/MPUL.2011.940568
– volume: 8
  start-page: 44
  year: 2015
  ident: 10.1016/j.cmpb.2017.08.005_bib0025
  article-title: Oscillometric blood pressure estimation: past, present, and future
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2015.2434215
– year: 2007
  ident: 10.1016/j.cmpb.2017.08.005_bib0027
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.cmpb.2017.08.005_bib0030
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 13
  start-page: 461
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2017.08.005_bib0019
  article-title: Oscillometric blood pressure estimation based on deep learning
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2016.2612640
– volume: 22
  start-page: 88
  issue: 1
  year: 1994
  ident: 10.1016/j.cmpb.2017.08.005_bib0017
  article-title: Theory of the oscillometric maximum and the systolic and diastolic ratios
  publication-title: ANN. Biomed. Eng.
  doi: 10.1007/BF02368225
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.cmpb.2017.08.005_bib0032
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 10
  start-page: 486
  year: 2012
  ident: 10.1016/j.cmpb.2017.08.005_bib0028
  article-title: Normality tests for statistical analysis: a guide for non-statisticians
  publication-title: Int. J. Endocrinol. Metab.
  doi: 10.5812/ijem.3505
– volume: 60
  start-page: 2786
  issue: 8
  year: 2011
  ident: 10.1016/j.cmpb.2017.08.005_bib0009
  article-title: Feature-based neural network approach for oscillometric blood pressure estimation
  publication-title: IEEE Trans. Instumen. Meas.
  doi: 10.1109/TIM.2011.2123210
– year: 2010
  ident: 10.1016/j.cmpb.2017.08.005_bib0022
– volume: 145
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2017.08.005_bib0013
  article-title: An integrated blood pressure measurement system for suppression of motion artifacts
  publication-title: Comput. Meth. Prog. Bio.
  doi: 10.1016/j.cmpb.2017.03.007
– year: 2006
  ident: 10.1016/j.cmpb.2017.08.005_bib0029
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.cmpb.2017.08.005_bib0034
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 60
  start-page: 3405
  issue: 10
  year: 2011
  ident: 10.1016/j.cmpb.2017.08.005_bib0002
  article-title: Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approach
  publication-title: IEEE Trans. Instumen. Meas.
  doi: 10.1109/TIM.2011.2161926
– ident: 10.1016/j.cmpb.2017.08.005_bib0008
– volume: 12
  start-page: 2269
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2017.08.005_bib0005
  article-title: Improved gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure measurement
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2015.2484278
– volume: 70
  start-page: 1489
  year: 2007
  ident: 10.1016/j.cmpb.2017.08.005_bib0037
  article-title: Analysis of SVM regression bound for variable ranking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.03.016
– year: 1993
  ident: 10.1016/j.cmpb.2017.08.005_bib0039
  publication-title: IEC, IFCC, ISO, IUPAC, and OIML, Guide to the expression of uncertainty in measurement
– ident: 10.1016/j.cmpb.2017.08.005_bib0010
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2017.08.005_bib0036
  article-title: Learning deep architectures for AI
  publication-title: Foundat. Trends in Mach. Learn.
  doi: 10.1561/2200000006
– volume: 8
  start-page: 930
  issue: 12
  year: 2014
  ident: 10.1016/j.cmpb.2017.08.005_bib0026
  article-title: Oscillometric blood pressure: a review for clinicians
  publication-title: J. Am. Soc. Hypertens.
  doi: 10.1016/j.jash.2014.08.014
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2017.08.005_bib0003
  article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability
  publication-title: IEEE J. Transl. Eng. Health. Med.
– volume: 16
  start-page: 73
  issue: 5
  year: 2011
  ident: 10.1016/j.cmpb.2017.08.005_bib0006
  article-title: Errors of oscillometric blood pressure measurement as predicted by simulation
  publication-title: Blood Press. Monit.
  doi: 10.1097/MBP.0b013e32834af752
– volume: 23
  start-page: 781
  year: 2006
  ident: 10.1016/j.cmpb.2017.08.005_bib0011
  article-title: Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error
  publication-title: Eur. J. Anaesthesiol.
  doi: 10.1017/S0265021506000688
– volume: 14
  start-page: 172
  issue: 4
  year: 2009
  ident: 10.1016/j.cmpb.2017.08.005_bib0016
  article-title: Confidence limits for interpretation of home blood pressure recordings
  publication-title: Blood Press. Monit.
  doi: 10.1097/MBP.0b013e328330056a
– volume: 51
  start-page: 1249
  year: 2008
  ident: 10.1016/j.cmpb.2017.08.005_bib0014
  article-title: Hypertension-pathways to success, hypertens
  publication-title: Editorial
– ident: 10.1016/j.cmpb.2017.08.005_bib0001
– volume: 62
  start-page: 154
  year: 2015
  ident: 10.1016/j.cmpb.2017.08.005_bib0015
  article-title: Estimated confidence interval from single blood pressure measurement based on algorithm fusion
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.04.015
– volume: 62
  start-page: 3387
  issue: 12
  year: 2013
  ident: 10.1016/j.cmpb.2017.08.005_bib0004
  article-title: Oscillometric blood pressure estimation based on maximum amplitude algorithm employing gaussin mixture regression
  publication-title: IEEE Trans. Instumen. Meas.
  doi: 10.1109/TIM.2013.2273612
– year: 2014
  ident: 10.1016/j.cmpb.2017.08.005_bib0021
– volume: 64
  start-page: 859
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2017.08.005_bib0012
  article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– volume: 59
  start-page: 2575
  issue: 10
  year: 2010
  ident: 10.1016/j.cmpb.2017.08.005_bib0024
  article-title: Measurement of heart rate variability using an oscillometric blood pressure monitor
  publication-title: IEEE Trans. Instumen. Meas.
  doi: 10.1109/TIM.2010.2057571
– volume: 41
  start-page: 587
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2017.08.005_bib0007
  article-title: Error mechanisms of the oscillometric fixed-ratio blood pressure measurement method
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0700-7
SSID ssj0002556
Score 2.2914453
Snippet •This is one of the first studies using the ensemble DBN-DNN technique to estimate BP with CIs of a small training sample.•The DBN-DNN estimator provides a...
This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Blood Pressure
Blood Pressure Determination - methods
Bootstrap
Confidence interval
Deep neural networks
Humans
Machine Learning
Monte Carlo Method
Neural Networks (Computer)
Oscillometric measurement
Oscillometry
Title Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260717303279
https://dx.doi.org/10.1016/j.cmpb.2017.08.005
https://www.ncbi.nlm.nih.gov/pubmed/28946991
https://www.proquest.com/docview/1943284814
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhgZJLaNo83DxQobewtXZX3scx5IHbklwSgy9F6DEKDn4ssX3IJb89M7tah0DrQo9aNKwYjUYzmplvGPsGOtGl9SISVvtIFs5HOHSRzJ0QWkDPA71D3txm_YH8OewNN9hFWwtDaZVB9zc6vdbW4Us3cLNbjUbdO8IRSbI6jCzSJKciPkKvQ5n-_vKW5kEQWw2-dxnR7FA40-R42UllKL0rr2E8qYXdny-nvxmf9SV0_ZHtBOuRnzcL3GUbMP3EPtyE-Phn9vsSoOKhE8QDRxcVJmYMnF5buZ4_T6rFDEn5Crl1ztFo5QRoOR7PJtRdy_I6l53XCbLLJ-AEw9HUN-6xwfXV_UU_Cg0UIot-2iKyBtAFtdZ7hwfX5dqAL7PSoI3hMryUwBlHYDhxoVNfekDrJJVpJnFyYUrUhftsczqbwiHjWWwhBvAEhCTzHIzwMnW2kKVOnBZJh8Ut55QN6OLU5GKs2jSyR0XcVsRtRZ0vRa_DzlY0VYOtsXZ22m6IaqtGUc8pVP1rqXorqndy9U-6r-2eKzxwFEXRU5gt5youJbJHFrHssINGGFarR-9VZmhxf_nPvx6xbRo1tY7HbHPxtIQTNHoW5rSW6lO2df7jV__2FVqAAoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcEG-Wp5G4oWjz8CbxsSpUW9rdC63UC7L8GKOifUTd3QP_npnEiYQEReKYxKNYY3v8jT3zDcAHNLlRLqRJ6kxIZO1DQo8-kZVPU5PiNCCfQ84X5exSfrmaXh3AcZ8Lw2GV0fZ3Nr211vHNJGpz0lxfT74yj0hettfIaZFX6g4cMjuVHMHh0enZbDEYZGbZ6ii-VcICMXemC_Nyq8ZyhFfVMnlyFbs_709_w5_tPnTyEB5EACmOuj4-ggNcP4a783hF_gS-fUJsRCwG8V2Ql4oru0TBB67CbH-umt2GRMVA3roVhFsFc1oul5sVF9hyog1nF22M7P4GBTNxdCmOT-Hy5PPF8SyJNRQSR67aLnEWyQt1LgRPa9dXxmJQpbIEM3xJ-xJ665kPJ6tNEVRAAiiFLEpJjWuryBw-g9F6s8YXIMrMYYYYmAtJVhXaNMjCu1oqk3uT5mPIes1pFwnGuc7FUveRZD80a1uztjUXv0ynY_g4yDQdvcatrYt-QHSfOEqmTpP1v1VqOkj9NrX-Kfe-H3NNa44vUswaN_utzpQk9cg6k2N43k2GoffkwMqSQPfL__zrO7g3u5if6_PTxdkruM9futTH1zDa3ezxDWGgnX0b5_gvL9sFMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+ensemble+with+asymptotic+techniques+for+oscillometric+blood+pressure+estimation&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Lee%2C+Soojeong&rft.au=Chang%2C+Joon-Hyuk&rft.date=2017-11-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=151&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cmpb.2017.08.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon